qemu/include/exec/cpu-all.h
Max Filippov 246ae24d7d tcg: add separate monitor command to dump opcode counters
Currently 'info jit' outputs half of the information to monitor and the
rest to qemu log. Dumping opcode counts to monitor as a part of 'info
jit' command doesn't sound useful. Add new monitor command 'info
opcount' that only dumps opcode counters.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
2014-12-17 05:49:32 +03:00

355 lines
9.6 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#include "qemu-common.h"
#include "exec/cpu-common.h"
#include "exec/memory.h"
#include "qemu/thread.h"
#include "qom/cpu.h"
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#define bswaptls(s) bswap64s(s)
#endif
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
/* target-endianness CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include <assert.h>
#include "exec/user/abitypes.h"
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
extern unsigned long reserved_va;
#define GUEST_BASE guest_base
#define RESERVED_VA reserved_va
#else
#define GUEST_BASE 0ul
#define RESERVED_VA 0ul
#endif
#define GUEST_ADDR_MAX (RESERVED_VA ? RESERVED_VA : \
(1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
#endif
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
/* ??? These should be the larger of uintptr_t and target_ulong. */
extern uintptr_t qemu_real_host_page_size;
extern uintptr_t qemu_host_page_size;
extern uintptr_t qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0020
#endif
#if defined(CONFIG_USER_ONLY)
void page_dump(FILE *f);
typedef int (*walk_memory_regions_fn)(void *, target_ulong,
target_ulong, unsigned long);
int walk_memory_regions(void *, walk_memory_regions_fn);
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
#endif
CPUArchState *cpu_copy(CPUArchState *env);
/* Flags for use in ENV->INTERRUPT_PENDING.
The numbers assigned here are non-sequential in order to preserve
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
the vmstate dump. */
/* External hardware interrupt pending. This is typically used for
interrupts from devices. */
#define CPU_INTERRUPT_HARD 0x0002
/* Exit the current TB. This is typically used when some system-level device
makes some change to the memory mapping. E.g. the a20 line change. */
#define CPU_INTERRUPT_EXITTB 0x0004
/* Halt the CPU. */
#define CPU_INTERRUPT_HALT 0x0020
/* Debug event pending. */
#define CPU_INTERRUPT_DEBUG 0x0080
/* Reset signal. */
#define CPU_INTERRUPT_RESET 0x0400
/* Several target-specific external hardware interrupts. Each target/cpu.h
should define proper names based on these defines. */
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
/* Several target-specific internal interrupts. These differ from the
preceding target-specific interrupts in that they are intended to
originate from within the cpu itself, typically in response to some
instruction being executed. These, therefore, are not masked while
single-stepping within the debugger. */
#define CPU_INTERRUPT_TGT_INT_0 0x0100
#define CPU_INTERRUPT_TGT_INT_1 0x0800
#define CPU_INTERRUPT_TGT_INT_2 0x2000
/* First unused bit: 0x4000. */
/* The set of all bits that should be masked when single-stepping. */
#define CPU_INTERRUPT_SSTEP_MASK \
(CPU_INTERRUPT_HARD \
| CPU_INTERRUPT_TGT_EXT_0 \
| CPU_INTERRUPT_TGT_EXT_1 \
| CPU_INTERRUPT_TGT_EXT_2 \
| CPU_INTERRUPT_TGT_EXT_3 \
| CPU_INTERRUPT_TGT_EXT_4)
#if !defined(CONFIG_USER_ONLY)
/* memory API */
typedef struct RAMBlock {
struct MemoryRegion *mr;
uint8_t *host;
ram_addr_t offset;
ram_addr_t length;
uint32_t flags;
char idstr[256];
/* Reads can take either the iothread or the ramlist lock.
* Writes must take both locks.
*/
QTAILQ_ENTRY(RAMBlock) next;
int fd;
} RAMBlock;
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
{
assert(offset < block->length);
assert(block->host);
return (char *)block->host + offset;
}
typedef struct RAMList {
QemuMutex mutex;
/* Protected by the iothread lock. */
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
RAMBlock *mru_block;
/* Protected by the ramlist lock. */
QTAILQ_HEAD(, RAMBlock) blocks;
uint32_t version;
} RAMList;
extern RAMList ram_list;
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << 3)
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << 4)
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
ram_addr_t last_ram_offset(void);
void qemu_mutex_lock_ramlist(void);
void qemu_mutex_unlock_ramlist(void);
#endif /* !CONFIG_USER_ONLY */
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, int is_write);
#endif /* CPU_ALL_H */