qemu/target/arm/kvm.c
Hamza Mahfooz dfa0d9b80e target/arm: kvm: use RCU_READ_LOCK_GUARD() in kvm_arch_fixup_msi_route()
As per commit 5626f8c6d4 ("rcu: Add automatically released rcu_read_lock
variants"), RCU_READ_LOCK_GUARD() should be used instead of
rcu_read_{un}lock().

Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20210727235201.11491-1-someguy@effective-light.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-08-25 10:48:50 +01:00

1054 lines
29 KiB
C

/*
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "trace.h"
#include "internals.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qemu/log.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;
static bool cap_has_inject_ext_dabt;
static ARMHostCPUFeatures arm_host_cpu_features;
int kvm_arm_vcpu_init(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
struct kvm_vcpu_init init;
init.target = cpu->kvm_target;
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
}
int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
{
return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
}
void kvm_arm_init_serror_injection(CPUState *cs)
{
cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
KVM_CAP_ARM_INJECT_SERROR_ESR);
}
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
int *fdarray,
struct kvm_vcpu_init *init)
{
int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
if (kvmfd < 0) {
goto err;
}
vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
if (vmfd < 0) {
goto err;
}
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
if (cpufd < 0) {
goto err;
}
if (!init) {
/* Caller doesn't want the VCPU to be initialized, so skip it */
goto finish;
}
if (init->target == -1) {
struct kvm_vcpu_init preferred;
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
if (!ret) {
init->target = preferred.target;
}
}
if (ret >= 0) {
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
if (ret < 0) {
goto err;
}
} else if (cpus_to_try) {
/* Old kernel which doesn't know about the
* PREFERRED_TARGET ioctl: we know it will only support
* creating one kind of guest CPU which is its preferred
* CPU type.
*/
struct kvm_vcpu_init try;
while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
try.target = *cpus_to_try++;
memcpy(try.features, init->features, sizeof(init->features));
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
if (ret >= 0) {
break;
}
}
if (ret < 0) {
goto err;
}
init->target = try.target;
} else {
/* Treat a NULL cpus_to_try argument the same as an empty
* list, which means we will fail the call since this must
* be an old kernel which doesn't support PREFERRED_TARGET.
*/
goto err;
}
finish:
fdarray[0] = kvmfd;
fdarray[1] = vmfd;
fdarray[2] = cpufd;
return true;
err:
if (cpufd >= 0) {
close(cpufd);
}
if (vmfd >= 0) {
close(vmfd);
}
if (kvmfd >= 0) {
close(kvmfd);
}
return false;
}
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
int i;
for (i = 2; i >= 0; i--) {
close(fdarray[i]);
}
}
void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
if (!arm_host_cpu_features.dtb_compatible) {
if (!kvm_enabled() ||
!kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
/* We can't report this error yet, so flag that we need to
* in arm_cpu_realizefn().
*/
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
cpu->host_cpu_probe_failed = true;
return;
}
}
cpu->kvm_target = arm_host_cpu_features.target;
cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
cpu->isar = arm_host_cpu_features.isar;
env->features = arm_host_cpu_features.features;
}
static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
{
return !ARM_CPU(obj)->kvm_adjvtime;
}
static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
{
ARM_CPU(obj)->kvm_adjvtime = !value;
}
static bool kvm_steal_time_get(Object *obj, Error **errp)
{
return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
}
static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
{
ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
/* KVM VCPU properties should be prefixed with "kvm-". */
void kvm_arm_add_vcpu_properties(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
cpu->kvm_adjvtime = true;
object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
kvm_no_adjvtime_set);
object_property_set_description(obj, "kvm-no-adjvtime",
"Set on to disable the adjustment of "
"the virtual counter. VM stopped time "
"will be counted.");
}
cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
kvm_steal_time_set);
object_property_set_description(obj, "kvm-steal-time",
"Set off to disable KVM steal time.");
}
bool kvm_arm_pmu_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
}
int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
{
KVMState *s = KVM_STATE(ms->accelerator);
int ret;
ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
*fixed_ipa = ret <= 0;
return ret > 0 ? ret : 40;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
int ret = 0;
/* For ARM interrupt delivery is always asynchronous,
* whether we are using an in-kernel VGIC or not.
*/
kvm_async_interrupts_allowed = true;
/*
* PSCI wakes up secondary cores, so we always need to
* have vCPUs waiting in kernel space
*/
kvm_halt_in_kernel_allowed = true;
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
if (ms->smp.cpus > 256 &&
!kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
error_report("Using more than 256 vcpus requires a host kernel "
"with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
ret = -EINVAL;
}
if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
} else {
/* Set status for supporting the external dabt injection */
cap_has_inject_ext_dabt = kvm_check_extension(s,
KVM_CAP_ARM_INJECT_EXT_DABT);
}
}
return ret;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
/* We track all the KVM devices which need their memory addresses
* passing to the kernel in a list of these structures.
* When board init is complete we run through the list and
* tell the kernel the base addresses of the memory regions.
* We use a MemoryListener to track mapping and unmapping of
* the regions during board creation, so the board models don't
* need to do anything special for the KVM case.
*
* Sometimes the address must be OR'ed with some other fields
* (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
* @kda_addr_ormask aims at storing the value of those fields.
*/
typedef struct KVMDevice {
struct kvm_arm_device_addr kda;
struct kvm_device_attr kdattr;
uint64_t kda_addr_ormask;
MemoryRegion *mr;
QSLIST_ENTRY(KVMDevice) entries;
int dev_fd;
} KVMDevice;
static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
static void kvm_arm_devlistener_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = section->offset_within_address_space;
}
}
}
static void kvm_arm_devlistener_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = -1;
}
}
}
static MemoryListener devlistener = {
.region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del,
};
static void kvm_arm_set_device_addr(KVMDevice *kd)
{
struct kvm_device_attr *attr = &kd->kdattr;
int ret;
/* If the device control API is available and we have a device fd on the
* KVMDevice struct, let's use the newer API
*/
if (kd->dev_fd >= 0) {
uint64_t addr = kd->kda.addr;
addr |= kd->kda_addr_ormask;
attr->addr = (uintptr_t)&addr;
ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
} else {
ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
}
if (ret < 0) {
fprintf(stderr, "Failed to set device address: %s\n",
strerror(-ret));
abort();
}
}
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
KVMDevice *kd, *tkd;
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
if (kd->kda.addr != -1) {
kvm_arm_set_device_addr(kd);
}
memory_region_unref(kd->mr);
QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
g_free(kd);
}
memory_listener_unregister(&devlistener);
}
static Notifier notify = {
.notify = kvm_arm_machine_init_done,
};
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
uint64_t attr, int dev_fd, uint64_t addr_ormask)
{
KVMDevice *kd;
if (!kvm_irqchip_in_kernel()) {
return;
}
if (QSLIST_EMPTY(&kvm_devices_head)) {
memory_listener_register(&devlistener, &address_space_memory);
qemu_add_machine_init_done_notifier(&notify);
}
kd = g_new0(KVMDevice, 1);
kd->mr = mr;
kd->kda.id = devid;
kd->kda.addr = -1;
kd->kdattr.flags = 0;
kd->kdattr.group = group;
kd->kdattr.attr = attr;
kd->dev_fd = dev_fd;
kd->kda_addr_ormask = addr_ormask;
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
memory_region_ref(kd->mr);
}
static int compare_u64(const void *a, const void *b)
{
if (*(uint64_t *)a > *(uint64_t *)b) {
return 1;
}
if (*(uint64_t *)a < *(uint64_t *)b) {
return -1;
}
return 0;
}
/*
* cpreg_values are sorted in ascending order by KVM register ID
* (see kvm_arm_init_cpreg_list). This allows us to cheaply find
* the storage for a KVM register by ID with a binary search.
*/
static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
{
uint64_t *res;
res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
sizeof(uint64_t), compare_u64);
assert(res);
return &cpu->cpreg_values[res - cpu->cpreg_indexes];
}
/* Initialize the ARMCPU cpreg list according to the kernel's
* definition of what CPU registers it knows about (and throw away
* the previous TCG-created cpreg list).
*/
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
struct kvm_reg_list rl;
struct kvm_reg_list *rlp;
int i, ret, arraylen;
CPUState *cs = CPU(cpu);
rl.n = 0;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
if (ret != -E2BIG) {
return ret;
}
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
rlp->n = rl.n;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
if (ret) {
goto out;
}
/* Sort the list we get back from the kernel, since cpreg_tuples
* must be in strictly ascending order.
*/
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
for (i = 0, arraylen = 0; i < rlp->n; i++) {
if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
continue;
}
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
case KVM_REG_SIZE_U64:
break;
default:
fprintf(stderr, "Can't handle size of register in kernel list\n");
ret = -EINVAL;
goto out;
}
arraylen++;
}
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
arraylen);
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
arraylen);
cpu->cpreg_array_len = arraylen;
cpu->cpreg_vmstate_array_len = arraylen;
for (i = 0, arraylen = 0; i < rlp->n; i++) {
uint64_t regidx = rlp->reg[i];
if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
continue;
}
cpu->cpreg_indexes[arraylen] = regidx;
arraylen++;
}
assert(cpu->cpreg_array_len == arraylen);
if (!write_kvmstate_to_list(cpu)) {
/* Shouldn't happen unless kernel is inconsistent about
* what registers exist.
*/
fprintf(stderr, "Initial read of kernel register state failed\n");
ret = -EINVAL;
goto out;
}
out:
g_free(rlp);
return ret;
}
bool write_kvmstate_to_list(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
r.id = regidx;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
r.addr = (uintptr_t)&v32;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (!ret) {
cpu->cpreg_values[i] = v32;
}
break;
case KVM_REG_SIZE_U64:
r.addr = (uintptr_t)(cpu->cpreg_values + i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
break;
default:
abort();
}
if (ret) {
ok = false;
}
}
return ok;
}
bool write_list_to_kvmstate(ARMCPU *cpu, int level)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
if (kvm_arm_cpreg_level(regidx) > level) {
continue;
}
r.id = regidx;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
v32 = cpu->cpreg_values[i];
r.addr = (uintptr_t)&v32;
break;
case KVM_REG_SIZE_U64:
r.addr = (uintptr_t)(cpu->cpreg_values + i);
break;
default:
abort();
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
/* We might fail for "unknown register" and also for
* "you tried to set a register which is constant with
* a different value from what it actually contains".
*/
ok = false;
}
}
return ok;
}
void kvm_arm_cpu_pre_save(ARMCPU *cpu)
{
/* KVM virtual time adjustment */
if (cpu->kvm_vtime_dirty) {
*kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
}
}
void kvm_arm_cpu_post_load(ARMCPU *cpu)
{
/* KVM virtual time adjustment */
if (cpu->kvm_adjvtime) {
cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
cpu->kvm_vtime_dirty = true;
}
}
void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
int ret;
/* Re-init VCPU so that all registers are set to
* their respective reset values.
*/
ret = kvm_arm_vcpu_init(CPU(cpu));
if (ret < 0) {
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
abort();
}
if (!write_kvmstate_to_list(cpu)) {
fprintf(stderr, "write_kvmstate_to_list failed\n");
abort();
}
/*
* Sync the reset values also into the CPUState. This is necessary
* because the next thing we do will be a kvm_arch_put_registers()
* which will update the list values from the CPUState before copying
* the list values back to KVM. It's OK to ignore failure returns here
* for the same reason we do so in kvm_arch_get_registers().
*/
write_list_to_cpustate(cpu);
}
/*
* Update KVM's MP_STATE based on what QEMU thinks it is
*/
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = (cpu->power_state == PSCI_OFF) ?
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
return -1;
}
}
return 0;
}
/*
* Sync the KVM MP_STATE into QEMU
*/
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state;
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
abort();
}
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
PSCI_OFF : PSCI_ON;
}
return 0;
}
void kvm_arm_get_virtual_time(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
struct kvm_one_reg reg = {
.id = KVM_REG_ARM_TIMER_CNT,
.addr = (uintptr_t)&cpu->kvm_vtime,
};
int ret;
if (cpu->kvm_vtime_dirty) {
return;
}
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
abort();
}
cpu->kvm_vtime_dirty = true;
}
void kvm_arm_put_virtual_time(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
struct kvm_one_reg reg = {
.id = KVM_REG_ARM_TIMER_CNT,
.addr = (uintptr_t)&cpu->kvm_vtime,
};
int ret;
if (!cpu->kvm_vtime_dirty) {
return;
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
abort();
}
cpu->kvm_vtime_dirty = false;
}
int kvm_put_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
int ret;
if (!kvm_has_vcpu_events()) {
return 0;
}
memset(&events, 0, sizeof(events));
events.exception.serror_pending = env->serror.pending;
/* Inject SError to guest with specified syndrome if host kernel
* supports it, otherwise inject SError without syndrome.
*/
if (cap_has_inject_serror_esr) {
events.exception.serror_has_esr = env->serror.has_esr;
events.exception.serror_esr = env->serror.esr;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
if (ret) {
error_report("failed to put vcpu events");
}
return ret;
}
int kvm_get_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
int ret;
if (!kvm_has_vcpu_events()) {
return 0;
}
memset(&events, 0, sizeof(events));
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
if (ret) {
error_report("failed to get vcpu events");
return ret;
}
env->serror.pending = events.exception.serror_pending;
env->serror.has_esr = events.exception.serror_has_esr;
env->serror.esr = events.exception.serror_esr;
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (unlikely(env->ext_dabt_raised)) {
/*
* Verifying that the ext DABT has been properly injected,
* otherwise risking indefinitely re-running the faulting instruction
* Covering a very narrow case for kernels 5.5..5.5.4
* when injected abort was misconfigured to be
* an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
*/
if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
error_report("Data abort exception with no valid ISS generated by "
"guest memory access. KVM unable to emulate faulting "
"instruction. Failed to inject an external data abort "
"into the guest.");
abort();
}
/* Clear the status */
env->ext_dabt_raised = 0;
}
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu;
uint32_t switched_level;
if (kvm_irqchip_in_kernel()) {
/*
* We only need to sync timer states with user-space interrupt
* controllers, so return early and save cycles if we don't.
*/
return MEMTXATTRS_UNSPECIFIED;
}
cpu = ARM_CPU(cs);
/* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
if (run->s.regs.device_irq_level != cpu->device_irq_level) {
switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
qemu_mutex_lock_iothread();
if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
!!(run->s.regs.device_irq_level &
KVM_ARM_DEV_EL1_VTIMER));
switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
}
if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
!!(run->s.regs.device_irq_level &
KVM_ARM_DEV_EL1_PTIMER));
switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
}
if (switched_level & KVM_ARM_DEV_PMU) {
qemu_set_irq(cpu->pmu_interrupt,
!!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
switched_level &= ~KVM_ARM_DEV_PMU;
}
if (switched_level) {
qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
__func__, switched_level);
}
/* We also mark unknown levels as processed to not waste cycles */
cpu->device_irq_level = run->s.regs.device_irq_level;
qemu_mutex_unlock_iothread();
}
return MEMTXATTRS_UNSPECIFIED;
}
void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
{
CPUState *cs = opaque;
ARMCPU *cpu = ARM_CPU(cs);
if (running) {
if (cpu->kvm_adjvtime) {
kvm_arm_put_virtual_time(cs);
}
} else {
if (cpu->kvm_adjvtime) {
kvm_arm_get_virtual_time(cs);
}
}
}
/**
* kvm_arm_handle_dabt_nisv:
* @cs: CPUState
* @esr_iss: ISS encoding (limited) for the exception from Data Abort
* ISV bit set to '0b0' -> no valid instruction syndrome
* @fault_ipa: faulting address for the synchronous data abort
*
* Returns: 0 if the exception has been handled, < 0 otherwise
*/
static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
uint64_t fault_ipa)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* Request KVM to inject the external data abort into the guest
*/
if (cap_has_inject_ext_dabt) {
struct kvm_vcpu_events events = { };
/*
* The external data abort event will be handled immediately by KVM
* using the address fault that triggered the exit on given VCPU.
* Requesting injection of the external data abort does not rely
* on any other VCPU state. Therefore, in this particular case, the VCPU
* synchronization can be exceptionally skipped.
*/
events.exception.ext_dabt_pending = 1;
/* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
env->ext_dabt_raised = 1;
return 0;
}
} else {
error_report("Data abort exception triggered by guest memory access "
"at physical address: 0x" TARGET_FMT_lx,
(target_ulong)fault_ipa);
error_printf("KVM unable to emulate faulting instruction.\n");
}
return -1;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_DEBUG:
if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
ret = EXCP_DEBUG;
} /* otherwise return to guest */
break;
case KVM_EXIT_ARM_NISV:
/* External DABT with no valid iss to decode */
ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
run->arm_nisv.fault_ipa);
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
__func__, run->exit_reason);
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
if (kvm_arm_hw_debug_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
kvm_arm_copy_hw_debug_data(&dbg->arch);
}
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_arch_irqchip_create(KVMState *s)
{
if (kvm_kernel_irqchip_split()) {
perror("-machine kernel_irqchip=split is not supported on ARM.");
exit(1);
}
/* If we can create the VGIC using the newer device control API, we
* let the device do this when it initializes itself, otherwise we
* fall back to the old API */
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
int kvm_arm_vgic_probe(void)
{
int val = 0;
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
val |= KVM_ARM_VGIC_V3;
}
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
val |= KVM_ARM_VGIC_V2;
}
return val;
}
int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
{
int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
int cpu_idx1 = cpu % 256;
int cpu_idx2 = cpu / 256;
kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
(cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
return kvm_set_irq(kvm_state, kvm_irq, !!level);
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
AddressSpace *as = pci_device_iommu_address_space(dev);
hwaddr xlat, len, doorbell_gpa;
MemoryRegionSection mrs;
MemoryRegion *mr;
if (as == &address_space_memory) {
return 0;
}
/* MSI doorbell address is translated by an IOMMU */
RCU_READ_LOCK_GUARD();
mr = address_space_translate(as, address, &xlat, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (!mr) {
return 1;
}
mrs = memory_region_find(mr, xlat, 1);
if (!mrs.mr) {
return 1;
}
doorbell_gpa = mrs.offset_within_address_space;
memory_region_unref(mrs.mr);
route->u.msi.address_lo = doorbell_gpa;
route->u.msi.address_hi = doorbell_gpa >> 32;
trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return (data - 32) & 0xffff;
}
bool kvm_arch_cpu_check_are_resettable(void)
{
return true;
}