qemu/hw/arm/allwinner-r40.c
qianfan Zhao 05def917e1 hw: arm: allwinner-sramc: Add SRAM Controller support for R40
Only a few important registers are added, especially the SRAM_VER
register.

Signed-off-by: qianfan Zhao <qianfanguijin@163.com>
Reviewed-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2023-06-06 10:19:33 +01:00

527 lines
20 KiB
C

/*
* Allwinner R40/A40i/T3 System on Chip emulation
*
* Copyright (C) 2023 qianfan Zhao <qianfanguijin@163.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/bswap.h"
#include "qemu/module.h"
#include "qemu/units.h"
#include "hw/qdev-core.h"
#include "hw/sysbus.h"
#include "hw/char/serial.h"
#include "hw/misc/unimp.h"
#include "hw/usb/hcd-ehci.h"
#include "hw/loader.h"
#include "sysemu/sysemu.h"
#include "hw/arm/allwinner-r40.h"
#include "hw/misc/allwinner-r40-dramc.h"
/* Memory map */
const hwaddr allwinner_r40_memmap[] = {
[AW_R40_DEV_SRAM_A1] = 0x00000000,
[AW_R40_DEV_SRAM_A2] = 0x00004000,
[AW_R40_DEV_SRAM_A3] = 0x00008000,
[AW_R40_DEV_SRAM_A4] = 0x0000b400,
[AW_R40_DEV_SRAMC] = 0x01c00000,
[AW_R40_DEV_EMAC] = 0x01c0b000,
[AW_R40_DEV_MMC0] = 0x01c0f000,
[AW_R40_DEV_MMC1] = 0x01c10000,
[AW_R40_DEV_MMC2] = 0x01c11000,
[AW_R40_DEV_MMC3] = 0x01c12000,
[AW_R40_DEV_CCU] = 0x01c20000,
[AW_R40_DEV_PIT] = 0x01c20c00,
[AW_R40_DEV_UART0] = 0x01c28000,
[AW_R40_DEV_UART1] = 0x01c28400,
[AW_R40_DEV_UART2] = 0x01c28800,
[AW_R40_DEV_UART3] = 0x01c28c00,
[AW_R40_DEV_UART4] = 0x01c29000,
[AW_R40_DEV_UART5] = 0x01c29400,
[AW_R40_DEV_UART6] = 0x01c29800,
[AW_R40_DEV_UART7] = 0x01c29c00,
[AW_R40_DEV_TWI0] = 0x01c2ac00,
[AW_R40_DEV_GMAC] = 0x01c50000,
[AW_R40_DEV_DRAMCOM] = 0x01c62000,
[AW_R40_DEV_DRAMCTL] = 0x01c63000,
[AW_R40_DEV_DRAMPHY] = 0x01c65000,
[AW_R40_DEV_GIC_DIST] = 0x01c81000,
[AW_R40_DEV_GIC_CPU] = 0x01c82000,
[AW_R40_DEV_GIC_HYP] = 0x01c84000,
[AW_R40_DEV_GIC_VCPU] = 0x01c86000,
[AW_R40_DEV_SDRAM] = 0x40000000
};
/* List of unimplemented devices */
struct AwR40Unimplemented {
const char *device_name;
hwaddr base;
hwaddr size;
};
static struct AwR40Unimplemented r40_unimplemented[] = {
{ "d-engine", 0x01000000, 4 * MiB },
{ "d-inter", 0x01400000, 128 * KiB },
{ "dma", 0x01c02000, 4 * KiB },
{ "nfdc", 0x01c03000, 4 * KiB },
{ "ts", 0x01c04000, 4 * KiB },
{ "spi0", 0x01c05000, 4 * KiB },
{ "spi1", 0x01c06000, 4 * KiB },
{ "cs0", 0x01c09000, 4 * KiB },
{ "keymem", 0x01c0a000, 4 * KiB },
{ "usb0-otg", 0x01c13000, 4 * KiB },
{ "usb0-host", 0x01c14000, 4 * KiB },
{ "crypto", 0x01c15000, 4 * KiB },
{ "spi2", 0x01c17000, 4 * KiB },
{ "sata", 0x01c18000, 4 * KiB },
{ "usb1-host", 0x01c19000, 4 * KiB },
{ "sid", 0x01c1b000, 4 * KiB },
{ "usb2-host", 0x01c1c000, 4 * KiB },
{ "cs1", 0x01c1d000, 4 * KiB },
{ "spi3", 0x01c1f000, 4 * KiB },
{ "rtc", 0x01c20400, 1 * KiB },
{ "pio", 0x01c20800, 1 * KiB },
{ "owa", 0x01c21000, 1 * KiB },
{ "ac97", 0x01c21400, 1 * KiB },
{ "cir0", 0x01c21800, 1 * KiB },
{ "cir1", 0x01c21c00, 1 * KiB },
{ "pcm0", 0x01c22000, 1 * KiB },
{ "pcm1", 0x01c22400, 1 * KiB },
{ "pcm2", 0x01c22800, 1 * KiB },
{ "audio", 0x01c22c00, 1 * KiB },
{ "keypad", 0x01c23000, 1 * KiB },
{ "pwm", 0x01c23400, 1 * KiB },
{ "keyadc", 0x01c24400, 1 * KiB },
{ "ths", 0x01c24c00, 1 * KiB },
{ "rtp", 0x01c25000, 1 * KiB },
{ "pmu", 0x01c25400, 1 * KiB },
{ "cpu-cfg", 0x01c25c00, 1 * KiB },
{ "uart0", 0x01c28000, 1 * KiB },
{ "uart1", 0x01c28400, 1 * KiB },
{ "uart2", 0x01c28800, 1 * KiB },
{ "uart3", 0x01c28c00, 1 * KiB },
{ "uart4", 0x01c29000, 1 * KiB },
{ "uart5", 0x01c29400, 1 * KiB },
{ "uart6", 0x01c29800, 1 * KiB },
{ "uart7", 0x01c29c00, 1 * KiB },
{ "ps20", 0x01c2a000, 1 * KiB },
{ "ps21", 0x01c2a400, 1 * KiB },
{ "twi1", 0x01c2b000, 1 * KiB },
{ "twi2", 0x01c2b400, 1 * KiB },
{ "twi3", 0x01c2b800, 1 * KiB },
{ "twi4", 0x01c2c000, 1 * KiB },
{ "scr", 0x01c2c400, 1 * KiB },
{ "tvd-top", 0x01c30000, 4 * KiB },
{ "tvd0", 0x01c31000, 4 * KiB },
{ "tvd1", 0x01c32000, 4 * KiB },
{ "tvd2", 0x01c33000, 4 * KiB },
{ "tvd3", 0x01c34000, 4 * KiB },
{ "gpu", 0x01c40000, 64 * KiB },
{ "hstmr", 0x01c60000, 4 * KiB },
{ "tcon-top", 0x01c70000, 4 * KiB },
{ "lcd0", 0x01c71000, 4 * KiB },
{ "lcd1", 0x01c72000, 4 * KiB },
{ "tv0", 0x01c73000, 4 * KiB },
{ "tv1", 0x01c74000, 4 * KiB },
{ "tve-top", 0x01c90000, 16 * KiB },
{ "tve0", 0x01c94000, 16 * KiB },
{ "tve1", 0x01c98000, 16 * KiB },
{ "mipi_dsi", 0x01ca0000, 4 * KiB },
{ "mipi_dphy", 0x01ca1000, 4 * KiB },
{ "ve", 0x01d00000, 1024 * KiB },
{ "mp", 0x01e80000, 128 * KiB },
{ "hdmi", 0x01ee0000, 128 * KiB },
{ "prcm", 0x01f01400, 1 * KiB },
{ "debug", 0x3f500000, 64 * KiB },
{ "cpubist", 0x3f501000, 4 * KiB },
{ "dcu", 0x3fff0000, 64 * KiB },
{ "hstmr", 0x01c60000, 4 * KiB },
{ "brom", 0xffff0000, 36 * KiB }
};
/* Per Processor Interrupts */
enum {
AW_R40_GIC_PPI_MAINT = 9,
AW_R40_GIC_PPI_HYPTIMER = 10,
AW_R40_GIC_PPI_VIRTTIMER = 11,
AW_R40_GIC_PPI_SECTIMER = 13,
AW_R40_GIC_PPI_PHYSTIMER = 14
};
/* Shared Processor Interrupts */
enum {
AW_R40_GIC_SPI_UART0 = 1,
AW_R40_GIC_SPI_UART1 = 2,
AW_R40_GIC_SPI_UART2 = 3,
AW_R40_GIC_SPI_UART3 = 4,
AW_R40_GIC_SPI_TWI0 = 7,
AW_R40_GIC_SPI_UART4 = 17,
AW_R40_GIC_SPI_UART5 = 18,
AW_R40_GIC_SPI_UART6 = 19,
AW_R40_GIC_SPI_UART7 = 20,
AW_R40_GIC_SPI_TIMER0 = 22,
AW_R40_GIC_SPI_TIMER1 = 23,
AW_R40_GIC_SPI_MMC0 = 32,
AW_R40_GIC_SPI_MMC1 = 33,
AW_R40_GIC_SPI_MMC2 = 34,
AW_R40_GIC_SPI_MMC3 = 35,
AW_R40_GIC_SPI_EMAC = 55,
AW_R40_GIC_SPI_GMAC = 85,
};
/* Allwinner R40 general constants */
enum {
AW_R40_GIC_NUM_SPI = 128
};
#define BOOT0_MAGIC "eGON.BT0"
/* The low 8-bits of the 'boot_media' field in the SPL header */
#define SUNXI_BOOTED_FROM_MMC0 0
#define SUNXI_BOOTED_FROM_NAND 1
#define SUNXI_BOOTED_FROM_MMC2 2
#define SUNXI_BOOTED_FROM_SPI 3
struct boot_file_head {
uint32_t b_instruction;
uint8_t magic[8];
uint32_t check_sum;
uint32_t length;
uint32_t pub_head_size;
uint32_t fel_script_address;
uint32_t fel_uEnv_length;
uint32_t dt_name_offset;
uint32_t dram_size;
uint32_t boot_media;
uint32_t string_pool[13];
};
bool allwinner_r40_bootrom_setup(AwR40State *s, BlockBackend *blk, int unit)
{
const int64_t rom_size = 32 * KiB;
g_autofree uint8_t *buffer = g_new0(uint8_t, rom_size);
struct boot_file_head *head = (struct boot_file_head *)buffer;
if (blk_pread(blk, 8 * KiB, rom_size, buffer, 0) < 0) {
error_setg(&error_fatal, "%s: failed to read BlockBackend data",
__func__);
return false;
}
/* we only check the magic string here. */
if (memcmp(head->magic, BOOT0_MAGIC, sizeof(head->magic))) {
return false;
}
/*
* Simulate the behavior of the bootROM, it will change the boot_media
* flag to indicate where the chip is booting from. R40 can boot from
* mmc0 or mmc2, the default value of boot_media is zero
* (SUNXI_BOOTED_FROM_MMC0), let's fix this flag when it is booting from
* the others.
*/
if (unit == 2) {
head->boot_media = cpu_to_le32(SUNXI_BOOTED_FROM_MMC2);
} else {
head->boot_media = cpu_to_le32(SUNXI_BOOTED_FROM_MMC0);
}
rom_add_blob("allwinner-r40.bootrom", buffer, rom_size,
rom_size, s->memmap[AW_R40_DEV_SRAM_A1],
NULL, NULL, NULL, NULL, false);
return true;
}
static void allwinner_r40_init(Object *obj)
{
static const char *mmc_names[AW_R40_NUM_MMCS] = {
"mmc0", "mmc1", "mmc2", "mmc3"
};
AwR40State *s = AW_R40(obj);
s->memmap = allwinner_r40_memmap;
for (int i = 0; i < AW_R40_NUM_CPUS; i++) {
object_initialize_child(obj, "cpu[*]", &s->cpus[i],
ARM_CPU_TYPE_NAME("cortex-a7"));
}
object_initialize_child(obj, "gic", &s->gic, TYPE_ARM_GIC);
object_initialize_child(obj, "timer", &s->timer, TYPE_AW_A10_PIT);
object_property_add_alias(obj, "clk0-freq", OBJECT(&s->timer),
"clk0-freq");
object_property_add_alias(obj, "clk1-freq", OBJECT(&s->timer),
"clk1-freq");
object_initialize_child(obj, "ccu", &s->ccu, TYPE_AW_R40_CCU);
for (int i = 0; i < AW_R40_NUM_MMCS; i++) {
object_initialize_child(obj, mmc_names[i], &s->mmc[i],
TYPE_AW_SDHOST_SUN50I_A64);
}
object_initialize_child(obj, "twi0", &s->i2c0, TYPE_AW_I2C_SUN6I);
object_initialize_child(obj, "emac", &s->emac, TYPE_AW_EMAC);
object_initialize_child(obj, "gmac", &s->gmac, TYPE_AW_SUN8I_EMAC);
object_property_add_alias(obj, "gmac-phy-addr",
OBJECT(&s->gmac), "phy-addr");
object_initialize_child(obj, "dramc", &s->dramc, TYPE_AW_R40_DRAMC);
object_property_add_alias(obj, "ram-addr", OBJECT(&s->dramc),
"ram-addr");
object_property_add_alias(obj, "ram-size", OBJECT(&s->dramc),
"ram-size");
object_initialize_child(obj, "sramc", &s->sramc, TYPE_AW_SRAMC_SUN8I_R40);
}
static void allwinner_r40_realize(DeviceState *dev, Error **errp)
{
const char *r40_nic_models[] = { "gmac", "emac", NULL };
AwR40State *s = AW_R40(dev);
unsigned i;
/* CPUs */
for (i = 0; i < AW_R40_NUM_CPUS; i++) {
/*
* Disable secondary CPUs. Guest EL3 firmware will start
* them via CPU reset control registers.
*/
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "start-powered-off",
i > 0);
/* All exception levels required */
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el3", true);
qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el2", true);
/* Mark realized */
qdev_realize(DEVICE(&s->cpus[i]), NULL, &error_fatal);
}
/* Generic Interrupt Controller */
qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", AW_R40_GIC_NUM_SPI +
GIC_INTERNAL);
qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2);
qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", AW_R40_NUM_CPUS);
qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", false);
qdev_prop_set_bit(DEVICE(&s->gic), "has-virtualization-extensions", true);
sysbus_realize(SYS_BUS_DEVICE(&s->gic), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 0, s->memmap[AW_R40_DEV_GIC_DIST]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 1, s->memmap[AW_R40_DEV_GIC_CPU]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 2, s->memmap[AW_R40_DEV_GIC_HYP]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 3, s->memmap[AW_R40_DEV_GIC_VCPU]);
/*
* Wire the outputs from each CPU's generic timer and the GICv2
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < AW_R40_NUM_CPUS; i++) {
DeviceState *cpudev = DEVICE(&s->cpus[i]);
int ppibase = AW_R40_GIC_NUM_SPI + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/*
* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs used for this board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = AW_R40_GIC_PPI_PHYSTIMER,
[GTIMER_VIRT] = AW_R40_GIC_PPI_VIRTTIMER,
[GTIMER_HYP] = AW_R40_GIC_PPI_HYPTIMER,
[GTIMER_SEC] = AW_R40_GIC_PPI_SECTIMER,
};
/* Connect CPU timer outputs to GIC PPI inputs */
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(DEVICE(&s->gic),
ppibase + timer_irq[irq]));
}
/* Connect GIC outputs to CPU interrupt inputs */
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i,
qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + AW_R40_NUM_CPUS,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (2 * AW_R40_NUM_CPUS),
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (3 * AW_R40_NUM_CPUS),
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
/* GIC maintenance signal */
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (4 * AW_R40_NUM_CPUS),
qdev_get_gpio_in(DEVICE(&s->gic),
ppibase + AW_R40_GIC_PPI_MAINT));
}
/* Timer */
sysbus_realize(SYS_BUS_DEVICE(&s->timer), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer), 0, s->memmap[AW_R40_DEV_PIT]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 0,
qdev_get_gpio_in(DEVICE(&s->gic),
AW_R40_GIC_SPI_TIMER0));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 1,
qdev_get_gpio_in(DEVICE(&s->gic),
AW_R40_GIC_SPI_TIMER1));
/* SRAM */
sysbus_realize(SYS_BUS_DEVICE(&s->sramc), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sramc), 0, s->memmap[AW_R40_DEV_SRAMC]);
memory_region_init_ram(&s->sram_a1, OBJECT(dev), "sram A1",
16 * KiB, &error_abort);
memory_region_init_ram(&s->sram_a2, OBJECT(dev), "sram A2",
16 * KiB, &error_abort);
memory_region_init_ram(&s->sram_a3, OBJECT(dev), "sram A3",
13 * KiB, &error_abort);
memory_region_init_ram(&s->sram_a4, OBJECT(dev), "sram A4",
3 * KiB, &error_abort);
memory_region_add_subregion(get_system_memory(),
s->memmap[AW_R40_DEV_SRAM_A1], &s->sram_a1);
memory_region_add_subregion(get_system_memory(),
s->memmap[AW_R40_DEV_SRAM_A2], &s->sram_a2);
memory_region_add_subregion(get_system_memory(),
s->memmap[AW_R40_DEV_SRAM_A3], &s->sram_a3);
memory_region_add_subregion(get_system_memory(),
s->memmap[AW_R40_DEV_SRAM_A4], &s->sram_a4);
/* Clock Control Unit */
sysbus_realize(SYS_BUS_DEVICE(&s->ccu), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ccu), 0, s->memmap[AW_R40_DEV_CCU]);
/* SD/MMC */
for (int i = 0; i < AW_R40_NUM_MMCS; i++) {
qemu_irq irq = qdev_get_gpio_in(DEVICE(&s->gic),
AW_R40_GIC_SPI_MMC0 + i);
const hwaddr addr = s->memmap[AW_R40_DEV_MMC0 + i];
object_property_set_link(OBJECT(&s->mmc[i]), "dma-memory",
OBJECT(get_system_memory()), &error_fatal);
sysbus_realize(SYS_BUS_DEVICE(&s->mmc[i]), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->mmc[i]), 0, addr);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->mmc[i]), 0, irq);
}
/* UART0. For future clocktree API: All UARTS are connected to APB2_CLK. */
for (int i = 0; i < AW_R40_NUM_UARTS; i++) {
static const int uart_irqs[AW_R40_NUM_UARTS] = {
AW_R40_GIC_SPI_UART0,
AW_R40_GIC_SPI_UART1,
AW_R40_GIC_SPI_UART2,
AW_R40_GIC_SPI_UART3,
AW_R40_GIC_SPI_UART4,
AW_R40_GIC_SPI_UART5,
AW_R40_GIC_SPI_UART6,
AW_R40_GIC_SPI_UART7,
};
const hwaddr addr = s->memmap[AW_R40_DEV_UART0 + i];
serial_mm_init(get_system_memory(), addr, 2,
qdev_get_gpio_in(DEVICE(&s->gic), uart_irqs[i]),
115200, serial_hd(i), DEVICE_NATIVE_ENDIAN);
}
/* I2C */
sysbus_realize(SYS_BUS_DEVICE(&s->i2c0), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->i2c0), 0, s->memmap[AW_R40_DEV_TWI0]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->i2c0), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_R40_GIC_SPI_TWI0));
/* DRAMC */
sysbus_realize(SYS_BUS_DEVICE(&s->dramc), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 0,
s->memmap[AW_R40_DEV_DRAMCOM]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 1,
s->memmap[AW_R40_DEV_DRAMCTL]);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dramc), 2,
s->memmap[AW_R40_DEV_DRAMPHY]);
/* nic support gmac and emac */
for (int i = 0; i < ARRAY_SIZE(r40_nic_models) - 1; i++) {
NICInfo *nic = &nd_table[i];
if (!nic->used) {
continue;
}
if (qemu_show_nic_models(nic->model, r40_nic_models)) {
exit(0);
}
switch (qemu_find_nic_model(nic, r40_nic_models, r40_nic_models[0])) {
case 0: /* gmac */
qdev_set_nic_properties(DEVICE(&s->gmac), nic);
break;
case 1: /* emac */
qdev_set_nic_properties(DEVICE(&s->emac), nic);
break;
default:
exit(1);
break;
}
}
/* GMAC */
object_property_set_link(OBJECT(&s->gmac), "dma-memory",
OBJECT(get_system_memory()), &error_fatal);
sysbus_realize(SYS_BUS_DEVICE(&s->gmac), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gmac), 0, s->memmap[AW_R40_DEV_GMAC]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gmac), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_R40_GIC_SPI_GMAC));
/* EMAC */
sysbus_realize(SYS_BUS_DEVICE(&s->emac), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->emac), 0, s->memmap[AW_R40_DEV_EMAC]);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->emac), 0,
qdev_get_gpio_in(DEVICE(&s->gic), AW_R40_GIC_SPI_EMAC));
/* Unimplemented devices */
for (i = 0; i < ARRAY_SIZE(r40_unimplemented); i++) {
create_unimplemented_device(r40_unimplemented[i].device_name,
r40_unimplemented[i].base,
r40_unimplemented[i].size);
}
}
static void allwinner_r40_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = allwinner_r40_realize;
/* Reason: uses serial_hd() in realize function */
dc->user_creatable = false;
}
static const TypeInfo allwinner_r40_type_info = {
.name = TYPE_AW_R40,
.parent = TYPE_DEVICE,
.instance_size = sizeof(AwR40State),
.instance_init = allwinner_r40_init,
.class_init = allwinner_r40_class_init,
};
static void allwinner_r40_register_types(void)
{
type_register_static(&allwinner_r40_type_info);
}
type_init(allwinner_r40_register_types)