qemu/hw/scsi/vmw_pvscsi.c
Philippe Mathieu-Daudé 4a63054bce pci: Let ld*_pci_dma() propagate MemTxResult
ld*_dma() returns a MemTxResult type. Do not discard
it, return it to the caller.

Update the few callers.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20211223115554.3155328-24-philmd@redhat.com>
2021-12-31 01:05:27 +01:00

1364 lines
38 KiB
C

/*
* QEMU VMWARE PVSCSI paravirtual SCSI bus
*
* Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
*
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Based on implementation by Paolo Bonzini
* http://lists.gnu.org/archive/html/qemu-devel/2011-08/msg00729.html
*
* Authors:
* Paolo Bonzini <pbonzini@redhat.com>
* Dmitry Fleytman <dmitry@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This work is licensed under the terms of the GNU GPL, version 2.
* See the COPYING file in the top-level directory.
*
* NOTE about MSI-X:
* MSI-X support has been removed for the moment because it leads Windows OS
* to crash on startup. The crash happens because Windows driver requires
* MSI-X shared memory to be part of the same BAR used for rings state
* registers, etc. This is not supported by QEMU infrastructure so separate
* BAR created from MSI-X purposes. Windows driver fails to deal with 2 BARs.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "hw/scsi/scsi.h"
#include "migration/vmstate.h"
#include "scsi/constants.h"
#include "hw/pci/msi.h"
#include "hw/qdev-properties.h"
#include "vmw_pvscsi.h"
#include "trace.h"
#include "qom/object.h"
#define PVSCSI_USE_64BIT (true)
#define PVSCSI_PER_VECTOR_MASK (false)
#define PVSCSI_MAX_DEVS (64)
#define PVSCSI_MSIX_NUM_VECTORS (1)
#define PVSCSI_MAX_SG_ELEM 2048
#define PVSCSI_MAX_CMD_DATA_WORDS \
(sizeof(PVSCSICmdDescSetupRings)/sizeof(uint32_t))
#define RS_GET_FIELD(pval, m, field) \
ldl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \
(m)->rs_pa + offsetof(struct PVSCSIRingsState, field), \
pval, MEMTXATTRS_UNSPECIFIED)
#define RS_SET_FIELD(m, field, val) \
(stl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \
(m)->rs_pa + offsetof(struct PVSCSIRingsState, field), val, \
MEMTXATTRS_UNSPECIFIED))
struct PVSCSIClass {
PCIDeviceClass parent_class;
DeviceRealize parent_dc_realize;
};
#define TYPE_PVSCSI "pvscsi"
OBJECT_DECLARE_TYPE(PVSCSIState, PVSCSIClass, PVSCSI)
/* Compatibility flags for migration */
#define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT 0
#define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION \
(1 << PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT)
#define PVSCSI_COMPAT_DISABLE_PCIE_BIT 1
#define PVSCSI_COMPAT_DISABLE_PCIE \
(1 << PVSCSI_COMPAT_DISABLE_PCIE_BIT)
#define PVSCSI_USE_OLD_PCI_CONFIGURATION(s) \
((s)->compat_flags & PVSCSI_COMPAT_OLD_PCI_CONFIGURATION)
#define PVSCSI_MSI_OFFSET(s) \
(PVSCSI_USE_OLD_PCI_CONFIGURATION(s) ? 0x50 : 0x7c)
#define PVSCSI_EXP_EP_OFFSET (0x40)
typedef struct PVSCSIRingInfo {
uint64_t rs_pa;
uint32_t txr_len_mask;
uint32_t rxr_len_mask;
uint32_t msg_len_mask;
uint64_t req_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES];
uint64_t cmp_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES];
uint64_t msg_ring_pages_pa[PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES];
uint64_t consumed_ptr;
uint64_t filled_cmp_ptr;
uint64_t filled_msg_ptr;
} PVSCSIRingInfo;
typedef struct PVSCSISGState {
hwaddr elemAddr;
hwaddr dataAddr;
uint32_t resid;
} PVSCSISGState;
typedef QTAILQ_HEAD(, PVSCSIRequest) PVSCSIRequestList;
struct PVSCSIState {
PCIDevice parent_obj;
MemoryRegion io_space;
SCSIBus bus;
QEMUBH *completion_worker;
PVSCSIRequestList pending_queue;
PVSCSIRequestList completion_queue;
uint64_t reg_interrupt_status; /* Interrupt status register value */
uint64_t reg_interrupt_enabled; /* Interrupt mask register value */
uint64_t reg_command_status; /* Command status register value */
/* Command data adoption mechanism */
uint64_t curr_cmd; /* Last command arrived */
uint32_t curr_cmd_data_cntr; /* Amount of data for last command */
/* Collector for current command data */
uint32_t curr_cmd_data[PVSCSI_MAX_CMD_DATA_WORDS];
uint8_t rings_info_valid; /* Whether data rings initialized */
uint8_t msg_ring_info_valid; /* Whether message ring initialized */
uint8_t use_msg; /* Whether to use message ring */
uint8_t msi_used; /* For migration compatibility */
PVSCSIRingInfo rings; /* Data transfer rings manager */
uint32_t resetting; /* Reset in progress */
uint32_t compat_flags;
};
typedef struct PVSCSIRequest {
SCSIRequest *sreq;
PVSCSIState *dev;
uint8_t sense_key;
uint8_t completed;
int lun;
QEMUSGList sgl;
PVSCSISGState sg;
struct PVSCSIRingReqDesc req;
struct PVSCSIRingCmpDesc cmp;
QTAILQ_ENTRY(PVSCSIRequest) next;
} PVSCSIRequest;
/* Integer binary logarithm */
static int
pvscsi_log2(uint32_t input)
{
int log = 0;
assert(input > 0);
while (input >> ++log) {
}
return log;
}
static void
pvscsi_ring_init_data(PVSCSIRingInfo *m, PVSCSICmdDescSetupRings *ri)
{
int i;
uint32_t txr_len_log2, rxr_len_log2;
uint32_t req_ring_size, cmp_ring_size;
m->rs_pa = ri->ringsStatePPN << VMW_PAGE_SHIFT;
req_ring_size = ri->reqRingNumPages * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
cmp_ring_size = ri->cmpRingNumPages * PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
txr_len_log2 = pvscsi_log2(req_ring_size - 1);
rxr_len_log2 = pvscsi_log2(cmp_ring_size - 1);
m->txr_len_mask = MASK(txr_len_log2);
m->rxr_len_mask = MASK(rxr_len_log2);
m->consumed_ptr = 0;
m->filled_cmp_ptr = 0;
for (i = 0; i < ri->reqRingNumPages; i++) {
m->req_ring_pages_pa[i] = ri->reqRingPPNs[i] << VMW_PAGE_SHIFT;
}
for (i = 0; i < ri->cmpRingNumPages; i++) {
m->cmp_ring_pages_pa[i] = ri->cmpRingPPNs[i] << VMW_PAGE_SHIFT;
}
RS_SET_FIELD(m, reqProdIdx, 0);
RS_SET_FIELD(m, reqConsIdx, 0);
RS_SET_FIELD(m, reqNumEntriesLog2, txr_len_log2);
RS_SET_FIELD(m, cmpProdIdx, 0);
RS_SET_FIELD(m, cmpConsIdx, 0);
RS_SET_FIELD(m, cmpNumEntriesLog2, rxr_len_log2);
trace_pvscsi_ring_init_data(txr_len_log2, rxr_len_log2);
/* Flush ring state page changes */
smp_wmb();
}
static int
pvscsi_ring_init_msg(PVSCSIRingInfo *m, PVSCSICmdDescSetupMsgRing *ri)
{
int i;
uint32_t len_log2;
uint32_t ring_size;
if (!ri->numPages || ri->numPages > PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES) {
return -1;
}
ring_size = ri->numPages * PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
len_log2 = pvscsi_log2(ring_size - 1);
m->msg_len_mask = MASK(len_log2);
m->filled_msg_ptr = 0;
for (i = 0; i < ri->numPages; i++) {
m->msg_ring_pages_pa[i] = ri->ringPPNs[i] << VMW_PAGE_SHIFT;
}
RS_SET_FIELD(m, msgProdIdx, 0);
RS_SET_FIELD(m, msgConsIdx, 0);
RS_SET_FIELD(m, msgNumEntriesLog2, len_log2);
trace_pvscsi_ring_init_msg(len_log2);
/* Flush ring state page changes */
smp_wmb();
return 0;
}
static void
pvscsi_ring_cleanup(PVSCSIRingInfo *mgr)
{
mgr->rs_pa = 0;
mgr->txr_len_mask = 0;
mgr->rxr_len_mask = 0;
mgr->msg_len_mask = 0;
mgr->consumed_ptr = 0;
mgr->filled_cmp_ptr = 0;
mgr->filled_msg_ptr = 0;
memset(mgr->req_ring_pages_pa, 0, sizeof(mgr->req_ring_pages_pa));
memset(mgr->cmp_ring_pages_pa, 0, sizeof(mgr->cmp_ring_pages_pa));
memset(mgr->msg_ring_pages_pa, 0, sizeof(mgr->msg_ring_pages_pa));
}
static hwaddr
pvscsi_ring_pop_req_descr(PVSCSIRingInfo *mgr)
{
uint32_t ready_ptr;
uint32_t ring_size = PVSCSI_MAX_NUM_PAGES_REQ_RING
* PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
RS_GET_FIELD(&ready_ptr, mgr, reqProdIdx);
if (ready_ptr != mgr->consumed_ptr
&& ready_ptr - mgr->consumed_ptr < ring_size) {
uint32_t next_ready_ptr =
mgr->consumed_ptr++ & mgr->txr_len_mask;
uint32_t next_ready_page =
next_ready_ptr / PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
next_ready_ptr % PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
return mgr->req_ring_pages_pa[next_ready_page] +
inpage_idx * sizeof(PVSCSIRingReqDesc);
} else {
return 0;
}
}
static void
pvscsi_ring_flush_req(PVSCSIRingInfo *mgr)
{
RS_SET_FIELD(mgr, reqConsIdx, mgr->consumed_ptr);
}
static hwaddr
pvscsi_ring_pop_cmp_descr(PVSCSIRingInfo *mgr)
{
/*
* According to Linux driver code it explicitly verifies that number
* of requests being processed by device is less then the size of
* completion queue, so device may omit completion queue overflow
* conditions check. We assume that this is true for other (Windows)
* drivers as well.
*/
uint32_t free_cmp_ptr =
mgr->filled_cmp_ptr++ & mgr->rxr_len_mask;
uint32_t free_cmp_page =
free_cmp_ptr / PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
free_cmp_ptr % PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
return mgr->cmp_ring_pages_pa[free_cmp_page] +
inpage_idx * sizeof(PVSCSIRingCmpDesc);
}
static hwaddr
pvscsi_ring_pop_msg_descr(PVSCSIRingInfo *mgr)
{
uint32_t free_msg_ptr =
mgr->filled_msg_ptr++ & mgr->msg_len_mask;
uint32_t free_msg_page =
free_msg_ptr / PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
free_msg_ptr % PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
return mgr->msg_ring_pages_pa[free_msg_page] +
inpage_idx * sizeof(PVSCSIRingMsgDesc);
}
static void
pvscsi_ring_flush_cmp(PVSCSIRingInfo *mgr)
{
/* Flush descriptor changes */
smp_wmb();
trace_pvscsi_ring_flush_cmp(mgr->filled_cmp_ptr);
RS_SET_FIELD(mgr, cmpProdIdx, mgr->filled_cmp_ptr);
}
static bool
pvscsi_ring_msg_has_room(PVSCSIRingInfo *mgr)
{
uint32_t prodIdx;
uint32_t consIdx;
RS_GET_FIELD(&prodIdx, mgr, msgProdIdx);
RS_GET_FIELD(&consIdx, mgr, msgConsIdx);
return (prodIdx - consIdx) < (mgr->msg_len_mask + 1);
}
static void
pvscsi_ring_flush_msg(PVSCSIRingInfo *mgr)
{
/* Flush descriptor changes */
smp_wmb();
trace_pvscsi_ring_flush_msg(mgr->filled_msg_ptr);
RS_SET_FIELD(mgr, msgProdIdx, mgr->filled_msg_ptr);
}
static void
pvscsi_reset_state(PVSCSIState *s)
{
s->curr_cmd = PVSCSI_CMD_FIRST;
s->curr_cmd_data_cntr = 0;
s->reg_command_status = PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
s->reg_interrupt_status = 0;
pvscsi_ring_cleanup(&s->rings);
s->rings_info_valid = FALSE;
s->msg_ring_info_valid = FALSE;
QTAILQ_INIT(&s->pending_queue);
QTAILQ_INIT(&s->completion_queue);
}
static void
pvscsi_update_irq_status(PVSCSIState *s)
{
PCIDevice *d = PCI_DEVICE(s);
bool should_raise = s->reg_interrupt_enabled & s->reg_interrupt_status;
trace_pvscsi_update_irq_level(should_raise, s->reg_interrupt_enabled,
s->reg_interrupt_status);
if (msi_enabled(d)) {
if (should_raise) {
trace_pvscsi_update_irq_msi();
msi_notify(d, PVSCSI_VECTOR_COMPLETION);
}
return;
}
pci_set_irq(d, !!should_raise);
}
static void
pvscsi_raise_completion_interrupt(PVSCSIState *s)
{
s->reg_interrupt_status |= PVSCSI_INTR_CMPL_0;
/* Memory barrier to flush interrupt status register changes*/
smp_wmb();
pvscsi_update_irq_status(s);
}
static void
pvscsi_raise_message_interrupt(PVSCSIState *s)
{
s->reg_interrupt_status |= PVSCSI_INTR_MSG_0;
/* Memory barrier to flush interrupt status register changes*/
smp_wmb();
pvscsi_update_irq_status(s);
}
static void
pvscsi_cmp_ring_put(PVSCSIState *s, struct PVSCSIRingCmpDesc *cmp_desc)
{
hwaddr cmp_descr_pa;
cmp_descr_pa = pvscsi_ring_pop_cmp_descr(&s->rings);
trace_pvscsi_cmp_ring_put(cmp_descr_pa);
cpu_physical_memory_write(cmp_descr_pa, cmp_desc, sizeof(*cmp_desc));
}
static void
pvscsi_msg_ring_put(PVSCSIState *s, struct PVSCSIRingMsgDesc *msg_desc)
{
hwaddr msg_descr_pa;
msg_descr_pa = pvscsi_ring_pop_msg_descr(&s->rings);
trace_pvscsi_msg_ring_put(msg_descr_pa);
cpu_physical_memory_write(msg_descr_pa, msg_desc, sizeof(*msg_desc));
}
static void
pvscsi_process_completion_queue(void *opaque)
{
PVSCSIState *s = opaque;
PVSCSIRequest *pvscsi_req;
bool has_completed = false;
while (!QTAILQ_EMPTY(&s->completion_queue)) {
pvscsi_req = QTAILQ_FIRST(&s->completion_queue);
QTAILQ_REMOVE(&s->completion_queue, pvscsi_req, next);
pvscsi_cmp_ring_put(s, &pvscsi_req->cmp);
g_free(pvscsi_req);
has_completed = true;
}
if (has_completed) {
pvscsi_ring_flush_cmp(&s->rings);
pvscsi_raise_completion_interrupt(s);
}
}
static void
pvscsi_reset_adapter(PVSCSIState *s)
{
s->resetting++;
qbus_reset_all(BUS(&s->bus));
s->resetting--;
pvscsi_process_completion_queue(s);
assert(QTAILQ_EMPTY(&s->pending_queue));
pvscsi_reset_state(s);
}
static void
pvscsi_schedule_completion_processing(PVSCSIState *s)
{
/* Try putting more complete requests on the ring. */
if (!QTAILQ_EMPTY(&s->completion_queue)) {
qemu_bh_schedule(s->completion_worker);
}
}
static void
pvscsi_complete_request(PVSCSIState *s, PVSCSIRequest *r)
{
assert(!r->completed);
trace_pvscsi_complete_request(r->cmp.context, r->cmp.dataLen,
r->sense_key);
if (r->sreq != NULL) {
scsi_req_unref(r->sreq);
r->sreq = NULL;
}
r->completed = 1;
QTAILQ_REMOVE(&s->pending_queue, r, next);
QTAILQ_INSERT_TAIL(&s->completion_queue, r, next);
pvscsi_schedule_completion_processing(s);
}
static QEMUSGList *pvscsi_get_sg_list(SCSIRequest *r)
{
PVSCSIRequest *req = r->hba_private;
trace_pvscsi_get_sg_list(req->sgl.nsg, req->sgl.size);
return &req->sgl;
}
static void
pvscsi_get_next_sg_elem(PVSCSISGState *sg)
{
struct PVSCSISGElement elem;
cpu_physical_memory_read(sg->elemAddr, &elem, sizeof(elem));
if ((elem.flags & ~PVSCSI_KNOWN_FLAGS) != 0) {
/*
* There is PVSCSI_SGE_FLAG_CHAIN_ELEMENT flag described in
* header file but its value is unknown. This flag requires
* additional processing, so we put warning here to catch it
* some day and make proper implementation
*/
trace_pvscsi_get_next_sg_elem(elem.flags);
}
sg->elemAddr += sizeof(elem);
sg->dataAddr = elem.addr;
sg->resid = elem.length;
}
static void
pvscsi_write_sense(PVSCSIRequest *r, uint8_t *sense, int len)
{
r->cmp.senseLen = MIN(r->req.senseLen, len);
r->sense_key = sense[(sense[0] & 2) ? 1 : 2];
cpu_physical_memory_write(r->req.senseAddr, sense, r->cmp.senseLen);
}
static void
pvscsi_command_failed(SCSIRequest *req)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s;
if (!pvscsi_req) {
trace_pvscsi_command_complete_not_found(req->tag);
return;
}
s = pvscsi_req->dev;
switch (req->host_status) {
case SCSI_HOST_NO_LUN:
pvscsi_req->cmp.hostStatus = BTSTAT_LUNMISMATCH;
break;
case SCSI_HOST_BUSY:
pvscsi_req->cmp.hostStatus = BTSTAT_ABORTQUEUE;
break;
case SCSI_HOST_TIME_OUT:
case SCSI_HOST_ABORTED:
pvscsi_req->cmp.hostStatus = BTSTAT_SENTRST;
break;
case SCSI_HOST_BAD_RESPONSE:
pvscsi_req->cmp.hostStatus = BTSTAT_SELTIMEO;
break;
case SCSI_HOST_RESET:
pvscsi_req->cmp.hostStatus = BTSTAT_BUSRESET;
break;
default:
pvscsi_req->cmp.hostStatus = BTSTAT_HASOFTWARE;
break;
}
pvscsi_req->cmp.scsiStatus = GOOD;
qemu_sglist_destroy(&pvscsi_req->sgl);
pvscsi_complete_request(s, pvscsi_req);
}
static void
pvscsi_command_complete(SCSIRequest *req, size_t resid)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s;
if (!pvscsi_req) {
trace_pvscsi_command_complete_not_found(req->tag);
return;
}
s = pvscsi_req->dev;
if (resid) {
/* Short transfer. */
trace_pvscsi_command_complete_data_run();
pvscsi_req->cmp.hostStatus = BTSTAT_DATARUN;
}
pvscsi_req->cmp.scsiStatus = req->status;
if (pvscsi_req->cmp.scsiStatus == CHECK_CONDITION) {
uint8_t sense[SCSI_SENSE_BUF_SIZE];
int sense_len =
scsi_req_get_sense(pvscsi_req->sreq, sense, sizeof(sense));
trace_pvscsi_command_complete_sense_len(sense_len);
pvscsi_write_sense(pvscsi_req, sense, sense_len);
}
qemu_sglist_destroy(&pvscsi_req->sgl);
pvscsi_complete_request(s, pvscsi_req);
}
static void
pvscsi_send_msg(PVSCSIState *s, SCSIDevice *dev, uint32_t msg_type)
{
if (s->msg_ring_info_valid && pvscsi_ring_msg_has_room(&s->rings)) {
PVSCSIMsgDescDevStatusChanged msg = {0};
msg.type = msg_type;
msg.bus = dev->channel;
msg.target = dev->id;
msg.lun[1] = dev->lun;
pvscsi_msg_ring_put(s, (PVSCSIRingMsgDesc *)&msg);
pvscsi_ring_flush_msg(&s->rings);
pvscsi_raise_message_interrupt(s);
}
}
static void
pvscsi_hotplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp)
{
PVSCSIState *s = PVSCSI(hotplug_dev);
pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_ADDED);
}
static void
pvscsi_hot_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp)
{
PVSCSIState *s = PVSCSI(hotplug_dev);
pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_REMOVED);
qdev_simple_device_unplug_cb(hotplug_dev, dev, errp);
}
static void
pvscsi_request_cancelled(SCSIRequest *req)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s = pvscsi_req->dev;
if (pvscsi_req->completed) {
return;
}
if (pvscsi_req->dev->resetting) {
pvscsi_req->cmp.hostStatus = BTSTAT_BUSRESET;
} else {
pvscsi_req->cmp.hostStatus = BTSTAT_ABORTQUEUE;
}
pvscsi_complete_request(s, pvscsi_req);
}
static SCSIDevice*
pvscsi_device_find(PVSCSIState *s, int channel, int target,
uint8_t *requested_lun, uint8_t *target_lun)
{
if (requested_lun[0] || requested_lun[2] || requested_lun[3] ||
requested_lun[4] || requested_lun[5] || requested_lun[6] ||
requested_lun[7] || (target > PVSCSI_MAX_DEVS)) {
return NULL;
} else {
*target_lun = requested_lun[1];
return scsi_device_find(&s->bus, channel, target, *target_lun);
}
}
static PVSCSIRequest *
pvscsi_queue_pending_descriptor(PVSCSIState *s, SCSIDevice **d,
struct PVSCSIRingReqDesc *descr)
{
PVSCSIRequest *pvscsi_req;
uint8_t lun;
pvscsi_req = g_malloc0(sizeof(*pvscsi_req));
pvscsi_req->dev = s;
pvscsi_req->req = *descr;
pvscsi_req->cmp.context = pvscsi_req->req.context;
QTAILQ_INSERT_TAIL(&s->pending_queue, pvscsi_req, next);
*d = pvscsi_device_find(s, descr->bus, descr->target, descr->lun, &lun);
if (*d) {
pvscsi_req->lun = lun;
}
return pvscsi_req;
}
static void
pvscsi_convert_sglist(PVSCSIRequest *r)
{
uint32_t chunk_size, elmcnt = 0;
uint64_t data_length = r->req.dataLen;
PVSCSISGState sg = r->sg;
while (data_length && elmcnt < PVSCSI_MAX_SG_ELEM) {
while (!sg.resid && elmcnt++ < PVSCSI_MAX_SG_ELEM) {
pvscsi_get_next_sg_elem(&sg);
trace_pvscsi_convert_sglist(r->req.context, r->sg.dataAddr,
r->sg.resid);
}
chunk_size = MIN(data_length, sg.resid);
if (chunk_size) {
qemu_sglist_add(&r->sgl, sg.dataAddr, chunk_size);
}
sg.dataAddr += chunk_size;
data_length -= chunk_size;
sg.resid -= chunk_size;
}
}
static void
pvscsi_build_sglist(PVSCSIState *s, PVSCSIRequest *r)
{
PCIDevice *d = PCI_DEVICE(s);
pci_dma_sglist_init(&r->sgl, d, 1);
if (r->req.flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) {
pvscsi_convert_sglist(r);
} else {
qemu_sglist_add(&r->sgl, r->req.dataAddr, r->req.dataLen);
}
}
static void
pvscsi_process_request_descriptor(PVSCSIState *s,
struct PVSCSIRingReqDesc *descr)
{
SCSIDevice *d;
PVSCSIRequest *r = pvscsi_queue_pending_descriptor(s, &d, descr);
int64_t n;
trace_pvscsi_process_req_descr(descr->cdb[0], descr->context);
if (!d) {
r->cmp.hostStatus = BTSTAT_SELTIMEO;
trace_pvscsi_process_req_descr_unknown_device();
pvscsi_complete_request(s, r);
return;
}
if (descr->flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) {
r->sg.elemAddr = descr->dataAddr;
}
r->sreq = scsi_req_new(d, descr->context, r->lun, descr->cdb, r);
if (r->sreq->cmd.mode == SCSI_XFER_FROM_DEV &&
(descr->flags & PVSCSI_FLAG_CMD_DIR_TODEVICE)) {
r->cmp.hostStatus = BTSTAT_BADMSG;
trace_pvscsi_process_req_descr_invalid_dir();
scsi_req_cancel(r->sreq);
return;
}
if (r->sreq->cmd.mode == SCSI_XFER_TO_DEV &&
(descr->flags & PVSCSI_FLAG_CMD_DIR_TOHOST)) {
r->cmp.hostStatus = BTSTAT_BADMSG;
trace_pvscsi_process_req_descr_invalid_dir();
scsi_req_cancel(r->sreq);
return;
}
pvscsi_build_sglist(s, r);
n = scsi_req_enqueue(r->sreq);
if (n) {
scsi_req_continue(r->sreq);
}
}
static void
pvscsi_process_io(PVSCSIState *s)
{
PVSCSIRingReqDesc descr;
hwaddr next_descr_pa;
if (!s->rings_info_valid) {
return;
}
while ((next_descr_pa = pvscsi_ring_pop_req_descr(&s->rings)) != 0) {
/* Only read after production index verification */
smp_rmb();
trace_pvscsi_process_io(next_descr_pa);
cpu_physical_memory_read(next_descr_pa, &descr, sizeof(descr));
pvscsi_process_request_descriptor(s, &descr);
}
pvscsi_ring_flush_req(&s->rings);
}
static void
pvscsi_dbg_dump_tx_rings_config(PVSCSICmdDescSetupRings *rc)
{
int i;
trace_pvscsi_tx_rings_ppn("Rings State", rc->ringsStatePPN);
trace_pvscsi_tx_rings_num_pages("Request Ring", rc->reqRingNumPages);
for (i = 0; i < rc->reqRingNumPages; i++) {
trace_pvscsi_tx_rings_ppn("Request Ring", rc->reqRingPPNs[i]);
}
trace_pvscsi_tx_rings_num_pages("Confirm Ring", rc->cmpRingNumPages);
for (i = 0; i < rc->cmpRingNumPages; i++) {
trace_pvscsi_tx_rings_ppn("Confirm Ring", rc->cmpRingPPNs[i]);
}
}
static uint64_t
pvscsi_on_cmd_config(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_CONFIG");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_unplug(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_DEVICE_UNPLUG");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_issue_scsi(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_ISSUE_SCSI");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_setup_rings(PVSCSIState *s)
{
PVSCSICmdDescSetupRings *rc =
(PVSCSICmdDescSetupRings *) s->curr_cmd_data;
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_RINGS");
if (!rc->reqRingNumPages
|| rc->reqRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES
|| !rc->cmpRingNumPages
|| rc->cmpRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
pvscsi_dbg_dump_tx_rings_config(rc);
pvscsi_ring_init_data(&s->rings, rc);
s->rings_info_valid = TRUE;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_abort(PVSCSIState *s)
{
PVSCSICmdDescAbortCmd *cmd = (PVSCSICmdDescAbortCmd *) s->curr_cmd_data;
PVSCSIRequest *r, *next;
trace_pvscsi_on_cmd_abort(cmd->context, cmd->target);
QTAILQ_FOREACH_SAFE(r, &s->pending_queue, next, next) {
if (r->req.context == cmd->context) {
break;
}
}
if (r) {
assert(!r->completed);
r->cmp.hostStatus = BTSTAT_ABORTQUEUE;
scsi_req_cancel(r->sreq);
}
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_unknown(PVSCSIState *s)
{
trace_pvscsi_on_cmd_unknown_data(s->curr_cmd_data[0]);
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_reset_device(PVSCSIState *s)
{
uint8_t target_lun = 0;
struct PVSCSICmdDescResetDevice *cmd =
(struct PVSCSICmdDescResetDevice *) s->curr_cmd_data;
SCSIDevice *sdev;
sdev = pvscsi_device_find(s, 0, cmd->target, cmd->lun, &target_lun);
trace_pvscsi_on_cmd_reset_dev(cmd->target, (int) target_lun, sdev);
if (sdev != NULL) {
s->resetting++;
device_legacy_reset(&sdev->qdev);
s->resetting--;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_reset_bus(PVSCSIState *s)
{
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_RESET_BUS");
s->resetting++;
qbus_reset_all(BUS(&s->bus));
s->resetting--;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_setup_msg_ring(PVSCSIState *s)
{
PVSCSICmdDescSetupMsgRing *rc =
(PVSCSICmdDescSetupMsgRing *) s->curr_cmd_data;
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_MSG_RING");
if (!s->use_msg) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
if (s->rings_info_valid) {
if (pvscsi_ring_init_msg(&s->rings, rc) < 0) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
s->msg_ring_info_valid = TRUE;
}
return sizeof(PVSCSICmdDescSetupMsgRing) / sizeof(uint32_t);
}
static uint64_t
pvscsi_on_cmd_adapter_reset(PVSCSIState *s)
{
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_ADAPTER_RESET");
pvscsi_reset_adapter(s);
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static const struct {
int data_size;
uint64_t (*handler_fn)(PVSCSIState *s);
} pvscsi_commands[] = {
[PVSCSI_CMD_FIRST] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_unknown,
},
/* Not implemented, data size defined based on what arrives on windows */
[PVSCSI_CMD_CONFIG] = {
.data_size = 6 * sizeof(uint32_t),
.handler_fn = pvscsi_on_cmd_config,
},
/* Command not implemented, data size is unknown */
[PVSCSI_CMD_ISSUE_SCSI] = {
.data_size = 0,
.handler_fn = pvscsi_on_issue_scsi,
},
/* Command not implemented, data size is unknown */
[PVSCSI_CMD_DEVICE_UNPLUG] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_unplug,
},
[PVSCSI_CMD_SETUP_RINGS] = {
.data_size = sizeof(PVSCSICmdDescSetupRings),
.handler_fn = pvscsi_on_cmd_setup_rings,
},
[PVSCSI_CMD_RESET_DEVICE] = {
.data_size = sizeof(struct PVSCSICmdDescResetDevice),
.handler_fn = pvscsi_on_cmd_reset_device,
},
[PVSCSI_CMD_RESET_BUS] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_reset_bus,
},
[PVSCSI_CMD_SETUP_MSG_RING] = {
.data_size = sizeof(PVSCSICmdDescSetupMsgRing),
.handler_fn = pvscsi_on_cmd_setup_msg_ring,
},
[PVSCSI_CMD_ADAPTER_RESET] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_adapter_reset,
},
[PVSCSI_CMD_ABORT_CMD] = {
.data_size = sizeof(struct PVSCSICmdDescAbortCmd),
.handler_fn = pvscsi_on_cmd_abort,
},
};
static void
pvscsi_do_command_processing(PVSCSIState *s)
{
size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t);
assert(s->curr_cmd < PVSCSI_CMD_LAST);
if (bytes_arrived >= pvscsi_commands[s->curr_cmd].data_size) {
s->reg_command_status = pvscsi_commands[s->curr_cmd].handler_fn(s);
s->curr_cmd = PVSCSI_CMD_FIRST;
s->curr_cmd_data_cntr = 0;
}
}
static void
pvscsi_on_command_data(PVSCSIState *s, uint32_t value)
{
size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t);
assert(bytes_arrived < sizeof(s->curr_cmd_data));
s->curr_cmd_data[s->curr_cmd_data_cntr++] = value;
pvscsi_do_command_processing(s);
}
static void
pvscsi_on_command(PVSCSIState *s, uint64_t cmd_id)
{
if ((cmd_id > PVSCSI_CMD_FIRST) && (cmd_id < PVSCSI_CMD_LAST)) {
s->curr_cmd = cmd_id;
} else {
s->curr_cmd = PVSCSI_CMD_FIRST;
trace_pvscsi_on_cmd_unknown(cmd_id);
}
s->curr_cmd_data_cntr = 0;
s->reg_command_status = PVSCSI_COMMAND_NOT_ENOUGH_DATA;
pvscsi_do_command_processing(s);
}
static void
pvscsi_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PVSCSIState *s = opaque;
switch (addr) {
case PVSCSI_REG_OFFSET_COMMAND:
pvscsi_on_command(s, val);
break;
case PVSCSI_REG_OFFSET_COMMAND_DATA:
pvscsi_on_command_data(s, (uint32_t) val);
break;
case PVSCSI_REG_OFFSET_INTR_STATUS:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_STATUS", val);
s->reg_interrupt_status &= ~val;
pvscsi_update_irq_status(s);
pvscsi_schedule_completion_processing(s);
break;
case PVSCSI_REG_OFFSET_INTR_MASK:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_MASK", val);
s->reg_interrupt_enabled = val;
pvscsi_update_irq_status(s);
break;
case PVSCSI_REG_OFFSET_KICK_NON_RW_IO:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_NON_RW_IO", val);
pvscsi_process_io(s);
break;
case PVSCSI_REG_OFFSET_KICK_RW_IO:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_RW_IO", val);
pvscsi_process_io(s);
break;
case PVSCSI_REG_OFFSET_DEBUG:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_DEBUG", val);
break;
default:
trace_pvscsi_io_write_unknown(addr, size, val);
break;
}
}
static uint64_t
pvscsi_io_read(void *opaque, hwaddr addr, unsigned size)
{
PVSCSIState *s = opaque;
switch (addr) {
case PVSCSI_REG_OFFSET_INTR_STATUS:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_STATUS",
s->reg_interrupt_status);
return s->reg_interrupt_status;
case PVSCSI_REG_OFFSET_INTR_MASK:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_MASK",
s->reg_interrupt_status);
return s->reg_interrupt_enabled;
case PVSCSI_REG_OFFSET_COMMAND_STATUS:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_COMMAND_STATUS",
s->reg_interrupt_status);
return s->reg_command_status;
default:
trace_pvscsi_io_read_unknown(addr, size);
return 0;
}
}
static void
pvscsi_init_msi(PVSCSIState *s)
{
int res;
PCIDevice *d = PCI_DEVICE(s);
res = msi_init(d, PVSCSI_MSI_OFFSET(s), PVSCSI_MSIX_NUM_VECTORS,
PVSCSI_USE_64BIT, PVSCSI_PER_VECTOR_MASK, NULL);
if (res < 0) {
trace_pvscsi_init_msi_fail(res);
s->msi_used = false;
} else {
s->msi_used = true;
}
}
static void
pvscsi_cleanup_msi(PVSCSIState *s)
{
PCIDevice *d = PCI_DEVICE(s);
msi_uninit(d);
}
static const MemoryRegionOps pvscsi_ops = {
.read = pvscsi_io_read,
.write = pvscsi_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const struct SCSIBusInfo pvscsi_scsi_info = {
.tcq = true,
.max_target = PVSCSI_MAX_DEVS,
.max_channel = 0,
.max_lun = 0,
.get_sg_list = pvscsi_get_sg_list,
.complete = pvscsi_command_complete,
.cancel = pvscsi_request_cancelled,
.fail = pvscsi_command_failed,
};
static void
pvscsi_realizefn(PCIDevice *pci_dev, Error **errp)
{
PVSCSIState *s = PVSCSI(pci_dev);
trace_pvscsi_state("init");
/* PCI subsystem ID, subsystem vendor ID, revision */
if (PVSCSI_USE_OLD_PCI_CONFIGURATION(s)) {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 0x1000);
} else {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
PCI_VENDOR_ID_VMWARE);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
PCI_DEVICE_ID_VMWARE_PVSCSI);
pci_config_set_revision(pci_dev->config, 0x2);
}
/* PCI latency timer = 255 */
pci_dev->config[PCI_LATENCY_TIMER] = 0xff;
/* Interrupt pin A */
pci_config_set_interrupt_pin(pci_dev->config, 1);
memory_region_init_io(&s->io_space, OBJECT(s), &pvscsi_ops, s,
"pvscsi-io", PVSCSI_MEM_SPACE_SIZE);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->io_space);
pvscsi_init_msi(s);
if (pci_is_express(pci_dev) && pci_bus_is_express(pci_get_bus(pci_dev))) {
pcie_endpoint_cap_init(pci_dev, PVSCSI_EXP_EP_OFFSET);
}
s->completion_worker = qemu_bh_new(pvscsi_process_completion_queue, s);
scsi_bus_init(&s->bus, sizeof(s->bus), DEVICE(pci_dev), &pvscsi_scsi_info);
/* override default SCSI bus hotplug-handler, with pvscsi's one */
qbus_set_hotplug_handler(BUS(&s->bus), OBJECT(s));
pvscsi_reset_state(s);
}
static void
pvscsi_uninit(PCIDevice *pci_dev)
{
PVSCSIState *s = PVSCSI(pci_dev);
trace_pvscsi_state("uninit");
qemu_bh_delete(s->completion_worker);
pvscsi_cleanup_msi(s);
}
static void
pvscsi_reset(DeviceState *dev)
{
PCIDevice *d = PCI_DEVICE(dev);
PVSCSIState *s = PVSCSI(d);
trace_pvscsi_state("reset");
pvscsi_reset_adapter(s);
}
static int
pvscsi_pre_save(void *opaque)
{
PVSCSIState *s = (PVSCSIState *) opaque;
trace_pvscsi_state("presave");
assert(QTAILQ_EMPTY(&s->pending_queue));
assert(QTAILQ_EMPTY(&s->completion_queue));
return 0;
}
static int
pvscsi_post_load(void *opaque, int version_id)
{
trace_pvscsi_state("postload");
return 0;
}
static bool pvscsi_vmstate_need_pcie_device(void *opaque)
{
PVSCSIState *s = PVSCSI(opaque);
return !(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE);
}
static bool pvscsi_vmstate_test_pci_device(void *opaque, int version_id)
{
return !pvscsi_vmstate_need_pcie_device(opaque);
}
static const VMStateDescription vmstate_pvscsi_pcie_device = {
.name = "pvscsi/pcie",
.needed = pvscsi_vmstate_need_pcie_device,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, PVSCSIState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_pvscsi = {
.name = "pvscsi",
.version_id = 0,
.minimum_version_id = 0,
.pre_save = pvscsi_pre_save,
.post_load = pvscsi_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_TEST(parent_obj, PVSCSIState,
pvscsi_vmstate_test_pci_device, 0,
vmstate_pci_device, PCIDevice),
VMSTATE_UINT8(msi_used, PVSCSIState),
VMSTATE_UINT32(resetting, PVSCSIState),
VMSTATE_UINT64(reg_interrupt_status, PVSCSIState),
VMSTATE_UINT64(reg_interrupt_enabled, PVSCSIState),
VMSTATE_UINT64(reg_command_status, PVSCSIState),
VMSTATE_UINT64(curr_cmd, PVSCSIState),
VMSTATE_UINT32(curr_cmd_data_cntr, PVSCSIState),
VMSTATE_UINT32_ARRAY(curr_cmd_data, PVSCSIState,
ARRAY_SIZE(((PVSCSIState *)NULL)->curr_cmd_data)),
VMSTATE_UINT8(rings_info_valid, PVSCSIState),
VMSTATE_UINT8(msg_ring_info_valid, PVSCSIState),
VMSTATE_UINT8(use_msg, PVSCSIState),
VMSTATE_UINT64(rings.rs_pa, PVSCSIState),
VMSTATE_UINT32(rings.txr_len_mask, PVSCSIState),
VMSTATE_UINT32(rings.rxr_len_mask, PVSCSIState),
VMSTATE_UINT64_ARRAY(rings.req_ring_pages_pa, PVSCSIState,
PVSCSI_SETUP_RINGS_MAX_NUM_PAGES),
VMSTATE_UINT64_ARRAY(rings.cmp_ring_pages_pa, PVSCSIState,
PVSCSI_SETUP_RINGS_MAX_NUM_PAGES),
VMSTATE_UINT64(rings.consumed_ptr, PVSCSIState),
VMSTATE_UINT64(rings.filled_cmp_ptr, PVSCSIState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_pvscsi_pcie_device,
NULL
}
};
static Property pvscsi_properties[] = {
DEFINE_PROP_UINT8("use_msg", PVSCSIState, use_msg, 1),
DEFINE_PROP_BIT("x-old-pci-configuration", PVSCSIState, compat_flags,
PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT, false),
DEFINE_PROP_BIT("x-disable-pcie", PVSCSIState, compat_flags,
PVSCSI_COMPAT_DISABLE_PCIE_BIT, false),
DEFINE_PROP_END_OF_LIST(),
};
static void pvscsi_realize(DeviceState *qdev, Error **errp)
{
PVSCSIClass *pvs_c = PVSCSI_GET_CLASS(qdev);
PCIDevice *pci_dev = PCI_DEVICE(qdev);
PVSCSIState *s = PVSCSI(qdev);
if (!(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE)) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
pvs_c->parent_dc_realize(qdev, errp);
}
static void pvscsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
PVSCSIClass *pvs_k = PVSCSI_CLASS(klass);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass);
k->realize = pvscsi_realizefn;
k->exit = pvscsi_uninit;
k->vendor_id = PCI_VENDOR_ID_VMWARE;
k->device_id = PCI_DEVICE_ID_VMWARE_PVSCSI;
k->class_id = PCI_CLASS_STORAGE_SCSI;
k->subsystem_id = 0x1000;
device_class_set_parent_realize(dc, pvscsi_realize,
&pvs_k->parent_dc_realize);
dc->reset = pvscsi_reset;
dc->vmsd = &vmstate_pvscsi;
device_class_set_props(dc, pvscsi_properties);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
hc->unplug = pvscsi_hot_unplug;
hc->plug = pvscsi_hotplug;
}
static const TypeInfo pvscsi_info = {
.name = TYPE_PVSCSI,
.parent = TYPE_PCI_DEVICE,
.class_size = sizeof(PVSCSIClass),
.instance_size = sizeof(PVSCSIState),
.class_init = pvscsi_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ INTERFACE_PCIE_DEVICE },
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
}
};
static void
pvscsi_register_types(void)
{
type_register_static(&pvscsi_info);
}
type_init(pvscsi_register_types);