qemu/hw/intc/arm_gicv3_redist.c
Shashi Mallela 17fb5e36aa hw/intc: GICv3 redistributor ITS processing
Implemented lpi processing at redistributor to get lpi config info
from lpi configuration table,determine priority,set pending state in
lpi pending table and forward the lpi to cpuif.Added logic to invoke
redistributor lpi processing with translated LPI which set/clear LPI
from ITS device as part of ITS INT,CLEAR,DISCARD command and
GITS_TRANSLATER processing.

Signed-off-by: Shashi Mallela <shashi.mallela@linaro.org>
Tested-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210910143951.92242-7-shashi.mallela@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-09-13 21:01:08 +01:00

729 lines
23 KiB
C

/*
* ARM GICv3 emulation: Redistributor
*
* Copyright (c) 2015 Huawei.
* Copyright (c) 2016 Linaro Limited.
* Written by Shlomo Pongratz, Peter Maydell
*
* This code is licensed under the GPL, version 2 or (at your option)
* any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "gicv3_internal.h"
static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
{
/* Return a 32-bit mask which should be applied for this set of 32
* interrupts; each bit is 1 if access is permitted by the
* combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
* not affect config register accesses, unlike GICD_NSACR.)
*/
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
/* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return cs->gicr_igroupr0;
}
return 0xFFFFFFFFU;
}
static int gicr_ns_access(GICv3CPUState *cs, int irq)
{
/* Return the 2 bit NSACR.NS_access field for this SGI */
assert(irq < 16);
return extract32(cs->gicr_nsacr, irq * 2, 2);
}
static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t *reg, uint32_t val)
{
/* Helper routine to implement writing to a "set-bitmap" register */
val &= mask_group(cs, attrs);
*reg |= val;
gicv3_redist_update(cs);
}
static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t *reg, uint32_t val)
{
/* Helper routine to implement writing to a "clear-bitmap" register */
val &= mask_group(cs, attrs);
*reg &= ~val;
gicv3_redist_update(cs);
}
static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t reg)
{
reg &= mask_group(cs, attrs);
return reg;
}
static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
int irq)
{
/* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
uint32_t prio;
prio = cs->gicr_ipriorityr[irq];
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
if (!(cs->gicr_igroupr0 & (1U << irq))) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return 0;
}
/* NS view of the interrupt priority */
prio = (prio << 1) & 0xff;
}
return prio;
}
static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
uint8_t value)
{
/* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
if (!(cs->gicr_igroupr0 & (1U << irq))) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return;
}
/* NS view of the interrupt priority */
value = 0x80 | (value >> 1);
}
cs->gicr_ipriorityr[irq] = value;
}
static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
*data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
gicv3_redist_update(cs);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_CTLR:
*data = cs->gicr_ctlr;
return MEMTX_OK;
case GICR_IIDR:
*data = gicv3_iidr();
return MEMTX_OK;
case GICR_TYPER:
*data = extract64(cs->gicr_typer, 0, 32);
return MEMTX_OK;
case GICR_TYPER + 4:
*data = extract64(cs->gicr_typer, 32, 32);
return MEMTX_OK;
case GICR_STATUSR:
/* RAZ/WI for us (this is an optional register and our implementation
* does not track RO/WO/reserved violations to report them to the guest)
*/
*data = 0;
return MEMTX_OK;
case GICR_WAKER:
*data = cs->gicr_waker;
return MEMTX_OK;
case GICR_PROPBASER:
*data = extract64(cs->gicr_propbaser, 0, 32);
return MEMTX_OK;
case GICR_PROPBASER + 4:
*data = extract64(cs->gicr_propbaser, 32, 32);
return MEMTX_OK;
case GICR_PENDBASER:
*data = extract64(cs->gicr_pendbaser, 0, 32);
return MEMTX_OK;
case GICR_PENDBASER + 4:
*data = extract64(cs->gicr_pendbaser, 32, 32);
return MEMTX_OK;
case GICR_IGROUPR0:
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_igroupr0;
return MEMTX_OK;
case GICR_ISENABLER0:
case GICR_ICENABLER0:
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
return MEMTX_OK;
case GICR_ISPENDR0:
case GICR_ICPENDR0:
{
/* The pending register reads as the logical OR of the pending
* latch and the input line level for level-triggered interrupts.
*/
uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
*data = gicr_read_bitmap_reg(cs, attrs, val);
return MEMTX_OK;
}
case GICR_ISACTIVER0:
case GICR_ICACTIVER0:
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
return MEMTX_OK;
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
{
int i, irq = offset - GICR_IPRIORITYR;
uint32_t value = 0;
for (i = irq + 3; i >= irq; i--) {
value <<= 8;
value |= gicr_read_ipriorityr(cs, attrs, i);
}
*data = value;
return MEMTX_OK;
}
case GICR_ICFGR0:
case GICR_ICFGR1:
{
/* Our edge_trigger bitmap is one bit per irq; take the correct
* half of it, and spread it out into the odd bits.
*/
uint32_t value;
value = cs->edge_trigger & mask_group(cs, attrs);
value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
value = half_shuffle32(value) << 1;
*data = value;
return MEMTX_OK;
}
case GICR_IGRPMODR0:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_igrpmodr0;
return MEMTX_OK;
case GICR_NSACR:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_nsacr;
return MEMTX_OK;
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
*data = gicv3_idreg(offset - GICR_IDREGS);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_CTLR:
/* For our implementation, GICR_TYPER.DPGS is 0 and so all
* the DPG bits are RAZ/WI. We don't do anything asynchronously,
* so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
* implement LPIs) so Enable_LPIs is programmable.
*/
if (cs->gicr_typer & GICR_TYPER_PLPIS) {
if (value & GICR_CTLR_ENABLE_LPIS) {
cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
/* Check for any pending interr in pending table */
gicv3_redist_update_lpi(cs);
gicv3_redist_update(cs);
} else {
cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
}
}
return MEMTX_OK;
case GICR_STATUSR:
/* RAZ/WI for our implementation */
return MEMTX_OK;
case GICR_WAKER:
/* Only the ProcessorSleep bit is writeable. When the guest sets
* it it requests that we transition the channel between the
* redistributor and the cpu interface to quiescent, and that
* we set the ChildrenAsleep bit once the inteface has reached the
* quiescent state.
* Setting the ProcessorSleep to 0 reverses the quiescing, and
* ChildrenAsleep is cleared once the transition is complete.
* Since our interface is not asynchronous, we complete these
* transitions instantaneously, so we set ChildrenAsleep to the
* same value as ProcessorSleep here.
*/
value &= GICR_WAKER_ProcessorSleep;
if (value & GICR_WAKER_ProcessorSleep) {
value |= GICR_WAKER_ChildrenAsleep;
}
cs->gicr_waker = value;
return MEMTX_OK;
case GICR_PROPBASER:
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
return MEMTX_OK;
case GICR_PROPBASER + 4:
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
return MEMTX_OK;
case GICR_PENDBASER:
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
return MEMTX_OK;
case GICR_PENDBASER + 4:
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
return MEMTX_OK;
case GICR_IGROUPR0:
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
return MEMTX_OK;
}
cs->gicr_igroupr0 = value;
gicv3_redist_update(cs);
return MEMTX_OK;
case GICR_ISENABLER0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
return MEMTX_OK;
case GICR_ICENABLER0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
return MEMTX_OK;
case GICR_ISPENDR0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
return MEMTX_OK;
case GICR_ICPENDR0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
return MEMTX_OK;
case GICR_ISACTIVER0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
return MEMTX_OK;
case GICR_ICACTIVER0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
return MEMTX_OK;
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
{
int i, irq = offset - GICR_IPRIORITYR;
for (i = irq; i < irq + 4; i++, value >>= 8) {
gicr_write_ipriorityr(cs, attrs, i, value);
}
gicv3_redist_update(cs);
return MEMTX_OK;
}
case GICR_ICFGR0:
/* Register is all RAZ/WI or RAO/WI bits */
return MEMTX_OK;
case GICR_ICFGR1:
{
uint32_t mask;
/* Since our edge_trigger bitmap is one bit per irq, our input
* 32-bits will compress down into 16 bits which we need
* to write into the bitmap.
*/
value = half_unshuffle32(value >> 1) << 16;
mask = mask_group(cs, attrs) & 0xffff0000U;
cs->edge_trigger &= ~mask;
cs->edge_trigger |= (value & mask);
gicv3_redist_update(cs);
return MEMTX_OK;
}
case GICR_IGRPMODR0:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
cs->gicr_igrpmodr0 = value;
gicv3_redist_update(cs);
return MEMTX_OK;
case GICR_NSACR:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
cs->gicr_nsacr = value;
/* no update required as this only affects access permission checks */
return MEMTX_OK;
case GICR_IIDR:
case GICR_TYPER:
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_TYPER:
*data = cs->gicr_typer;
return MEMTX_OK;
case GICR_PROPBASER:
*data = cs->gicr_propbaser;
return MEMTX_OK;
case GICR_PENDBASER:
*data = cs->gicr_pendbaser;
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_PROPBASER:
cs->gicr_propbaser = value;
return MEMTX_OK;
case GICR_PENDBASER:
cs->gicr_pendbaser = value;
return MEMTX_OK;
case GICR_TYPER:
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = opaque;
GICv3CPUState *cs;
MemTxResult r;
int cpuidx;
assert((offset & (size - 1)) == 0);
/* This region covers all the redistributor pages; there are
* (for GICv3) two 64K pages per CPU. At the moment they are
* all contiguous (ie in this one region), though we might later
* want to allow splitting of redistributor pages into several
* blocks so we can support more CPUs.
*/
cpuidx = offset / 0x20000;
offset %= 0x20000;
assert(cpuidx < s->num_cpu);
cs = &s->cpu[cpuidx];
switch (size) {
case 1:
r = gicr_readb(cs, offset, data, attrs);
break;
case 4:
r = gicr_readl(cs, offset, data, attrs);
break;
case 8:
r = gicr_readll(cs, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " TARGET_FMT_plx
" size %u\n", __func__, offset, size);
trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
*data = 0;
} else {
trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
size, attrs.secure);
}
return r;
}
MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = opaque;
GICv3CPUState *cs;
MemTxResult r;
int cpuidx;
assert((offset & (size - 1)) == 0);
/* This region covers all the redistributor pages; there are
* (for GICv3) two 64K pages per CPU. At the moment they are
* all contiguous (ie in this one region), though we might later
* want to allow splitting of redistributor pages into several
* blocks so we can support more CPUs.
*/
cpuidx = offset / 0x20000;
offset %= 0x20000;
assert(cpuidx < s->num_cpu);
cs = &s->cpu[cpuidx];
switch (size) {
case 1:
r = gicr_writeb(cs, offset, data, attrs);
break;
case 4:
r = gicr_writel(cs, offset, data, attrs);
break;
case 8:
r = gicr_writell(cs, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " TARGET_FMT_plx
" size %u\n", __func__, offset, size);
trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
} else {
trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
size, attrs.secure);
}
return r;
}
static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
{
AddressSpace *as = &cs->gic->dma_as;
uint64_t lpict_baddr;
uint8_t lpite;
uint8_t prio;
lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
sizeof(lpite));
if (!(lpite & LPI_CTE_ENABLED)) {
return;
}
if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
prio = lpite & LPI_PRIORITY_MASK;
} else {
prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
}
if ((prio < cs->hpplpi.prio) ||
((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
cs->hpplpi.irq = irq;
cs->hpplpi.prio = prio;
/* LPIs are always non-secure Grp1 interrupts */
cs->hpplpi.grp = GICV3_G1NS;
}
}
void gicv3_redist_update_lpi(GICv3CPUState *cs)
{
/*
* This function scans the LPI pending table and for each pending
* LPI, reads the corresponding entry from LPI configuration table
* to extract the priority info and determine if the current LPI
* priority is lower than the last computed high priority lpi interrupt.
* If yes, replace current LPI as the new high priority lpi interrupt.
*/
AddressSpace *as = &cs->gic->dma_as;
uint64_t lpipt_baddr;
uint32_t pendt_size = 0;
uint8_t pend;
int i, bit;
uint64_t idbits;
idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
GICD_TYPER_IDBITS);
if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
!cs->gicr_pendbaser) {
return;
}
cs->hpplpi.prio = 0xff;
lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
/* Determine the highest priority pending interrupt among LPIs */
pendt_size = (1ULL << (idbits + 1));
for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
sizeof(pend));
while (pend) {
bit = ctz32(pend);
gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
pend &= ~(1 << bit);
}
}
}
void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
{
/*
* This function updates the pending bit in lpi pending table for
* the irq being activated or deactivated.
*/
AddressSpace *as = &cs->gic->dma_as;
uint64_t lpipt_baddr;
bool ispend = false;
uint8_t pend;
/*
* get the bit value corresponding to this irq in the
* lpi pending table
*/
lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
ispend = extract32(pend, irq % 8, 1);
/* no change in the value of pending bit, return */
if (ispend == level) {
return;
}
pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
/*
* check if this LPI is better than the current hpplpi, if yes
* just set hpplpi.prio and .irq without doing a full rescan
*/
if (level) {
gicv3_redist_check_lpi_priority(cs, irq);
} else {
if (irq == cs->hpplpi.irq) {
gicv3_redist_update_lpi(cs);
}
}
}
void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
{
uint64_t idbits;
idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
GICD_TYPER_IDBITS);
if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
!cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) ||
irq < GICV3_LPI_INTID_START) {
return;
}
/* set/clear the pending bit for this irq */
gicv3_redist_lpi_pending(cs, irq, level);
gicv3_redist_update(cs);
}
void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
{
/* Update redistributor state for a change in an external PPI input line */
if (level == extract32(cs->level, irq, 1)) {
return;
}
trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
cs->level = deposit32(cs->level, irq, 1, level);
if (level) {
/* 0->1 edges latch the pending bit for edge-triggered interrupts */
if (extract32(cs->edge_trigger, irq, 1)) {
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
}
}
gicv3_redist_update(cs);
}
void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
{
/* Update redistributor state for a generated SGI */
int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
/* If we are asked for a Secure Group 1 SGI and it's actually
* configured as Secure Group 0 this is OK (subject to the usual
* NSACR checks).
*/
if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
grp = GICV3_G0;
}
if (grp != irqgrp) {
return;
}
if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
/* If security is enabled we must test the NSACR bits */
int nsaccess = gicr_ns_access(cs, irq);
if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
(irqgrp == GICV3_G1 && nsaccess < 2)) {
return;
}
}
/* OK, we can accept the SGI */
trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
gicv3_redist_update(cs);
}