qemu/target/ppc/power8-pmu.c
Nicholas Piggin fbda88f7ab target/ppc: Fix width of some 32-bit SPRs
Some 32-bit SPRs are incorrectly implemented as 64-bits on 64-bit
targets.

This changes VRSAVE, DSISR, HDSISR, DAWRX0, PIDR, LPIDR, DEXCR,
HDEXCR, CTRL, TSCR, MMCRH, and PMC[1-6] from to be 32-bit registers.

This only goes by the 32/64 classification in the architecture, it
does not try to implement finer details of SPR implementation (e.g.,
not all bits implemented as simple read/write storage).

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-Id: <20230515092655.171206-2-npiggin@gmail.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
2023-05-27 08:25:19 -03:00

354 lines
9.4 KiB
C

/*
* PMU emulation helpers for TCG IBM POWER chips
*
* Copyright IBM Corp. 2021
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "hw/ppc/ppc.h"
#include "power8-pmu.h"
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{
if (sprn == SPR_POWER_PMC1) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
}
void pmu_update_summaries(CPUPPCState *env)
{
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
int ins_cnt = 0;
int cyc_cnt = 0;
if (mmcr0 & MMCR0_FC) {
goto hflags_calc;
}
if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
target_ulong sel;
sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
switch (sel) {
case 0x02:
case 0xfe:
ins_cnt |= 1 << 1;
break;
case 0x1e:
case 0xf0:
cyc_cnt |= 1 << 1;
break;
}
sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= (sel == 0x02) << 2;
cyc_cnt |= (sel == 0x1e) << 2;
sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= (sel == 0x02) << 3;
cyc_cnt |= (sel == 0x1e) << 3;
sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
cyc_cnt |= (sel == 0x1e) << 4;
}
ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;
hflags_calc:
env->pmc_ins_cnt = ins_cnt;
env->pmc_cyc_cnt = cyc_cnt;
env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0);
}
static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
{
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
unsigned ins_cnt = env->pmc_ins_cnt;
bool overflow_triggered = false;
target_ulong tmp;
if (ins_cnt & (1 << 1)) {
tmp = env->spr[SPR_POWER_PMC1];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC1] = tmp;
}
if (ins_cnt & (1 << 2)) {
tmp = env->spr[SPR_POWER_PMC2];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC2] = tmp;
}
if (ins_cnt & (1 << 3)) {
tmp = env->spr[SPR_POWER_PMC3];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC3] = tmp;
}
if (ins_cnt & (1 << 4)) {
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
tmp = env->spr[SPR_POWER_PMC4];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC4] = tmp;
}
}
if (ins_cnt & (1 << 5)) {
tmp = env->spr[SPR_POWER_PMC5];
tmp += num_insns;
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
tmp = PMC_COUNTER_NEGATIVE_VAL;
overflow_triggered = true;
}
env->spr[SPR_POWER_PMC5] = tmp;
}
return overflow_triggered;
}
static void pmu_update_cycles(CPUPPCState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time;
int sprn, cyc_cnt = env->pmc_cyc_cnt;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
/*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
}
}
/* Update base_time for future calculations */
env->pmu_base_time = now;
}
/*
* Helper function to retrieve the cycle overflow timer of the
* 'sprn' counter.
*/
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
{
return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
}
static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
{
QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
int64_t timeout;
/*
* PMC5 does not have an overflow timer and this pointer
* will be NULL.
*/
if (!pmc_overflow_timer) {
return;
}
if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
!pmc_has_overflow_enabled(env, sprn)) {
/* Overflow timer is not needed for this counter */
timer_del(pmc_overflow_timer);
return;
}
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
timeout = 0;
} else {
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
}
/*
* Use timer_mod_anticipate() because an overflow timer might
* be already running for this PMC.
*/
timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
}
static void pmu_update_overflow_timers(CPUPPCState *env)
{
int sprn;
/*
* Scroll through all PMCs and start counter overflow timers for
* PM_CYC events, if needed.
*/
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
pmc_update_overflow_timer(env, sprn);
}
}
static void pmu_delete_timers(CPUPPCState *env)
{
QEMUTimer *pmc_overflow_timer;
int sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
if (pmc_overflow_timer) {
timer_del(pmc_overflow_timer);
}
}
}
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0;
bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0;
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR0] = value;
/* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */
env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0);
env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1);
pmu_update_summaries(env);
/* Update cycle overflow timers with the current MMCR0 state */
pmu_update_overflow_timers(env);
}
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR1] = value;
/* MMCR1 writes can change HFLAGS_INSN_CNT */
pmu_update_summaries(env);
}
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
{
pmu_update_cycles(env);
return env->spr[sprn];
}
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
{
pmu_update_cycles(env);
env->spr[sprn] = (uint32_t)value;
pmc_update_overflow_timer(env, sprn);
}
static void fire_PMC_interrupt(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
pmu_update_cycles(env);
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) {
env->spr[SPR_POWER_MMCR0] &= ~MMCR0_FCECE;
env->spr[SPR_POWER_MMCR0] |= MMCR0_FC;
/* Changing MMCR0_FC requires a new HFLAGS_INSN_CNT calc */
pmu_update_summaries(env);
/*
* Delete all pending timers if we need to freeze
* the PMC. We'll restart them when the PMC starts
* running again.
*/
pmu_delete_timers(env);
}
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) {
env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE;
env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO;
}
raise_ebb_perfm_exception(env);
}
void helper_handle_pmc5_overflow(CPUPPCState *env)
{
env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL;
fire_PMC_interrupt(env_archcpu(env));
}
/* This helper assumes that the PMC is running. */
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
{
bool overflow_triggered;
PowerPCCPU *cpu;
overflow_triggered = pmu_increment_insns(env, num_insns);
if (overflow_triggered) {
cpu = env_archcpu(env);
fire_PMC_interrupt(cpu);
}
}
static void cpu_ppc_pmu_timer_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
fire_PMC_interrupt(cpu);
}
void cpu_ppc_pmu_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
int i, sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (sprn == SPR_POWER_PMC5) {
continue;
}
i = sprn - SPR_POWER_PMC1;
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_pmu_timer_cb,
cpu);
}
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */