qemu/target/hexagon/hex_common.py
Paolo Bonzini e41c40d101 target/hexagon: avoid invalid escape in Python string
This is an error in Python 3.12; fix it by using a raw string literal.

Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-10-17 15:20:53 +02:00

353 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
##
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
behdict = {} # tag ->behavior
semdict = {} # tag -> semantics
attribdict = {} # tag -> attributes
macros = {} # macro -> macro information...
attribinfo = {} # Register information and misc
tags = [] # list of all tags
overrides = {} # tags with helper overrides
idef_parser_enabled = {} # tags enabled for idef-parser
def bad_register(regtype, regid):
raise Exception(f"Bad register parse: regtype '{regtype}' regid '{regid}'")
# We should do this as a hash for performance,
# but to keep order let's keep it as a list.
def uniquify(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if x not in seen and not seen_add(x)]
regre = re.compile(r"((?<!DUP)[MNORCPQXSGVZA])([stuvwxyzdefg]+)([.]?[LlHh]?)(\d+S?)")
immre = re.compile(r"[#]([rRsSuUm])(\d+)(?:[:](\d+))?")
reg_or_immre = re.compile(
r"(((?<!DUP)[MNRCOPQXSGVZA])([stuvwxyzdefg]+)"
r"([.]?[LlHh]?)(\d+S?))|([#]([rRsSuUm])(\d+)[:]?(\d+)?)"
)
relimmre = re.compile(r"[#]([rR])(\d+)(?:[:](\d+))?")
absimmre = re.compile(r"[#]([sSuUm])(\d+)(?:[:](\d+))?")
finished_macros = set()
def expand_macro_attribs(macro, allmac_re):
if macro.key not in finished_macros:
# Get a list of all things that might be macros
l = allmac_re.findall(macro.beh)
for submacro in l:
if not submacro:
continue
if not macros[submacro]:
raise Exception(f"Couldn't find macro: <{l}>")
macro.attribs |= expand_macro_attribs(macros[submacro], allmac_re)
finished_macros.add(macro.key)
return macro.attribs
# When qemu needs an attribute that isn't in the imported files,
# we'll add it here.
def add_qemu_macro_attrib(name, attrib):
macros[name].attribs.add(attrib)
immextre = re.compile(r"f(MUST_)?IMMEXT[(]([UuSsRr])")
def is_cond_jump(tag):
if tag == "J2_rte":
return False
if "A_HWLOOP0_END" in attribdict[tag] or "A_HWLOOP1_END" in attribdict[tag]:
return False
return re.compile(r"(if.*fBRANCH)|(if.*fJUMPR)").search(semdict[tag]) != None
def is_cond_call(tag):
return re.compile(r"(if.*fCALL)").search(semdict[tag]) != None
def calculate_attribs():
add_qemu_macro_attrib("fREAD_PC", "A_IMPLICIT_READS_PC")
add_qemu_macro_attrib("fTRAP", "A_IMPLICIT_READS_PC")
add_qemu_macro_attrib("fWRITE_P0", "A_WRITES_PRED_REG")
add_qemu_macro_attrib("fWRITE_P1", "A_WRITES_PRED_REG")
add_qemu_macro_attrib("fWRITE_P2", "A_WRITES_PRED_REG")
add_qemu_macro_attrib("fWRITE_P3", "A_WRITES_PRED_REG")
add_qemu_macro_attrib("fSET_OVERFLOW", "A_IMPLICIT_WRITES_USR")
add_qemu_macro_attrib("fSET_LPCFG", "A_IMPLICIT_WRITES_USR")
add_qemu_macro_attrib("fLOAD", "A_SCALAR_LOAD")
add_qemu_macro_attrib("fSTORE", "A_SCALAR_STORE")
add_qemu_macro_attrib('fLSBNEW0', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fLSBNEW0NOT', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fREAD_P0', 'A_IMPLICIT_READS_P0')
add_qemu_macro_attrib('fLSBNEW1', 'A_IMPLICIT_READS_P1')
add_qemu_macro_attrib('fLSBNEW1NOT', 'A_IMPLICIT_READS_P1')
add_qemu_macro_attrib('fREAD_P3', 'A_IMPLICIT_READS_P3')
# Recurse down macros, find attributes from sub-macros
macroValues = list(macros.values())
allmacros_restr = "|".join(set([m.re.pattern for m in macroValues]))
allmacros_re = re.compile(allmacros_restr)
for macro in macroValues:
expand_macro_attribs(macro, allmacros_re)
# Append attributes to all instructions
for tag in tags:
for macname in allmacros_re.findall(semdict[tag]):
if not macname:
continue
macro = macros[macname]
attribdict[tag] |= set(macro.attribs)
# Figure out which instructions write predicate registers
tagregs = get_tagregs()
for tag in tags:
regs = tagregs[tag]
for regtype, regid in regs:
if regtype == "P" and is_written(regid):
attribdict[tag].add("A_WRITES_PRED_REG")
# Mark conditional jumps and calls
# Not all instructions are properly marked with A_CONDEXEC
for tag in tags:
if is_cond_jump(tag) or is_cond_call(tag):
attribdict[tag].add("A_CONDEXEC")
def SEMANTICS(tag, beh, sem):
# print tag,beh,sem
behdict[tag] = beh
semdict[tag] = sem
attribdict[tag] = set()
tags.append(tag) # dicts have no order, this is for order
def ATTRIBUTES(tag, attribstring):
attribstring = attribstring.replace("ATTRIBS", "").replace("(", "").replace(")", "")
if not attribstring:
return
attribs = attribstring.split(",")
for attrib in attribs:
attribdict[tag].add(attrib.strip())
class Macro(object):
__slots__ = ["key", "name", "beh", "attribs", "re"]
def __init__(self, name, beh, attribs):
self.key = name
self.name = name
self.beh = beh
self.attribs = set(attribs)
self.re = re.compile("\\b" + name + "\\b")
def MACROATTRIB(macname, beh, attribstring):
attribstring = attribstring.replace("(", "").replace(")", "")
if attribstring:
attribs = attribstring.split(",")
else:
attribs = []
macros[macname] = Macro(macname, beh, attribs)
def compute_tag_regs(tag, full):
tagregs = regre.findall(behdict[tag])
if not full:
tagregs = map(lambda reg: reg[:2], tagregs)
return uniquify(tagregs)
def compute_tag_immediates(tag):
return uniquify(immre.findall(behdict[tag]))
##
## tagregs is the main data structure we'll use
## tagregs[tag] will contain the registers used by an instruction
## Within each entry, we'll use the regtype and regid fields
## regtype can be one of the following
## C control register
## N new register value
## P predicate register
## R GPR register
## M modifier register
## Q HVX predicate vector
## V HVX vector register
## O HVX new vector register
## regid can be one of the following
## d, e destination register
## dd destination register pair
## s, t, u, v, w source register
## ss, tt, uu, vv source register pair
## x, y read-write register
## xx, yy read-write register pair
##
def get_tagregs(full=False):
compute_func = lambda tag: compute_tag_regs(tag, full)
return dict(zip(tags, list(map(compute_func, tags))))
def get_tagimms():
return dict(zip(tags, list(map(compute_tag_immediates, tags))))
def is_pair(regid):
return len(regid) == 2
def is_single(regid):
return len(regid) == 1
def is_written(regid):
return regid[0] in "dexy"
def is_writeonly(regid):
return regid[0] in "de"
def is_read(regid):
return regid[0] in "stuvwxy"
def is_readwrite(regid):
return regid[0] in "xy"
def is_scalar_reg(regtype):
return regtype in "RPC"
def is_hvx_reg(regtype):
return regtype in "VQ"
def is_old_val(regtype, regid, tag):
return regtype + regid + "V" in semdict[tag]
def is_new_val(regtype, regid, tag):
return regtype + regid + "N" in semdict[tag]
def need_slot(tag):
if (
"A_CVI_SCATTER" not in attribdict[tag]
and "A_CVI_GATHER" not in attribdict[tag]
and ("A_STORE" in attribdict[tag]
or "A_LOAD" in attribdict[tag])
):
return 1
else:
return 0
def need_part1(tag):
return re.compile(r"fPART1").search(semdict[tag])
def need_ea(tag):
return re.compile(r"\bEA\b").search(semdict[tag])
def need_PC(tag):
return "A_IMPLICIT_READS_PC" in attribdict[tag]
def helper_needs_next_PC(tag):
return "A_CALL" in attribdict[tag]
def need_pkt_has_multi_cof(tag):
return "A_COF" in attribdict[tag]
def need_pkt_need_commit(tag):
return 'A_IMPLICIT_WRITES_USR' in attribdict[tag]
def need_condexec_reg(tag, regs):
if "A_CONDEXEC" in attribdict[tag]:
for regtype, regid in regs:
if is_writeonly(regid) and not is_hvx_reg(regtype):
return True
return False
def skip_qemu_helper(tag):
return tag in overrides.keys()
def is_tmp_result(tag):
return "A_CVI_TMP" in attribdict[tag] or "A_CVI_TMP_DST" in attribdict[tag]
def is_new_result(tag):
return "A_CVI_NEW" in attribdict[tag]
def is_idef_parser_enabled(tag):
return tag in idef_parser_enabled
def imm_name(immlett):
return f"{immlett}iV"
def read_semantics_file(name):
eval_line = ""
for line in open(name, "rt").readlines():
if not line.startswith("#"):
eval_line += line
if line.endswith("\\\n"):
eval_line.rstrip("\\\n")
else:
eval(eval_line.strip())
eval_line = ""
def read_attribs_file(name):
attribre = re.compile(
r"DEF_ATTRIB\(([A-Za-z0-9_]+), ([^,]*), "
+ r'"([A-Za-z0-9_\.]*)", "([A-Za-z0-9_\.]*)"\)'
)
for line in open(name, "rt").readlines():
if not attribre.match(line):
continue
(attrib_base, descr, rreg, wreg) = attribre.findall(line)[0]
attrib_base = "A_" + attrib_base
attribinfo[attrib_base] = {"rreg": rreg, "wreg": wreg, "descr": descr}
def read_overrides_file(name):
overridere = re.compile(r"#define fGEN_TCG_([A-Za-z0-9_]+)\(.*")
for line in open(name, "rt").readlines():
if not overridere.match(line):
continue
tag = overridere.findall(line)[0]
overrides[tag] = True
def read_idef_parser_enabled_file(name):
global idef_parser_enabled
with open(name, "r") as idef_parser_enabled_file:
lines = idef_parser_enabled_file.read().strip().split("\n")
idef_parser_enabled = set(lines)