qemu/target-s390x/fpu_helper.c
Blue Swirl 19b0516fb4 target-s390x: switch to AREG0 free mode
Add an explicit CPUState parameter instead of relying on AREG0.

Remove temporary wrappers and switch to AREG0 free mode.

Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
[agraf: fix conflicts]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-09-10 13:38:33 +02:00

844 lines
24 KiB
C

/*
* S/390 FPU helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
static inline int float_comp_to_cc(CPUS390XState *env, int float_compare)
{
switch (float_compare) {
case float_relation_equal:
return 0;
case float_relation_less:
return 1;
case float_relation_greater:
return 2;
case float_relation_unordered:
return 3;
default:
cpu_abort(env, "unknown return value for float compare\n");
}
}
/* condition codes for binary FP ops */
uint32_t set_cc_f32(CPUS390XState *env, float32 v1, float32 v2)
{
return float_comp_to_cc(env, float32_compare_quiet(v1, v2,
&env->fpu_status));
}
uint32_t set_cc_f64(CPUS390XState *env, float64 v1, float64 v2)
{
return float_comp_to_cc(env, float64_compare_quiet(v1, v2,
&env->fpu_status));
}
/* condition codes for unary FP ops */
uint32_t set_cc_nz_f32(float32 v)
{
if (float32_is_any_nan(v)) {
return 3;
} else if (float32_is_zero(v)) {
return 0;
} else if (float32_is_neg(v)) {
return 1;
} else {
return 2;
}
}
uint32_t set_cc_nz_f64(float64 v)
{
if (float64_is_any_nan(v)) {
return 3;
} else if (float64_is_zero(v)) {
return 0;
} else if (float64_is_neg(v)) {
return 1;
} else {
return 2;
}
}
static uint32_t set_cc_nz_f128(float128 v)
{
if (float128_is_any_nan(v)) {
return 3;
} else if (float128_is_zero(v)) {
return 0;
} else if (float128_is_neg(v)) {
return 1;
} else {
return 2;
}
}
/* convert 32-bit int to 64-bit float */
void HELPER(cdfbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
{
HELPER_LOG("%s: converting %d to f%d\n", __func__, v2, f1);
env->fregs[f1].d = int32_to_float64(v2, &env->fpu_status);
}
/* convert 32-bit int to 128-bit float */
void HELPER(cxfbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
{
CPU_QuadU v1;
v1.q = int32_to_float128(v2, &env->fpu_status);
env->fregs[f1].ll = v1.ll.upper;
env->fregs[f1 + 2].ll = v1.ll.lower;
}
/* convert 64-bit int to 32-bit float */
void HELPER(cegbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
{
HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1);
env->fregs[f1].l.upper = int64_to_float32(v2, &env->fpu_status);
}
/* convert 64-bit int to 64-bit float */
void HELPER(cdgbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
{
HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1);
env->fregs[f1].d = int64_to_float64(v2, &env->fpu_status);
}
/* convert 64-bit int to 128-bit float */
void HELPER(cxgbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
{
CPU_QuadU x1;
x1.q = int64_to_float128(v2, &env->fpu_status);
HELPER_LOG("%s: converted %ld to 0x%lx and 0x%lx\n", __func__, v2,
x1.ll.upper, x1.ll.lower);
env->fregs[f1].ll = x1.ll.upper;
env->fregs[f1 + 2].ll = x1.ll.lower;
}
/* convert 32-bit int to 32-bit float */
void HELPER(cefbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
{
env->fregs[f1].l.upper = int32_to_float32(v2, &env->fpu_status);
HELPER_LOG("%s: converting %d to 0x%d in f%d\n", __func__, v2,
env->fregs[f1].l.upper, f1);
}
/* 32-bit FP addition RR */
uint32_t HELPER(aebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper,
env->fregs[f2].l.upper,
&env->fpu_status);
HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __func__,
env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1);
return set_cc_nz_f32(env->fregs[f1].l.upper);
}
/* 64-bit FP addition RR */
uint32_t HELPER(adbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_add(env->fregs[f1].d, env->fregs[f2].d,
&env->fpu_status);
HELPER_LOG("%s: adding 0x%ld resulting in 0x%ld in f%d\n", __func__,
env->fregs[f2].d, env->fregs[f1].d, f1);
return set_cc_nz_f64(env->fregs[f1].d);
}
/* 32-bit FP subtraction RR */
uint32_t HELPER(sebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = float32_sub(env->fregs[f1].l.upper,
env->fregs[f2].l.upper,
&env->fpu_status);
HELPER_LOG("%s: adding 0x%d resulting in 0x%d in f%d\n", __func__,
env->fregs[f2].l.upper, env->fregs[f1].l.upper, f1);
return set_cc_nz_f32(env->fregs[f1].l.upper);
}
/* 64-bit FP subtraction RR */
uint32_t HELPER(sdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_sub(env->fregs[f1].d, env->fregs[f2].d,
&env->fpu_status);
HELPER_LOG("%s: subtracting 0x%ld resulting in 0x%ld in f%d\n",
__func__, env->fregs[f2].d, env->fregs[f1].d, f1);
return set_cc_nz_f64(env->fregs[f1].d);
}
/* 32-bit FP division RR */
void HELPER(debr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = float32_div(env->fregs[f1].l.upper,
env->fregs[f2].l.upper,
&env->fpu_status);
}
/* 128-bit FP division RR */
void HELPER(dxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
CPU_QuadU res;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
res.q = float128_div(v1.q, v2.q, &env->fpu_status);
env->fregs[f1].ll = res.ll.upper;
env->fregs[f1 + 2].ll = res.ll.lower;
}
/* 64-bit FP multiplication RR */
void HELPER(mdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_mul(env->fregs[f1].d, env->fregs[f2].d,
&env->fpu_status);
}
/* 128-bit FP multiplication RR */
void HELPER(mxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
CPU_QuadU res;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
res.q = float128_mul(v1.q, v2.q, &env->fpu_status);
env->fregs[f1].ll = res.ll.upper;
env->fregs[f1 + 2].ll = res.ll.lower;
}
/* convert 32-bit float to 64-bit float */
void HELPER(ldebr)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
env->fregs[r1].d = float32_to_float64(env->fregs[r2].l.upper,
&env->fpu_status);
}
/* convert 128-bit float to 64-bit float */
void HELPER(ldxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU x2;
x2.ll.upper = env->fregs[f2].ll;
x2.ll.lower = env->fregs[f2 + 2].ll;
env->fregs[f1].d = float128_to_float64(x2.q, &env->fpu_status);
HELPER_LOG("%s: to 0x%ld\n", __func__, env->fregs[f1].d);
}
/* convert 64-bit float to 128-bit float */
void HELPER(lxdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU res;
res.q = float64_to_float128(env->fregs[f2].d, &env->fpu_status);
env->fregs[f1].ll = res.ll.upper;
env->fregs[f1 + 2].ll = res.ll.lower;
}
/* convert 64-bit float to 32-bit float */
void HELPER(ledbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
float64 d2 = env->fregs[f2].d;
env->fregs[f1].l.upper = float64_to_float32(d2, &env->fpu_status);
}
/* convert 128-bit float to 32-bit float */
void HELPER(lexbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU x2;
x2.ll.upper = env->fregs[f2].ll;
x2.ll.lower = env->fregs[f2 + 2].ll;
env->fregs[f1].l.upper = float128_to_float32(x2.q, &env->fpu_status);
HELPER_LOG("%s: to 0x%d\n", __func__, env->fregs[f1].l.upper);
}
/* absolute value of 32-bit float */
uint32_t HELPER(lpebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
float32 v1;
float32 v2 = env->fregs[f2].d;
v1 = float32_abs(v2);
env->fregs[f1].d = v1;
return set_cc_nz_f32(v1);
}
/* absolute value of 64-bit float */
uint32_t HELPER(lpdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
float64 v1;
float64 v2 = env->fregs[f2].d;
v1 = float64_abs(v2);
env->fregs[f1].d = v1;
return set_cc_nz_f64(v1);
}
/* absolute value of 128-bit float */
uint32_t HELPER(lpxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
v1.q = float128_abs(v2.q);
env->fregs[f1].ll = v1.ll.upper;
env->fregs[f1 + 2].ll = v1.ll.lower;
return set_cc_nz_f128(v1.q);
}
/* load and test 64-bit float */
uint32_t HELPER(ltdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = env->fregs[f2].d;
return set_cc_nz_f64(env->fregs[f1].d);
}
/* load and test 32-bit float */
uint32_t HELPER(ltebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = env->fregs[f2].l.upper;
return set_cc_nz_f32(env->fregs[f1].l.upper);
}
/* load and test 128-bit float */
uint32_t HELPER(ltxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU x;
x.ll.upper = env->fregs[f2].ll;
x.ll.lower = env->fregs[f2 + 2].ll;
env->fregs[f1].ll = x.ll.upper;
env->fregs[f1 + 2].ll = x.ll.lower;
return set_cc_nz_f128(x.q);
}
/* load complement of 32-bit float */
uint32_t HELPER(lcebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = float32_chs(env->fregs[f2].l.upper);
return set_cc_nz_f32(env->fregs[f1].l.upper);
}
/* load complement of 64-bit float */
uint32_t HELPER(lcdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_chs(env->fregs[f2].d);
return set_cc_nz_f64(env->fregs[f1].d);
}
/* load complement of 128-bit float */
uint32_t HELPER(lcxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU x1, x2;
x2.ll.upper = env->fregs[f2].ll;
x2.ll.lower = env->fregs[f2 + 2].ll;
x1.q = float128_chs(x2.q);
env->fregs[f1].ll = x1.ll.upper;
env->fregs[f1 + 2].ll = x1.ll.lower;
return set_cc_nz_f128(x1.q);
}
/* 32-bit FP addition RM */
void HELPER(aeb)(CPUS390XState *env, uint32_t f1, uint32_t val)
{
float32 v1 = env->fregs[f1].l.upper;
CPU_FloatU v2;
v2.l = val;
HELPER_LOG("%s: adding 0x%d from f%d and 0x%d\n", __func__,
v1, f1, v2.f);
env->fregs[f1].l.upper = float32_add(v1, v2.f, &env->fpu_status);
}
/* 32-bit FP division RM */
void HELPER(deb)(CPUS390XState *env, uint32_t f1, uint32_t val)
{
float32 v1 = env->fregs[f1].l.upper;
CPU_FloatU v2;
v2.l = val;
HELPER_LOG("%s: dividing 0x%d from f%d by 0x%d\n", __func__,
v1, f1, v2.f);
env->fregs[f1].l.upper = float32_div(v1, v2.f, &env->fpu_status);
}
/* 32-bit FP multiplication RM */
void HELPER(meeb)(CPUS390XState *env, uint32_t f1, uint32_t val)
{
float32 v1 = env->fregs[f1].l.upper;
CPU_FloatU v2;
v2.l = val;
HELPER_LOG("%s: multiplying 0x%d from f%d and 0x%d\n", __func__,
v1, f1, v2.f);
env->fregs[f1].l.upper = float32_mul(v1, v2.f, &env->fpu_status);
}
/* 32-bit FP compare RR */
uint32_t HELPER(cebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
float32 v1 = env->fregs[f1].l.upper;
float32 v2 = env->fregs[f2].l.upper;
HELPER_LOG("%s: comparing 0x%d from f%d and 0x%d\n", __func__,
v1, f1, v2);
return set_cc_f32(env, v1, v2);
}
/* 64-bit FP compare RR */
uint32_t HELPER(cdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
float64 v1 = env->fregs[f1].d;
float64 v2 = env->fregs[f2].d;
HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%ld\n", __func__,
v1, f1, v2);
return set_cc_f64(env, v1, v2);
}
/* 128-bit FP compare RR */
uint32_t HELPER(cxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
return float_comp_to_cc(env, float128_compare_quiet(v1.q, v2.q,
&env->fpu_status));
}
/* 64-bit FP compare RM */
uint32_t HELPER(cdb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
float64 v1 = env->fregs[f1].d;
CPU_DoubleU v2;
v2.ll = cpu_ldq_data(env, a2);
HELPER_LOG("%s: comparing 0x%ld from f%d and 0x%lx\n", __func__, v1,
f1, v2.d);
return set_cc_f64(env, v1, v2.d);
}
/* 64-bit FP addition RM */
uint32_t HELPER(adb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
float64 v1 = env->fregs[f1].d;
CPU_DoubleU v2;
v2.ll = cpu_ldq_data(env, a2);
HELPER_LOG("%s: adding 0x%lx from f%d and 0x%lx\n", __func__,
v1, f1, v2.d);
env->fregs[f1].d = v1 = float64_add(v1, v2.d, &env->fpu_status);
return set_cc_nz_f64(v1);
}
/* 32-bit FP subtraction RM */
void HELPER(seb)(CPUS390XState *env, uint32_t f1, uint32_t val)
{
float32 v1 = env->fregs[f1].l.upper;
CPU_FloatU v2;
v2.l = val;
env->fregs[f1].l.upper = float32_sub(v1, v2.f, &env->fpu_status);
}
/* 64-bit FP subtraction RM */
uint32_t HELPER(sdb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
float64 v1 = env->fregs[f1].d;
CPU_DoubleU v2;
v2.ll = cpu_ldq_data(env, a2);
env->fregs[f1].d = v1 = float64_sub(v1, v2.d, &env->fpu_status);
return set_cc_nz_f64(v1);
}
/* 64-bit FP multiplication RM */
void HELPER(mdb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
float64 v1 = env->fregs[f1].d;
CPU_DoubleU v2;
v2.ll = cpu_ldq_data(env, a2);
HELPER_LOG("%s: multiplying 0x%lx from f%d and 0x%ld\n", __func__,
v1, f1, v2.d);
env->fregs[f1].d = float64_mul(v1, v2.d, &env->fpu_status);
}
/* 64-bit FP division RM */
void HELPER(ddb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
float64 v1 = env->fregs[f1].d;
CPU_DoubleU v2;
v2.ll = cpu_ldq_data(env, a2);
HELPER_LOG("%s: dividing 0x%lx from f%d by 0x%ld\n", __func__,
v1, f1, v2.d);
env->fregs[f1].d = float64_div(v1, v2.d, &env->fpu_status);
}
static void set_round_mode(CPUS390XState *env, int m3)
{
switch (m3) {
case 0:
/* current mode */
break;
case 1:
/* biased round no nearest */
case 4:
/* round to nearest */
set_float_rounding_mode(float_round_nearest_even, &env->fpu_status);
break;
case 5:
/* round to zero */
set_float_rounding_mode(float_round_to_zero, &env->fpu_status);
break;
case 6:
/* round to +inf */
set_float_rounding_mode(float_round_up, &env->fpu_status);
break;
case 7:
/* round to -inf */
set_float_rounding_mode(float_round_down, &env->fpu_status);
break;
}
}
/* convert 32-bit float to 64-bit int */
uint32_t HELPER(cgebr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
float32 v2 = env->fregs[f2].l.upper;
set_round_mode(env, m3);
env->regs[r1] = float32_to_int64(v2, &env->fpu_status);
return set_cc_nz_f32(v2);
}
/* convert 64-bit float to 64-bit int */
uint32_t HELPER(cgdbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
float64 v2 = env->fregs[f2].d;
set_round_mode(env, m3);
env->regs[r1] = float64_to_int64(v2, &env->fpu_status);
return set_cc_nz_f64(v2);
}
/* convert 128-bit float to 64-bit int */
uint32_t HELPER(cgxbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
CPU_QuadU v2;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
set_round_mode(env, m3);
env->regs[r1] = float128_to_int64(v2.q, &env->fpu_status);
if (float128_is_any_nan(v2.q)) {
return 3;
} else if (float128_is_zero(v2.q)) {
return 0;
} else if (float128_is_neg(v2.q)) {
return 1;
} else {
return 2;
}
}
/* convert 32-bit float to 32-bit int */
uint32_t HELPER(cfebr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
float32 v2 = env->fregs[f2].l.upper;
set_round_mode(env, m3);
env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
float32_to_int32(v2, &env->fpu_status);
return set_cc_nz_f32(v2);
}
/* convert 64-bit float to 32-bit int */
uint32_t HELPER(cfdbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
float64 v2 = env->fregs[f2].d;
set_round_mode(env, m3);
env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
float64_to_int32(v2, &env->fpu_status);
return set_cc_nz_f64(v2);
}
/* convert 128-bit float to 32-bit int */
uint32_t HELPER(cfxbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
uint32_t m3)
{
CPU_QuadU v2;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
float128_to_int32(v2.q, &env->fpu_status);
return set_cc_nz_f128(v2.q);
}
/* load 32-bit FP zero */
void HELPER(lzer)(CPUS390XState *env, uint32_t f1)
{
env->fregs[f1].l.upper = float32_zero;
}
/* load 64-bit FP zero */
void HELPER(lzdr)(CPUS390XState *env, uint32_t f1)
{
env->fregs[f1].d = float64_zero;
}
/* load 128-bit FP zero */
void HELPER(lzxr)(CPUS390XState *env, uint32_t f1)
{
CPU_QuadU x;
x.q = float64_to_float128(float64_zero, &env->fpu_status);
env->fregs[f1].ll = x.ll.upper;
env->fregs[f1 + 1].ll = x.ll.lower;
}
/* 128-bit FP subtraction RR */
uint32_t HELPER(sxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
CPU_QuadU res;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
res.q = float128_sub(v1.q, v2.q, &env->fpu_status);
env->fregs[f1].ll = res.ll.upper;
env->fregs[f1 + 2].ll = res.ll.lower;
return set_cc_nz_f128(res.q);
}
/* 128-bit FP addition RR */
uint32_t HELPER(axbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
CPU_QuadU v1;
CPU_QuadU v2;
CPU_QuadU res;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
v2.ll.upper = env->fregs[f2].ll;
v2.ll.lower = env->fregs[f2 + 2].ll;
res.q = float128_add(v1.q, v2.q, &env->fpu_status);
env->fregs[f1].ll = res.ll.upper;
env->fregs[f1 + 2].ll = res.ll.lower;
return set_cc_nz_f128(res.q);
}
/* 32-bit FP multiplication RR */
void HELPER(meebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].l.upper = float32_mul(env->fregs[f1].l.upper,
env->fregs[f2].l.upper,
&env->fpu_status);
}
/* 64-bit FP division RR */
void HELPER(ddbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_div(env->fregs[f1].d, env->fregs[f2].d,
&env->fpu_status);
}
/* 64-bit FP multiply and add RM */
void HELPER(madb)(CPUS390XState *env, uint32_t f1, uint64_t a2, uint32_t f3)
{
CPU_DoubleU v2;
HELPER_LOG("%s: f1 %d a2 0x%lx f3 %d\n", __func__, f1, a2, f3);
v2.ll = cpu_ldq_data(env, a2);
env->fregs[f1].d = float64_add(env->fregs[f1].d,
float64_mul(v2.d, env->fregs[f3].d,
&env->fpu_status),
&env->fpu_status);
}
/* 64-bit FP multiply and add RR */
void HELPER(madbr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
{
HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3);
env->fregs[f1].d = float64_add(float64_mul(env->fregs[f2].d,
env->fregs[f3].d,
&env->fpu_status),
env->fregs[f1].d, &env->fpu_status);
}
/* 64-bit FP multiply and subtract RR */
void HELPER(msdbr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
{
HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3);
env->fregs[f1].d = float64_sub(float64_mul(env->fregs[f2].d,
env->fregs[f3].d,
&env->fpu_status),
env->fregs[f1].d, &env->fpu_status);
}
/* 32-bit FP multiply and add RR */
void HELPER(maebr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
{
env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper,
float32_mul(env->fregs[f2].l.upper,
env->fregs[f3].l.upper,
&env->fpu_status),
&env->fpu_status);
}
/* convert 32-bit float to 64-bit float */
void HELPER(ldeb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
uint32_t v2;
v2 = cpu_ldl_data(env, a2);
env->fregs[f1].d = float32_to_float64(v2,
&env->fpu_status);
}
/* convert 64-bit float to 128-bit float */
void HELPER(lxdb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
{
CPU_DoubleU v2;
CPU_QuadU v1;
v2.ll = cpu_ldq_data(env, a2);
v1.q = float64_to_float128(v2.d, &env->fpu_status);
env->fregs[f1].ll = v1.ll.upper;
env->fregs[f1 + 2].ll = v1.ll.lower;
}
/* test data class 32-bit */
uint32_t HELPER(tceb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
{
float32 v1 = env->fregs[f1].l.upper;
int neg = float32_is_neg(v1);
uint32_t cc = 0;
HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, (long)v1, m2, neg);
if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
(float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
(float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
(float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
cc = 1;
} else if (m2 & (1 << (9-neg))) {
/* assume normalized number */
cc = 1;
}
/* FIXME: denormalized? */
return cc;
}
/* test data class 64-bit */
uint32_t HELPER(tcdb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
{
float64 v1 = env->fregs[f1].d;
int neg = float64_is_neg(v1);
uint32_t cc = 0;
HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, v1, m2, neg);
if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
(float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
(float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
(float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
cc = 1;
} else if (m2 & (1 << (9-neg))) {
/* assume normalized number */
cc = 1;
}
/* FIXME: denormalized? */
return cc;
}
/* test data class 128-bit */
uint32_t HELPER(tcxb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
{
CPU_QuadU v1;
uint32_t cc = 0;
int neg;
v1.ll.upper = env->fregs[f1].ll;
v1.ll.lower = env->fregs[f1 + 2].ll;
neg = float128_is_neg(v1.q);
if ((float128_is_zero(v1.q) && (m2 & (1 << (11-neg)))) ||
(float128_is_infinity(v1.q) && (m2 & (1 << (5-neg)))) ||
(float128_is_any_nan(v1.q) && (m2 & (1 << (3-neg)))) ||
(float128_is_signaling_nan(v1.q) && (m2 & (1 << (1-neg))))) {
cc = 1;
} else if (m2 & (1 << (9-neg))) {
/* assume normalized number */
cc = 1;
}
/* FIXME: denormalized? */
return cc;
}
/* square root 64-bit RR */
void HELPER(sqdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
{
env->fregs[f1].d = float64_sqrt(env->fregs[f2].d, &env->fpu_status);
}