qemu/hw/core/machine.c
Jonathan Cameron 1ebf9001fb hw/cxl: Move the CXLState from MachineState to machine type specific state.
This removes the last of the CXL code from the MachineState where it
is visible to all Machines to only those that support CXL (currently i386/pc)
As i386/pc always support CXL now, stop allocating the state independently.

Note the pxb register hookup code runs even if cxl=off in order to detect
pxb_cxl host bridges and fail to start if any are present as they won't
have the control registers available.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
Message-Id: <20220608145440.26106-8-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-06-09 19:32:49 -04:00

1482 lines
47 KiB
C

/*
* QEMU Machine
*
* Copyright (C) 2014 Red Hat Inc
*
* Authors:
* Marcel Apfelbaum <marcel.a@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/option.h"
#include "qapi/qmp/qerror.h"
#include "sysemu/replay.h"
#include "qemu/units.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/qapi-visit-machine.h"
#include "qapi/visitor.h"
#include "qom/object_interfaces.h"
#include "hw/sysbus.h"
#include "sysemu/cpus.h"
#include "sysemu/sysemu.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "sysemu/numa.h"
#include "sysemu/xen.h"
#include "qemu/error-report.h"
#include "sysemu/qtest.h"
#include "hw/pci/pci.h"
#include "hw/mem/nvdimm.h"
#include "migration/global_state.h"
#include "migration/vmstate.h"
#include "exec/confidential-guest-support.h"
#include "hw/virtio/virtio.h"
#include "hw/virtio/virtio-pci.h"
#include "qom/object_interfaces.h"
GlobalProperty hw_compat_7_0[] = {
{ "arm-gicv3-common", "force-8-bit-prio", "on" },
{ "nvme-ns", "eui64-default", "on"},
};
const size_t hw_compat_7_0_len = G_N_ELEMENTS(hw_compat_7_0);
GlobalProperty hw_compat_6_2[] = {
{ "PIIX4_PM", "x-not-migrate-acpi-index", "on"},
};
const size_t hw_compat_6_2_len = G_N_ELEMENTS(hw_compat_6_2);
GlobalProperty hw_compat_6_1[] = {
{ "vhost-user-vsock-device", "seqpacket", "off" },
{ "nvme-ns", "shared", "off" },
};
const size_t hw_compat_6_1_len = G_N_ELEMENTS(hw_compat_6_1);
GlobalProperty hw_compat_6_0[] = {
{ "gpex-pcihost", "allow-unmapped-accesses", "false" },
{ "i8042", "extended-state", "false"},
{ "nvme-ns", "eui64-default", "off"},
{ "e1000", "init-vet", "off" },
{ "e1000e", "init-vet", "off" },
{ "vhost-vsock-device", "seqpacket", "off" },
};
const size_t hw_compat_6_0_len = G_N_ELEMENTS(hw_compat_6_0);
GlobalProperty hw_compat_5_2[] = {
{ "ICH9-LPC", "smm-compat", "on"},
{ "PIIX4_PM", "smm-compat", "on"},
{ "virtio-blk-device", "report-discard-granularity", "off" },
{ "virtio-net-pci-base", "vectors", "3"},
};
const size_t hw_compat_5_2_len = G_N_ELEMENTS(hw_compat_5_2);
GlobalProperty hw_compat_5_1[] = {
{ "vhost-scsi", "num_queues", "1"},
{ "vhost-user-blk", "num-queues", "1"},
{ "vhost-user-scsi", "num_queues", "1"},
{ "virtio-blk-device", "num-queues", "1"},
{ "virtio-scsi-device", "num_queues", "1"},
{ "nvme", "use-intel-id", "on"},
{ "pvpanic", "events", "1"}, /* PVPANIC_PANICKED */
{ "pl011", "migrate-clk", "off" },
{ "virtio-pci", "x-ats-page-aligned", "off"},
};
const size_t hw_compat_5_1_len = G_N_ELEMENTS(hw_compat_5_1);
GlobalProperty hw_compat_5_0[] = {
{ "pci-host-bridge", "x-config-reg-migration-enabled", "off" },
{ "virtio-balloon-device", "page-poison", "false" },
{ "vmport", "x-read-set-eax", "off" },
{ "vmport", "x-signal-unsupported-cmd", "off" },
{ "vmport", "x-report-vmx-type", "off" },
{ "vmport", "x-cmds-v2", "off" },
{ "virtio-device", "x-disable-legacy-check", "true" },
};
const size_t hw_compat_5_0_len = G_N_ELEMENTS(hw_compat_5_0);
GlobalProperty hw_compat_4_2[] = {
{ "virtio-blk-device", "queue-size", "128"},
{ "virtio-scsi-device", "virtqueue_size", "128"},
{ "virtio-blk-device", "x-enable-wce-if-config-wce", "off" },
{ "virtio-blk-device", "seg-max-adjust", "off"},
{ "virtio-scsi-device", "seg_max_adjust", "off"},
{ "vhost-blk-device", "seg_max_adjust", "off"},
{ "usb-host", "suppress-remote-wake", "off" },
{ "usb-redir", "suppress-remote-wake", "off" },
{ "qxl", "revision", "4" },
{ "qxl-vga", "revision", "4" },
{ "fw_cfg", "acpi-mr-restore", "false" },
{ "virtio-device", "use-disabled-flag", "false" },
};
const size_t hw_compat_4_2_len = G_N_ELEMENTS(hw_compat_4_2);
GlobalProperty hw_compat_4_1[] = {
{ "virtio-pci", "x-pcie-flr-init", "off" },
};
const size_t hw_compat_4_1_len = G_N_ELEMENTS(hw_compat_4_1);
GlobalProperty hw_compat_4_0[] = {
{ "VGA", "edid", "false" },
{ "secondary-vga", "edid", "false" },
{ "bochs-display", "edid", "false" },
{ "virtio-vga", "edid", "false" },
{ "virtio-gpu-device", "edid", "false" },
{ "virtio-device", "use-started", "false" },
{ "virtio-balloon-device", "qemu-4-0-config-size", "true" },
{ "pl031", "migrate-tick-offset", "false" },
};
const size_t hw_compat_4_0_len = G_N_ELEMENTS(hw_compat_4_0);
GlobalProperty hw_compat_3_1[] = {
{ "pcie-root-port", "x-speed", "2_5" },
{ "pcie-root-port", "x-width", "1" },
{ "memory-backend-file", "x-use-canonical-path-for-ramblock-id", "true" },
{ "memory-backend-memfd", "x-use-canonical-path-for-ramblock-id", "true" },
{ "tpm-crb", "ppi", "false" },
{ "tpm-tis", "ppi", "false" },
{ "usb-kbd", "serial", "42" },
{ "usb-mouse", "serial", "42" },
{ "usb-tablet", "serial", "42" },
{ "virtio-blk-device", "discard", "false" },
{ "virtio-blk-device", "write-zeroes", "false" },
{ "virtio-balloon-device", "qemu-4-0-config-size", "false" },
{ "pcie-root-port-base", "disable-acs", "true" }, /* Added in 4.1 */
};
const size_t hw_compat_3_1_len = G_N_ELEMENTS(hw_compat_3_1);
GlobalProperty hw_compat_3_0[] = {};
const size_t hw_compat_3_0_len = G_N_ELEMENTS(hw_compat_3_0);
GlobalProperty hw_compat_2_12[] = {
{ "migration", "decompress-error-check", "off" },
{ "hda-audio", "use-timer", "false" },
{ "cirrus-vga", "global-vmstate", "true" },
{ "VGA", "global-vmstate", "true" },
{ "vmware-svga", "global-vmstate", "true" },
{ "qxl-vga", "global-vmstate", "true" },
};
const size_t hw_compat_2_12_len = G_N_ELEMENTS(hw_compat_2_12);
GlobalProperty hw_compat_2_11[] = {
{ "hpet", "hpet-offset-saved", "false" },
{ "virtio-blk-pci", "vectors", "2" },
{ "vhost-user-blk-pci", "vectors", "2" },
{ "e1000", "migrate_tso_props", "off" },
};
const size_t hw_compat_2_11_len = G_N_ELEMENTS(hw_compat_2_11);
GlobalProperty hw_compat_2_10[] = {
{ "virtio-mouse-device", "wheel-axis", "false" },
{ "virtio-tablet-device", "wheel-axis", "false" },
};
const size_t hw_compat_2_10_len = G_N_ELEMENTS(hw_compat_2_10);
GlobalProperty hw_compat_2_9[] = {
{ "pci-bridge", "shpc", "off" },
{ "intel-iommu", "pt", "off" },
{ "virtio-net-device", "x-mtu-bypass-backend", "off" },
{ "pcie-root-port", "x-migrate-msix", "false" },
};
const size_t hw_compat_2_9_len = G_N_ELEMENTS(hw_compat_2_9);
GlobalProperty hw_compat_2_8[] = {
{ "fw_cfg_mem", "x-file-slots", "0x10" },
{ "fw_cfg_io", "x-file-slots", "0x10" },
{ "pflash_cfi01", "old-multiple-chip-handling", "on" },
{ "pci-bridge", "shpc", "on" },
{ TYPE_PCI_DEVICE, "x-pcie-extcap-init", "off" },
{ "virtio-pci", "x-pcie-deverr-init", "off" },
{ "virtio-pci", "x-pcie-lnkctl-init", "off" },
{ "virtio-pci", "x-pcie-pm-init", "off" },
{ "cirrus-vga", "vgamem_mb", "8" },
{ "isa-cirrus-vga", "vgamem_mb", "8" },
};
const size_t hw_compat_2_8_len = G_N_ELEMENTS(hw_compat_2_8);
GlobalProperty hw_compat_2_7[] = {
{ "virtio-pci", "page-per-vq", "on" },
{ "virtio-serial-device", "emergency-write", "off" },
{ "ioapic", "version", "0x11" },
{ "intel-iommu", "x-buggy-eim", "true" },
{ "virtio-pci", "x-ignore-backend-features", "on" },
};
const size_t hw_compat_2_7_len = G_N_ELEMENTS(hw_compat_2_7);
GlobalProperty hw_compat_2_6[] = {
{ "virtio-mmio", "format_transport_address", "off" },
/* Optional because not all virtio-pci devices support legacy mode */
{ "virtio-pci", "disable-modern", "on", .optional = true },
{ "virtio-pci", "disable-legacy", "off", .optional = true },
};
const size_t hw_compat_2_6_len = G_N_ELEMENTS(hw_compat_2_6);
GlobalProperty hw_compat_2_5[] = {
{ "isa-fdc", "fallback", "144" },
{ "pvscsi", "x-old-pci-configuration", "on" },
{ "pvscsi", "x-disable-pcie", "on" },
{ "vmxnet3", "x-old-msi-offsets", "on" },
{ "vmxnet3", "x-disable-pcie", "on" },
};
const size_t hw_compat_2_5_len = G_N_ELEMENTS(hw_compat_2_5);
GlobalProperty hw_compat_2_4[] = {
/* Optional because the 'scsi' property is Linux-only */
{ "virtio-blk-device", "scsi", "true", .optional = true },
{ "e1000", "extra_mac_registers", "off" },
{ "virtio-pci", "x-disable-pcie", "on" },
{ "virtio-pci", "migrate-extra", "off" },
{ "fw_cfg_mem", "dma_enabled", "off" },
{ "fw_cfg_io", "dma_enabled", "off" }
};
const size_t hw_compat_2_4_len = G_N_ELEMENTS(hw_compat_2_4);
GlobalProperty hw_compat_2_3[] = {
{ "virtio-blk-pci", "any_layout", "off" },
{ "virtio-balloon-pci", "any_layout", "off" },
{ "virtio-serial-pci", "any_layout", "off" },
{ "virtio-9p-pci", "any_layout", "off" },
{ "virtio-rng-pci", "any_layout", "off" },
{ TYPE_PCI_DEVICE, "x-pcie-lnksta-dllla", "off" },
{ "migration", "send-configuration", "off" },
{ "migration", "send-section-footer", "off" },
{ "migration", "store-global-state", "off" },
};
const size_t hw_compat_2_3_len = G_N_ELEMENTS(hw_compat_2_3);
GlobalProperty hw_compat_2_2[] = {};
const size_t hw_compat_2_2_len = G_N_ELEMENTS(hw_compat_2_2);
GlobalProperty hw_compat_2_1[] = {
{ "intel-hda", "old_msi_addr", "on" },
{ "VGA", "qemu-extended-regs", "off" },
{ "secondary-vga", "qemu-extended-regs", "off" },
{ "virtio-scsi-pci", "any_layout", "off" },
{ "usb-mouse", "usb_version", "1" },
{ "usb-kbd", "usb_version", "1" },
{ "virtio-pci", "virtio-pci-bus-master-bug-migration", "on" },
};
const size_t hw_compat_2_1_len = G_N_ELEMENTS(hw_compat_2_1);
MachineState *current_machine;
static char *machine_get_kernel(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->kernel_filename);
}
static void machine_set_kernel(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->kernel_filename);
ms->kernel_filename = g_strdup(value);
}
static char *machine_get_initrd(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->initrd_filename);
}
static void machine_set_initrd(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->initrd_filename);
ms->initrd_filename = g_strdup(value);
}
static char *machine_get_append(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->kernel_cmdline);
}
static void machine_set_append(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->kernel_cmdline);
ms->kernel_cmdline = g_strdup(value);
}
static char *machine_get_dtb(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->dtb);
}
static void machine_set_dtb(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->dtb);
ms->dtb = g_strdup(value);
}
static char *machine_get_dumpdtb(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->dumpdtb);
}
static void machine_set_dumpdtb(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->dumpdtb);
ms->dumpdtb = g_strdup(value);
}
static void machine_get_phandle_start(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MachineState *ms = MACHINE(obj);
int64_t value = ms->phandle_start;
visit_type_int(v, name, &value, errp);
}
static void machine_set_phandle_start(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MachineState *ms = MACHINE(obj);
int64_t value;
if (!visit_type_int(v, name, &value, errp)) {
return;
}
ms->phandle_start = value;
}
static char *machine_get_dt_compatible(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->dt_compatible);
}
static void machine_set_dt_compatible(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->dt_compatible);
ms->dt_compatible = g_strdup(value);
}
static bool machine_get_dump_guest_core(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->dump_guest_core;
}
static void machine_set_dump_guest_core(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->dump_guest_core = value;
}
static bool machine_get_mem_merge(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->mem_merge;
}
static void machine_set_mem_merge(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->mem_merge = value;
}
static bool machine_get_usb(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->usb;
}
static void machine_set_usb(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->usb = value;
ms->usb_disabled = !value;
}
static bool machine_get_graphics(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->enable_graphics;
}
static void machine_set_graphics(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->enable_graphics = value;
}
static char *machine_get_firmware(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->firmware);
}
static void machine_set_firmware(Object *obj, const char *value, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_free(ms->firmware);
ms->firmware = g_strdup(value);
}
static void machine_set_suppress_vmdesc(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->suppress_vmdesc = value;
}
static bool machine_get_suppress_vmdesc(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->suppress_vmdesc;
}
static char *machine_get_memory_encryption(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
if (ms->cgs) {
return g_strdup(object_get_canonical_path_component(OBJECT(ms->cgs)));
}
return NULL;
}
static void machine_set_memory_encryption(Object *obj, const char *value,
Error **errp)
{
Object *cgs =
object_resolve_path_component(object_get_objects_root(), value);
if (!cgs) {
error_setg(errp, "No such memory encryption object '%s'", value);
return;
}
object_property_set_link(obj, "confidential-guest-support", cgs, errp);
}
static void machine_check_confidential_guest_support(const Object *obj,
const char *name,
Object *new_target,
Error **errp)
{
/*
* So far the only constraint is that the target has the
* TYPE_CONFIDENTIAL_GUEST_SUPPORT interface, and that's checked
* by the QOM core
*/
}
static bool machine_get_nvdimm(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->nvdimms_state->is_enabled;
}
static void machine_set_nvdimm(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->nvdimms_state->is_enabled = value;
}
static bool machine_get_hmat(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return ms->numa_state->hmat_enabled;
}
static void machine_set_hmat(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
ms->numa_state->hmat_enabled = value;
}
static void machine_get_mem(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MachineState *ms = MACHINE(obj);
MemorySizeConfiguration mem = {
.has_size = true,
.size = ms->ram_size,
.has_max_size = !!ms->ram_slots,
.max_size = ms->maxram_size,
.has_slots = !!ms->ram_slots,
.slots = ms->ram_slots,
};
MemorySizeConfiguration *p_mem = &mem;
visit_type_MemorySizeConfiguration(v, name, &p_mem, &error_abort);
}
static void machine_set_mem(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MachineState *ms = MACHINE(obj);
MachineClass *mc = MACHINE_GET_CLASS(obj);
MemorySizeConfiguration *mem;
ERRP_GUARD();
if (!visit_type_MemorySizeConfiguration(v, name, &mem, errp)) {
return;
}
if (!mem->has_size) {
mem->has_size = true;
mem->size = mc->default_ram_size;
}
mem->size = QEMU_ALIGN_UP(mem->size, 8192);
if (mc->fixup_ram_size) {
mem->size = mc->fixup_ram_size(mem->size);
}
if ((ram_addr_t)mem->size != mem->size) {
error_setg(errp, "ram size too large");
goto out_free;
}
if (mem->has_max_size) {
if (mem->max_size < mem->size) {
error_setg(errp, "invalid value of maxmem: "
"maximum memory size (0x%" PRIx64 ") must be at least "
"the initial memory size (0x%" PRIx64 ")",
mem->max_size, mem->size);
goto out_free;
}
if (mem->has_slots && mem->slots && mem->max_size == mem->size) {
error_setg(errp, "invalid value of maxmem: "
"memory slots were specified but maximum memory size "
"(0x%" PRIx64 ") is equal to the initial memory size "
"(0x%" PRIx64 ")", mem->max_size, mem->size);
goto out_free;
}
ms->maxram_size = mem->max_size;
} else {
if (mem->has_slots) {
error_setg(errp, "slots specified but no max-size");
goto out_free;
}
ms->maxram_size = mem->size;
}
ms->ram_size = mem->size;
ms->ram_slots = mem->has_slots ? mem->slots : 0;
out_free:
qapi_free_MemorySizeConfiguration(mem);
}
static char *machine_get_nvdimm_persistence(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
return g_strdup(ms->nvdimms_state->persistence_string);
}
static void machine_set_nvdimm_persistence(Object *obj, const char *value,
Error **errp)
{
MachineState *ms = MACHINE(obj);
NVDIMMState *nvdimms_state = ms->nvdimms_state;
if (strcmp(value, "cpu") == 0) {
nvdimms_state->persistence = 3;
} else if (strcmp(value, "mem-ctrl") == 0) {
nvdimms_state->persistence = 2;
} else {
error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
value);
return;
}
g_free(nvdimms_state->persistence_string);
nvdimms_state->persistence_string = g_strdup(value);
}
void machine_class_allow_dynamic_sysbus_dev(MachineClass *mc, const char *type)
{
QAPI_LIST_PREPEND(mc->allowed_dynamic_sysbus_devices, g_strdup(type));
}
bool device_is_dynamic_sysbus(MachineClass *mc, DeviceState *dev)
{
Object *obj = OBJECT(dev);
if (!object_dynamic_cast(obj, TYPE_SYS_BUS_DEVICE)) {
return false;
}
return device_type_is_dynamic_sysbus(mc, object_get_typename(obj));
}
bool device_type_is_dynamic_sysbus(MachineClass *mc, const char *type)
{
bool allowed = false;
strList *wl;
ObjectClass *klass = object_class_by_name(type);
for (wl = mc->allowed_dynamic_sysbus_devices;
!allowed && wl;
wl = wl->next) {
allowed |= !!object_class_dynamic_cast(klass, wl->value);
}
return allowed;
}
HotpluggableCPUList *machine_query_hotpluggable_cpus(MachineState *machine)
{
int i;
HotpluggableCPUList *head = NULL;
MachineClass *mc = MACHINE_GET_CLASS(machine);
/* force board to initialize possible_cpus if it hasn't been done yet */
mc->possible_cpu_arch_ids(machine);
for (i = 0; i < machine->possible_cpus->len; i++) {
Object *cpu;
HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
cpu_item->type = g_strdup(machine->possible_cpus->cpus[i].type);
cpu_item->vcpus_count = machine->possible_cpus->cpus[i].vcpus_count;
cpu_item->props = g_memdup(&machine->possible_cpus->cpus[i].props,
sizeof(*cpu_item->props));
cpu = machine->possible_cpus->cpus[i].cpu;
if (cpu) {
cpu_item->has_qom_path = true;
cpu_item->qom_path = object_get_canonical_path(cpu);
}
QAPI_LIST_PREPEND(head, cpu_item);
}
return head;
}
/**
* machine_set_cpu_numa_node:
* @machine: machine object to modify
* @props: specifies which cpu objects to assign to
* numa node specified by @props.node_id
* @errp: if an error occurs, a pointer to an area to store the error
*
* Associate NUMA node specified by @props.node_id with cpu slots that
* match socket/core/thread-ids specified by @props. It's recommended to use
* query-hotpluggable-cpus.props values to specify affected cpu slots,
* which would lead to exact 1:1 mapping of cpu slots to NUMA node.
*
* However for CLI convenience it's possible to pass in subset of properties,
* which would affect all cpu slots that match it.
* Ex for pc machine:
* -smp 4,cores=2,sockets=2 -numa node,nodeid=0 -numa node,nodeid=1 \
* -numa cpu,node-id=0,socket_id=0 \
* -numa cpu,node-id=1,socket_id=1
* will assign all child cores of socket 0 to node 0 and
* of socket 1 to node 1.
*
* On attempt of reassigning (already assigned) cpu slot to another NUMA node,
* return error.
* Empty subset is disallowed and function will return with error in this case.
*/
void machine_set_cpu_numa_node(MachineState *machine,
const CpuInstanceProperties *props, Error **errp)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
NodeInfo *numa_info = machine->numa_state->nodes;
bool match = false;
int i;
if (!mc->possible_cpu_arch_ids) {
error_setg(errp, "mapping of CPUs to NUMA node is not supported");
return;
}
/* disabling node mapping is not supported, forbid it */
assert(props->has_node_id);
/* force board to initialize possible_cpus if it hasn't been done yet */
mc->possible_cpu_arch_ids(machine);
for (i = 0; i < machine->possible_cpus->len; i++) {
CPUArchId *slot = &machine->possible_cpus->cpus[i];
/* reject unsupported by board properties */
if (props->has_thread_id && !slot->props.has_thread_id) {
error_setg(errp, "thread-id is not supported");
return;
}
if (props->has_core_id && !slot->props.has_core_id) {
error_setg(errp, "core-id is not supported");
return;
}
if (props->has_cluster_id && !slot->props.has_cluster_id) {
error_setg(errp, "cluster-id is not supported");
return;
}
if (props->has_socket_id && !slot->props.has_socket_id) {
error_setg(errp, "socket-id is not supported");
return;
}
if (props->has_die_id && !slot->props.has_die_id) {
error_setg(errp, "die-id is not supported");
return;
}
/* skip slots with explicit mismatch */
if (props->has_thread_id && props->thread_id != slot->props.thread_id) {
continue;
}
if (props->has_core_id && props->core_id != slot->props.core_id) {
continue;
}
if (props->has_cluster_id &&
props->cluster_id != slot->props.cluster_id) {
continue;
}
if (props->has_die_id && props->die_id != slot->props.die_id) {
continue;
}
if (props->has_socket_id && props->socket_id != slot->props.socket_id) {
continue;
}
/* reject assignment if slot is already assigned, for compatibility
* of legacy cpu_index mapping with SPAPR core based mapping do not
* error out if cpu thread and matched core have the same node-id */
if (slot->props.has_node_id &&
slot->props.node_id != props->node_id) {
error_setg(errp, "CPU is already assigned to node-id: %" PRId64,
slot->props.node_id);
return;
}
/* assign slot to node as it's matched '-numa cpu' key */
match = true;
slot->props.node_id = props->node_id;
slot->props.has_node_id = props->has_node_id;
if (machine->numa_state->hmat_enabled) {
if ((numa_info[props->node_id].initiator < MAX_NODES) &&
(props->node_id != numa_info[props->node_id].initiator)) {
error_setg(errp, "The initiator of CPU NUMA node %" PRId64
" should be itself (got %" PRIu16 ")",
props->node_id, numa_info[props->node_id].initiator);
return;
}
numa_info[props->node_id].has_cpu = true;
numa_info[props->node_id].initiator = props->node_id;
}
}
if (!match) {
error_setg(errp, "no match found");
}
}
static void machine_get_smp(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MachineState *ms = MACHINE(obj);
SMPConfiguration *config = &(SMPConfiguration){
.has_cpus = true, .cpus = ms->smp.cpus,
.has_sockets = true, .sockets = ms->smp.sockets,
.has_dies = true, .dies = ms->smp.dies,
.has_clusters = true, .clusters = ms->smp.clusters,
.has_cores = true, .cores = ms->smp.cores,
.has_threads = true, .threads = ms->smp.threads,
.has_maxcpus = true, .maxcpus = ms->smp.max_cpus,
};
if (!visit_type_SMPConfiguration(v, name, &config, &error_abort)) {
return;
}
}
static void machine_set_smp(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MachineState *ms = MACHINE(obj);
g_autoptr(SMPConfiguration) config = NULL;
if (!visit_type_SMPConfiguration(v, name, &config, errp)) {
return;
}
machine_parse_smp_config(ms, config, errp);
}
static void machine_get_boot(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MachineState *ms = MACHINE(obj);
BootConfiguration *config = &ms->boot_config;
visit_type_BootConfiguration(v, name, &config, &error_abort);
}
static void machine_free_boot_config(MachineState *ms)
{
g_free(ms->boot_config.order);
g_free(ms->boot_config.once);
g_free(ms->boot_config.splash);
}
static void machine_copy_boot_config(MachineState *ms, BootConfiguration *config)
{
MachineClass *machine_class = MACHINE_GET_CLASS(ms);
machine_free_boot_config(ms);
ms->boot_config = *config;
if (!config->has_order) {
ms->boot_config.has_order = true;
ms->boot_config.order = g_strdup(machine_class->default_boot_order);
}
}
static void machine_set_boot(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ERRP_GUARD();
MachineState *ms = MACHINE(obj);
BootConfiguration *config = NULL;
if (!visit_type_BootConfiguration(v, name, &config, errp)) {
return;
}
if (config->has_order) {
validate_bootdevices(config->order, errp);
if (*errp) {
goto out_free;
}
}
if (config->has_once) {
validate_bootdevices(config->once, errp);
if (*errp) {
goto out_free;
}
}
machine_copy_boot_config(ms, config);
/* Strings live in ms->boot_config. */
free(config);
return;
out_free:
qapi_free_BootConfiguration(config);
}
static void machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
/* Default 128 MB as guest ram size */
mc->default_ram_size = 128 * MiB;
mc->rom_file_has_mr = true;
/* numa node memory size aligned on 8MB by default.
* On Linux, each node's border has to be 8MB aligned
*/
mc->numa_mem_align_shift = 23;
object_class_property_add_str(oc, "kernel",
machine_get_kernel, machine_set_kernel);
object_class_property_set_description(oc, "kernel",
"Linux kernel image file");
object_class_property_add_str(oc, "initrd",
machine_get_initrd, machine_set_initrd);
object_class_property_set_description(oc, "initrd",
"Linux initial ramdisk file");
object_class_property_add_str(oc, "append",
machine_get_append, machine_set_append);
object_class_property_set_description(oc, "append",
"Linux kernel command line");
object_class_property_add_str(oc, "dtb",
machine_get_dtb, machine_set_dtb);
object_class_property_set_description(oc, "dtb",
"Linux kernel device tree file");
object_class_property_add_str(oc, "dumpdtb",
machine_get_dumpdtb, machine_set_dumpdtb);
object_class_property_set_description(oc, "dumpdtb",
"Dump current dtb to a file and quit");
object_class_property_add(oc, "boot", "BootConfiguration",
machine_get_boot, machine_set_boot,
NULL, NULL);
object_class_property_set_description(oc, "boot",
"Boot configuration");
object_class_property_add(oc, "smp", "SMPConfiguration",
machine_get_smp, machine_set_smp,
NULL, NULL);
object_class_property_set_description(oc, "smp",
"CPU topology");
object_class_property_add(oc, "phandle-start", "int",
machine_get_phandle_start, machine_set_phandle_start,
NULL, NULL);
object_class_property_set_description(oc, "phandle-start",
"The first phandle ID we may generate dynamically");
object_class_property_add_str(oc, "dt-compatible",
machine_get_dt_compatible, machine_set_dt_compatible);
object_class_property_set_description(oc, "dt-compatible",
"Overrides the \"compatible\" property of the dt root node");
object_class_property_add_bool(oc, "dump-guest-core",
machine_get_dump_guest_core, machine_set_dump_guest_core);
object_class_property_set_description(oc, "dump-guest-core",
"Include guest memory in a core dump");
object_class_property_add_bool(oc, "mem-merge",
machine_get_mem_merge, machine_set_mem_merge);
object_class_property_set_description(oc, "mem-merge",
"Enable/disable memory merge support");
object_class_property_add_bool(oc, "usb",
machine_get_usb, machine_set_usb);
object_class_property_set_description(oc, "usb",
"Set on/off to enable/disable usb");
object_class_property_add_bool(oc, "graphics",
machine_get_graphics, machine_set_graphics);
object_class_property_set_description(oc, "graphics",
"Set on/off to enable/disable graphics emulation");
object_class_property_add_str(oc, "firmware",
machine_get_firmware, machine_set_firmware);
object_class_property_set_description(oc, "firmware",
"Firmware image");
object_class_property_add_bool(oc, "suppress-vmdesc",
machine_get_suppress_vmdesc, machine_set_suppress_vmdesc);
object_class_property_set_description(oc, "suppress-vmdesc",
"Set on to disable self-describing migration");
object_class_property_add_link(oc, "confidential-guest-support",
TYPE_CONFIDENTIAL_GUEST_SUPPORT,
offsetof(MachineState, cgs),
machine_check_confidential_guest_support,
OBJ_PROP_LINK_STRONG);
object_class_property_set_description(oc, "confidential-guest-support",
"Set confidential guest scheme to support");
/* For compatibility */
object_class_property_add_str(oc, "memory-encryption",
machine_get_memory_encryption, machine_set_memory_encryption);
object_class_property_set_description(oc, "memory-encryption",
"Set memory encryption object to use");
object_class_property_add_link(oc, "memory-backend", TYPE_MEMORY_BACKEND,
offsetof(MachineState, memdev), object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
object_class_property_set_description(oc, "memory-backend",
"Set RAM backend"
"Valid value is ID of hostmem based backend");
object_class_property_add(oc, "memory", "MemorySizeConfiguration",
machine_get_mem, machine_set_mem,
NULL, NULL);
object_class_property_set_description(oc, "memory",
"Memory size configuration");
}
static void machine_class_base_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->max_cpus = mc->max_cpus ?: 1;
mc->min_cpus = mc->min_cpus ?: 1;
mc->default_cpus = mc->default_cpus ?: 1;
if (!object_class_is_abstract(oc)) {
const char *cname = object_class_get_name(oc);
assert(g_str_has_suffix(cname, TYPE_MACHINE_SUFFIX));
mc->name = g_strndup(cname,
strlen(cname) - strlen(TYPE_MACHINE_SUFFIX));
mc->compat_props = g_ptr_array_new();
}
}
static void machine_initfn(Object *obj)
{
MachineState *ms = MACHINE(obj);
MachineClass *mc = MACHINE_GET_CLASS(obj);
container_get(obj, "/peripheral");
container_get(obj, "/peripheral-anon");
ms->dump_guest_core = true;
ms->mem_merge = true;
ms->enable_graphics = true;
ms->kernel_cmdline = g_strdup("");
ms->ram_size = mc->default_ram_size;
ms->maxram_size = mc->default_ram_size;
if (mc->nvdimm_supported) {
Object *obj = OBJECT(ms);
ms->nvdimms_state = g_new0(NVDIMMState, 1);
object_property_add_bool(obj, "nvdimm",
machine_get_nvdimm, machine_set_nvdimm);
object_property_set_description(obj, "nvdimm",
"Set on/off to enable/disable "
"NVDIMM instantiation");
object_property_add_str(obj, "nvdimm-persistence",
machine_get_nvdimm_persistence,
machine_set_nvdimm_persistence);
object_property_set_description(obj, "nvdimm-persistence",
"Set NVDIMM persistence"
"Valid values are cpu, mem-ctrl");
}
if (mc->cpu_index_to_instance_props && mc->get_default_cpu_node_id) {
ms->numa_state = g_new0(NumaState, 1);
object_property_add_bool(obj, "hmat",
machine_get_hmat, machine_set_hmat);
object_property_set_description(obj, "hmat",
"Set on/off to enable/disable "
"ACPI Heterogeneous Memory Attribute "
"Table (HMAT)");
}
/* default to mc->default_cpus */
ms->smp.cpus = mc->default_cpus;
ms->smp.max_cpus = mc->default_cpus;
ms->smp.sockets = 1;
ms->smp.dies = 1;
ms->smp.clusters = 1;
ms->smp.cores = 1;
ms->smp.threads = 1;
machine_copy_boot_config(ms, &(BootConfiguration){ 0 });
}
static void machine_finalize(Object *obj)
{
MachineState *ms = MACHINE(obj);
machine_free_boot_config(ms);
g_free(ms->kernel_filename);
g_free(ms->initrd_filename);
g_free(ms->kernel_cmdline);
g_free(ms->dtb);
g_free(ms->dumpdtb);
g_free(ms->dt_compatible);
g_free(ms->firmware);
g_free(ms->device_memory);
g_free(ms->nvdimms_state);
g_free(ms->numa_state);
}
bool machine_usb(MachineState *machine)
{
return machine->usb;
}
int machine_phandle_start(MachineState *machine)
{
return machine->phandle_start;
}
bool machine_dump_guest_core(MachineState *machine)
{
return machine->dump_guest_core;
}
bool machine_mem_merge(MachineState *machine)
{
return machine->mem_merge;
}
static char *cpu_slot_to_string(const CPUArchId *cpu)
{
GString *s = g_string_new(NULL);
if (cpu->props.has_socket_id) {
g_string_append_printf(s, "socket-id: %"PRId64, cpu->props.socket_id);
}
if (cpu->props.has_die_id) {
if (s->len) {
g_string_append_printf(s, ", ");
}
g_string_append_printf(s, "die-id: %"PRId64, cpu->props.die_id);
}
if (cpu->props.has_cluster_id) {
if (s->len) {
g_string_append_printf(s, ", ");
}
g_string_append_printf(s, "cluster-id: %"PRId64, cpu->props.cluster_id);
}
if (cpu->props.has_core_id) {
if (s->len) {
g_string_append_printf(s, ", ");
}
g_string_append_printf(s, "core-id: %"PRId64, cpu->props.core_id);
}
if (cpu->props.has_thread_id) {
if (s->len) {
g_string_append_printf(s, ", ");
}
g_string_append_printf(s, "thread-id: %"PRId64, cpu->props.thread_id);
}
return g_string_free(s, false);
}
static void numa_validate_initiator(NumaState *numa_state)
{
int i;
NodeInfo *numa_info = numa_state->nodes;
for (i = 0; i < numa_state->num_nodes; i++) {
if (numa_info[i].initiator == MAX_NODES) {
error_report("The initiator of NUMA node %d is missing, use "
"'-numa node,initiator' option to declare it", i);
exit(1);
}
if (!numa_info[numa_info[i].initiator].present) {
error_report("NUMA node %" PRIu16 " is missing, use "
"'-numa node' option to declare it first",
numa_info[i].initiator);
exit(1);
}
if (!numa_info[numa_info[i].initiator].has_cpu) {
error_report("The initiator of NUMA node %d is invalid", i);
exit(1);
}
}
}
static void machine_numa_finish_cpu_init(MachineState *machine)
{
int i;
bool default_mapping;
GString *s = g_string_new(NULL);
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(machine);
assert(machine->numa_state->num_nodes);
for (i = 0; i < possible_cpus->len; i++) {
if (possible_cpus->cpus[i].props.has_node_id) {
break;
}
}
default_mapping = (i == possible_cpus->len);
for (i = 0; i < possible_cpus->len; i++) {
const CPUArchId *cpu_slot = &possible_cpus->cpus[i];
if (!cpu_slot->props.has_node_id) {
/* fetch default mapping from board and enable it */
CpuInstanceProperties props = cpu_slot->props;
props.node_id = mc->get_default_cpu_node_id(machine, i);
if (!default_mapping) {
/* record slots with not set mapping,
* TODO: make it hard error in future */
char *cpu_str = cpu_slot_to_string(cpu_slot);
g_string_append_printf(s, "%sCPU %d [%s]",
s->len ? ", " : "", i, cpu_str);
g_free(cpu_str);
/* non mapped cpus used to fallback to node 0 */
props.node_id = 0;
}
props.has_node_id = true;
machine_set_cpu_numa_node(machine, &props, &error_fatal);
}
}
if (machine->numa_state->hmat_enabled) {
numa_validate_initiator(machine->numa_state);
}
if (s->len && !qtest_enabled()) {
warn_report("CPU(s) not present in any NUMA nodes: %s",
s->str);
warn_report("All CPU(s) up to maxcpus should be described "
"in NUMA config, ability to start up with partial NUMA "
"mappings is obsoleted and will be removed in future");
}
g_string_free(s, true);
}
MemoryRegion *machine_consume_memdev(MachineState *machine,
HostMemoryBackend *backend)
{
MemoryRegion *ret = host_memory_backend_get_memory(backend);
if (host_memory_backend_is_mapped(backend)) {
error_report("memory backend %s can't be used multiple times.",
object_get_canonical_path_component(OBJECT(backend)));
exit(EXIT_FAILURE);
}
host_memory_backend_set_mapped(backend, true);
vmstate_register_ram_global(ret);
return ret;
}
static bool create_default_memdev(MachineState *ms, const char *path, Error **errp)
{
Object *obj;
MachineClass *mc = MACHINE_GET_CLASS(ms);
bool r = false;
obj = object_new(path ? TYPE_MEMORY_BACKEND_FILE : TYPE_MEMORY_BACKEND_RAM);
if (path) {
if (!object_property_set_str(obj, "mem-path", path, errp)) {
goto out;
}
}
if (!object_property_set_int(obj, "size", ms->ram_size, errp)) {
goto out;
}
object_property_add_child(object_get_objects_root(), mc->default_ram_id,
obj);
/* Ensure backend's memory region name is equal to mc->default_ram_id */
if (!object_property_set_bool(obj, "x-use-canonical-path-for-ramblock-id",
false, errp)) {
goto out;
}
if (!user_creatable_complete(USER_CREATABLE(obj), errp)) {
goto out;
}
r = object_property_set_link(OBJECT(ms), "memory-backend", obj, errp);
out:
object_unref(obj);
return r;
}
void machine_run_board_init(MachineState *machine, const char *mem_path, Error **errp)
{
MachineClass *machine_class = MACHINE_GET_CLASS(machine);
ObjectClass *oc = object_class_by_name(machine->cpu_type);
CPUClass *cc;
/* This checkpoint is required by replay to separate prior clock
reading from the other reads, because timer polling functions query
clock values from the log. */
replay_checkpoint(CHECKPOINT_INIT);
if (!xen_enabled()) {
/* On 32-bit hosts, QEMU is limited by virtual address space */
if (machine->ram_size > (2047 << 20) && HOST_LONG_BITS == 32) {
error_setg(errp, "at most 2047 MB RAM can be simulated");
return;
}
}
if (machine->memdev) {
ram_addr_t backend_size = object_property_get_uint(OBJECT(machine->memdev),
"size", &error_abort);
if (backend_size != machine->ram_size) {
error_setg(errp, "Machine memory size does not match the size of the memory backend");
return;
}
} else if (machine_class->default_ram_id && machine->ram_size &&
numa_uses_legacy_mem()) {
if (!create_default_memdev(current_machine, mem_path, errp)) {
return;
}
}
if (machine->numa_state) {
numa_complete_configuration(machine);
if (machine->numa_state->num_nodes) {
machine_numa_finish_cpu_init(machine);
}
}
if (!machine->ram && machine->memdev) {
machine->ram = machine_consume_memdev(machine, machine->memdev);
}
/* If the machine supports the valid_cpu_types check and the user
* specified a CPU with -cpu check here that the user CPU is supported.
*/
if (machine_class->valid_cpu_types && machine->cpu_type) {
int i;
for (i = 0; machine_class->valid_cpu_types[i]; i++) {
if (object_class_dynamic_cast(oc,
machine_class->valid_cpu_types[i])) {
/* The user specificed CPU is in the valid field, we are
* good to go.
*/
break;
}
}
if (!machine_class->valid_cpu_types[i]) {
/* The user specified CPU is not valid */
error_report("Invalid CPU type: %s", machine->cpu_type);
error_printf("The valid types are: %s",
machine_class->valid_cpu_types[0]);
for (i = 1; machine_class->valid_cpu_types[i]; i++) {
error_printf(", %s", machine_class->valid_cpu_types[i]);
}
error_printf("\n");
exit(1);
}
}
/* Check if CPU type is deprecated and warn if so */
cc = CPU_CLASS(oc);
if (cc && cc->deprecation_note) {
warn_report("CPU model %s is deprecated -- %s", machine->cpu_type,
cc->deprecation_note);
}
if (machine->cgs) {
/*
* With confidential guests, the host can't see the real
* contents of RAM, so there's no point in it trying to merge
* areas.
*/
machine_set_mem_merge(OBJECT(machine), false, &error_abort);
/*
* Virtio devices can't count on directly accessing guest
* memory, so they need iommu_platform=on to use normal DMA
* mechanisms. That requires also disabling legacy virtio
* support for those virtio pci devices which allow it.
*/
object_register_sugar_prop(TYPE_VIRTIO_PCI, "disable-legacy",
"on", true);
object_register_sugar_prop(TYPE_VIRTIO_DEVICE, "iommu_platform",
"on", false);
}
accel_init_interfaces(ACCEL_GET_CLASS(machine->accelerator));
machine_class->init(machine);
phase_advance(PHASE_MACHINE_INITIALIZED);
}
static NotifierList machine_init_done_notifiers =
NOTIFIER_LIST_INITIALIZER(machine_init_done_notifiers);
void qemu_add_machine_init_done_notifier(Notifier *notify)
{
notifier_list_add(&machine_init_done_notifiers, notify);
if (phase_check(PHASE_MACHINE_READY)) {
notify->notify(notify, NULL);
}
}
void qemu_remove_machine_init_done_notifier(Notifier *notify)
{
notifier_remove(notify);
}
void qdev_machine_creation_done(void)
{
cpu_synchronize_all_post_init();
if (current_machine->boot_config.has_once) {
qemu_boot_set(current_machine->boot_config.once, &error_fatal);
qemu_register_reset(restore_boot_order, g_strdup(current_machine->boot_config.order));
}
/*
* ok, initial machine setup is done, starting from now we can
* only create hotpluggable devices
*/
phase_advance(PHASE_MACHINE_READY);
qdev_assert_realized_properly();
/* TODO: once all bus devices are qdevified, this should be done
* when bus is created by qdev.c */
/*
* TODO: If we had a main 'reset container' that the whole system
* lived in, we could reset that using the multi-phase reset
* APIs. For the moment, we just reset the sysbus, which will cause
* all devices hanging off it (and all their child buses, recursively)
* to be reset. Note that this will *not* reset any Device objects
* which are not attached to some part of the qbus tree!
*/
qemu_register_reset(resettable_cold_reset_fn, sysbus_get_default());
notifier_list_notify(&machine_init_done_notifiers, NULL);
if (rom_check_and_register_reset() != 0) {
exit(1);
}
replay_start();
/* This checkpoint is required by replay to separate prior clock
reading from the other reads, because timer polling functions query
clock values from the log. */
replay_checkpoint(CHECKPOINT_RESET);
qemu_system_reset(SHUTDOWN_CAUSE_NONE);
register_global_state();
}
static const TypeInfo machine_info = {
.name = TYPE_MACHINE,
.parent = TYPE_OBJECT,
.abstract = true,
.class_size = sizeof(MachineClass),
.class_init = machine_class_init,
.class_base_init = machine_class_base_init,
.instance_size = sizeof(MachineState),
.instance_init = machine_initfn,
.instance_finalize = machine_finalize,
};
static void machine_register_types(void)
{
type_register_static(&machine_info);
}
type_init(machine_register_types)