qemu/accel/tcg/plugin-gen.c
Pierrick Bouvier b95b78dc16 plugins: extract cpu_index generate
Factorizes function to access current cpu index for a given vcpu.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Message-Id: <20240502211522.346467-9-pierrick.bouvier@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20240514174253.694591-11-alex.bennee@linaro.org>
2024-05-16 08:55:23 +01:00

473 lines
14 KiB
C

/*
* plugin-gen.c - TCG-related bits of plugin infrastructure
*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* We support instrumentation at an instruction granularity. That is,
* if a plugin wants to instrument the memory accesses performed by a
* particular instruction, it can just do that instead of instrumenting
* all memory accesses. Thus, in order to do this we first have to
* translate a TB, so that plugins can decide what/where to instrument.
*
* Injecting the desired instrumentation could be done with a second
* translation pass that combined the instrumentation requests, but that
* would be ugly and inefficient since we would decode the guest code twice.
* Instead, during TB translation we add "plugin_cb" marker opcodes
* for all possible instrumentation events, and then once we collect the
* instrumentation requests from plugins, we generate code for those markers
* or remove them if they have no requests.
*/
#include "qemu/osdep.h"
#include "qemu/plugin.h"
#include "qemu/log.h"
#include "cpu.h"
#include "tcg/tcg.h"
#include "tcg/tcg-temp-internal.h"
#include "tcg/tcg-op.h"
#include "exec/exec-all.h"
#include "exec/plugin-gen.h"
#include "exec/translator.h"
enum plugin_gen_from {
PLUGIN_GEN_FROM_TB,
PLUGIN_GEN_FROM_INSN,
PLUGIN_GEN_AFTER_INSN,
PLUGIN_GEN_AFTER_TB,
};
/* called before finishing a TB with exit_tb, goto_tb or goto_ptr */
void plugin_gen_disable_mem_helpers(void)
{
if (tcg_ctx->plugin_insn) {
tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_TB);
}
}
static void gen_enable_mem_helper(struct qemu_plugin_tb *ptb,
struct qemu_plugin_insn *insn)
{
GArray *arr;
size_t len;
/*
* Tracking memory accesses performed from helpers requires extra work.
* If an instruction is emulated with helpers, we do two things:
* (1) copy the CB descriptors, and keep track of it so that they can be
* freed later on, and (2) point CPUState.neg.plugin_mem_cbs to the
* descriptors, so that we can read them at run-time
* (i.e. when the helper executes).
* This run-time access is performed from qemu_plugin_vcpu_mem_cb.
*
* Note that plugin_gen_disable_mem_helpers undoes (2). Since it
* is possible that the code we generate after the instruction is
* dead, we also add checks before generating tb_exit etc.
*/
if (!insn->calls_helpers) {
return;
}
if (!insn->mem_cbs || !insn->mem_cbs->len) {
insn->mem_helper = false;
return;
}
insn->mem_helper = true;
ptb->mem_helper = true;
/*
* TODO: It seems like we should be able to use ref/unref
* to avoid needing to actually copy this array.
* Alternately, perhaps we could allocate new memory adjacent
* to the TranslationBlock itself, so that we do not have to
* actively manage the lifetime after this.
*/
len = insn->mem_cbs->len;
arr = g_array_sized_new(false, false,
sizeof(struct qemu_plugin_dyn_cb), len);
memcpy(arr->data, insn->mem_cbs->data,
len * sizeof(struct qemu_plugin_dyn_cb));
qemu_plugin_add_dyn_cb_arr(arr);
tcg_gen_st_ptr(tcg_constant_ptr((intptr_t)arr), tcg_env,
offsetof(CPUState, neg.plugin_mem_cbs) -
offsetof(ArchCPU, env));
}
static void gen_disable_mem_helper(void)
{
tcg_gen_st_ptr(tcg_constant_ptr(0), tcg_env,
offsetof(CPUState, neg.plugin_mem_cbs) -
offsetof(ArchCPU, env));
}
static TCGv_i32 gen_cpu_index(void)
{
TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
tcg_gen_ld_i32(cpu_index, tcg_env,
-offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
return cpu_index;
}
static void gen_udata_cb(struct qemu_plugin_regular_cb *cb)
{
TCGv_i32 cpu_index = gen_cpu_index();
tcg_gen_call2(cb->f.vcpu_udata, cb->info, NULL,
tcgv_i32_temp(cpu_index),
tcgv_ptr_temp(tcg_constant_ptr(cb->userp)));
tcg_temp_free_i32(cpu_index);
}
static TCGv_ptr gen_plugin_u64_ptr(qemu_plugin_u64 entry)
{
TCGv_ptr ptr = tcg_temp_ebb_new_ptr();
GArray *arr = entry.score->data;
char *base_ptr = arr->data + entry.offset;
size_t entry_size = g_array_get_element_size(arr);
TCGv_i32 cpu_index = gen_cpu_index();
tcg_gen_muli_i32(cpu_index, cpu_index, entry_size);
tcg_gen_ext_i32_ptr(ptr, cpu_index);
tcg_temp_free_i32(cpu_index);
tcg_gen_addi_ptr(ptr, ptr, (intptr_t) base_ptr);
return ptr;
}
static TCGCond plugin_cond_to_tcgcond(enum qemu_plugin_cond cond)
{
switch (cond) {
case QEMU_PLUGIN_COND_EQ:
return TCG_COND_EQ;
case QEMU_PLUGIN_COND_NE:
return TCG_COND_NE;
case QEMU_PLUGIN_COND_LT:
return TCG_COND_LTU;
case QEMU_PLUGIN_COND_LE:
return TCG_COND_LEU;
case QEMU_PLUGIN_COND_GT:
return TCG_COND_GTU;
case QEMU_PLUGIN_COND_GE:
return TCG_COND_GEU;
default:
/* ALWAYS and NEVER conditions should never reach */
g_assert_not_reached();
}
}
static void gen_udata_cond_cb(struct qemu_plugin_conditional_cb *cb)
{
TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry);
TCGv_i64 val = tcg_temp_ebb_new_i64();
TCGLabel *after_cb = gen_new_label();
/* Condition should be negated, as calling the cb is the "else" path */
TCGCond cond = tcg_invert_cond(plugin_cond_to_tcgcond(cb->cond));
tcg_gen_ld_i64(val, ptr, 0);
tcg_gen_brcondi_i64(cond, val, cb->imm, after_cb);
TCGv_i32 cpu_index = gen_cpu_index();
tcg_gen_call2(cb->f.vcpu_udata, cb->info, NULL,
tcgv_i32_temp(cpu_index),
tcgv_ptr_temp(tcg_constant_ptr(cb->userp)));
tcg_temp_free_i32(cpu_index);
gen_set_label(after_cb);
tcg_temp_free_i64(val);
tcg_temp_free_ptr(ptr);
}
static void gen_inline_add_u64_cb(struct qemu_plugin_inline_cb *cb)
{
TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry);
TCGv_i64 val = tcg_temp_ebb_new_i64();
tcg_gen_ld_i64(val, ptr, 0);
tcg_gen_addi_i64(val, val, cb->imm);
tcg_gen_st_i64(val, ptr, 0);
tcg_temp_free_i64(val);
tcg_temp_free_ptr(ptr);
}
static void gen_inline_store_u64_cb(struct qemu_plugin_inline_cb *cb)
{
TCGv_ptr ptr = gen_plugin_u64_ptr(cb->entry);
TCGv_i64 val = tcg_constant_i64(cb->imm);
tcg_gen_st_i64(val, ptr, 0);
tcg_temp_free_ptr(ptr);
}
static void gen_mem_cb(struct qemu_plugin_regular_cb *cb,
qemu_plugin_meminfo_t meminfo, TCGv_i64 addr)
{
TCGv_i32 cpu_index = gen_cpu_index();
tcg_gen_call4(cb->f.vcpu_mem, cb->info, NULL,
tcgv_i32_temp(cpu_index),
tcgv_i32_temp(tcg_constant_i32(meminfo)),
tcgv_i64_temp(addr),
tcgv_ptr_temp(tcg_constant_ptr(cb->userp)));
tcg_temp_free_i32(cpu_index);
}
static void inject_cb(struct qemu_plugin_dyn_cb *cb)
{
switch (cb->type) {
case PLUGIN_CB_REGULAR:
gen_udata_cb(&cb->regular);
break;
case PLUGIN_CB_COND:
gen_udata_cond_cb(&cb->cond);
break;
case PLUGIN_CB_INLINE_ADD_U64:
gen_inline_add_u64_cb(&cb->inline_insn);
break;
case PLUGIN_CB_INLINE_STORE_U64:
gen_inline_store_u64_cb(&cb->inline_insn);
break;
default:
g_assert_not_reached();
}
}
static void inject_mem_cb(struct qemu_plugin_dyn_cb *cb,
enum qemu_plugin_mem_rw rw,
qemu_plugin_meminfo_t meminfo, TCGv_i64 addr)
{
switch (cb->type) {
case PLUGIN_CB_MEM_REGULAR:
if (rw && cb->regular.rw) {
gen_mem_cb(&cb->regular, meminfo, addr);
}
break;
case PLUGIN_CB_INLINE_ADD_U64:
case PLUGIN_CB_INLINE_STORE_U64:
if (rw && cb->inline_insn.rw) {
inject_cb(cb);
}
break;
default:
g_assert_not_reached();
break;
}
}
static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb)
{
TCGOp *op, *next;
int insn_idx = -1;
if (unlikely(qemu_loglevel_mask(LOG_TB_OP_PLUGIN)
&& qemu_log_in_addr_range(tcg_ctx->plugin_db->pc_first))) {
FILE *logfile = qemu_log_trylock();
if (logfile) {
fprintf(logfile, "OP before plugin injection:\n");
tcg_dump_ops(tcg_ctx, logfile, false);
fprintf(logfile, "\n");
qemu_log_unlock(logfile);
}
}
/*
* While injecting code, we cannot afford to reuse any ebb temps
* that might be live within the existing opcode stream.
* The simplest solution is to release them all and create new.
*/
memset(tcg_ctx->free_temps, 0, sizeof(tcg_ctx->free_temps));
QTAILQ_FOREACH_SAFE(op, &tcg_ctx->ops, link, next) {
switch (op->opc) {
case INDEX_op_insn_start:
insn_idx++;
break;
case INDEX_op_plugin_cb:
{
enum plugin_gen_from from = op->args[0];
struct qemu_plugin_insn *insn = NULL;
const GArray *cbs;
int i, n;
if (insn_idx >= 0) {
insn = g_ptr_array_index(plugin_tb->insns, insn_idx);
}
tcg_ctx->emit_before_op = op;
switch (from) {
case PLUGIN_GEN_AFTER_TB:
if (plugin_tb->mem_helper) {
gen_disable_mem_helper();
}
break;
case PLUGIN_GEN_AFTER_INSN:
assert(insn != NULL);
if (insn->mem_helper) {
gen_disable_mem_helper();
}
break;
case PLUGIN_GEN_FROM_TB:
assert(insn == NULL);
cbs = plugin_tb->cbs;
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
inject_cb(
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i));
}
break;
case PLUGIN_GEN_FROM_INSN:
assert(insn != NULL);
gen_enable_mem_helper(plugin_tb, insn);
cbs = insn->insn_cbs;
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
inject_cb(
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i));
}
break;
default:
g_assert_not_reached();
}
tcg_ctx->emit_before_op = NULL;
tcg_op_remove(tcg_ctx, op);
break;
}
case INDEX_op_plugin_mem_cb:
{
TCGv_i64 addr = temp_tcgv_i64(arg_temp(op->args[0]));
qemu_plugin_meminfo_t meminfo = op->args[1];
enum qemu_plugin_mem_rw rw =
(qemu_plugin_mem_is_store(meminfo)
? QEMU_PLUGIN_MEM_W : QEMU_PLUGIN_MEM_R);
struct qemu_plugin_insn *insn;
const GArray *cbs;
int i, n;
assert(insn_idx >= 0);
insn = g_ptr_array_index(plugin_tb->insns, insn_idx);
tcg_ctx->emit_before_op = op;
cbs = insn->mem_cbs;
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
inject_mem_cb(&g_array_index(cbs, struct qemu_plugin_dyn_cb, i),
rw, meminfo, addr);
}
tcg_ctx->emit_before_op = NULL;
tcg_op_remove(tcg_ctx, op);
break;
}
default:
/* plugins don't care about any other ops */
break;
}
}
}
bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db)
{
struct qemu_plugin_tb *ptb;
if (!test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS,
cpu->plugin_state->event_mask)) {
return false;
}
tcg_ctx->plugin_db = db;
tcg_ctx->plugin_insn = NULL;
ptb = tcg_ctx->plugin_tb;
if (ptb) {
/* Reset callbacks */
if (ptb->cbs) {
g_array_set_size(ptb->cbs, 0);
}
ptb->n = 0;
ptb->mem_helper = false;
} else {
ptb = g_new0(struct qemu_plugin_tb, 1);
tcg_ctx->plugin_tb = ptb;
ptb->insns = g_ptr_array_new();
}
tcg_gen_plugin_cb(PLUGIN_GEN_FROM_TB);
return true;
}
void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db)
{
struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
struct qemu_plugin_insn *insn;
size_t n = db->num_insns;
vaddr pc;
assert(n >= 1);
ptb->n = n;
if (n <= ptb->insns->len) {
insn = g_ptr_array_index(ptb->insns, n - 1);
} else {
assert(n - 1 == ptb->insns->len);
insn = g_new0(struct qemu_plugin_insn, 1);
g_ptr_array_add(ptb->insns, insn);
}
tcg_ctx->plugin_insn = insn;
insn->calls_helpers = false;
insn->mem_helper = false;
if (insn->insn_cbs) {
g_array_set_size(insn->insn_cbs, 0);
}
if (insn->mem_cbs) {
g_array_set_size(insn->mem_cbs, 0);
}
pc = db->pc_next;
insn->vaddr = pc;
tcg_gen_plugin_cb(PLUGIN_GEN_FROM_INSN);
}
void plugin_gen_insn_end(void)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
struct qemu_plugin_insn *pinsn = tcg_ctx->plugin_insn;
pinsn->len = db->fake_insn ? db->record_len : db->pc_next - pinsn->vaddr;
tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_INSN);
}
/*
* There are cases where we never get to finalise a translation - for
* example a page fault during translation. As a result we shouldn't
* do any clean-up here and make sure things are reset in
* plugin_gen_tb_start.
*/
void plugin_gen_tb_end(CPUState *cpu, size_t num_insns)
{
struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
/* translator may have removed instructions, update final count */
g_assert(num_insns <= ptb->n);
ptb->n = num_insns;
/* collect instrumentation requests */
qemu_plugin_tb_trans_cb(cpu, ptb);
/* inject the instrumentation at the appropriate places */
plugin_gen_inject(ptb);
}