02369f7906
Move and rename riscv_cpu_two_stage_lookup, to match the other mmuidx_* functions. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn> Tested-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Message-Id: <20230325105429.1142530-15-richard.henderson@linaro.org> Message-Id: <20230412114333.118895-15-richard.henderson@linaro.org> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
1781 lines
59 KiB
C
1781 lines
59 KiB
C
/*
|
|
* RISC-V CPU helpers for qemu.
|
|
*
|
|
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
|
|
* Copyright (c) 2017-2018 SiFive, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "pmu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "instmap.h"
|
|
#include "tcg/tcg-op.h"
|
|
#include "trace.h"
|
|
#include "semihosting/common-semi.h"
|
|
#include "sysemu/cpu-timers.h"
|
|
#include "cpu_bits.h"
|
|
#include "debug.h"
|
|
|
|
int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
return 0;
|
|
#else
|
|
if (ifetch) {
|
|
return env->priv;
|
|
}
|
|
|
|
/* All priv -> mmu_idx mapping are here */
|
|
int mode = env->priv;
|
|
if (mode == PRV_M && get_field(env->mstatus, MSTATUS_MPRV)) {
|
|
mode = get_field(env->mstatus, MSTATUS_MPP);
|
|
}
|
|
if (mode == PRV_S && get_field(env->mstatus, MSTATUS_SUM)) {
|
|
return MMUIdx_S_SUM;
|
|
}
|
|
return mode;
|
|
#endif
|
|
}
|
|
|
|
void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
|
|
target_ulong *cs_base, uint32_t *pflags)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
RISCVExtStatus fs, vs;
|
|
uint32_t flags = 0;
|
|
|
|
*pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
|
|
*cs_base = 0;
|
|
|
|
if (cpu->cfg.ext_zve32f) {
|
|
/*
|
|
* If env->vl equals to VLMAX, we can use generic vector operation
|
|
* expanders (GVEC) to accerlate the vector operations.
|
|
* However, as LMUL could be a fractional number. The maximum
|
|
* vector size can be operated might be less than 8 bytes,
|
|
* which is not supported by GVEC. So we set vl_eq_vlmax flag to true
|
|
* only when maxsz >= 8 bytes.
|
|
*/
|
|
uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
|
|
uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
|
|
uint32_t maxsz = vlmax << sew;
|
|
bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
|
|
(maxsz >= 8);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
|
|
FIELD_EX64(env->vtype, VTYPE, VLMUL));
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VTA,
|
|
FIELD_EX64(env->vtype, VTYPE, VTA));
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VMA,
|
|
FIELD_EX64(env->vtype, VTYPE, VMA));
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
|
|
} else {
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
fs = EXT_STATUS_DIRTY;
|
|
vs = EXT_STATUS_DIRTY;
|
|
#else
|
|
flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
|
|
|
|
flags |= cpu_mmu_index(env, 0);
|
|
fs = get_field(env->mstatus, MSTATUS_FS);
|
|
vs = get_field(env->mstatus, MSTATUS_VS);
|
|
|
|
if (env->virt_enabled) {
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
|
|
/*
|
|
* Merge DISABLED and !DIRTY states using MIN.
|
|
* We will set both fields when dirtying.
|
|
*/
|
|
fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
|
|
vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
|
|
}
|
|
|
|
if (cpu->cfg.debug && !icount_enabled()) {
|
|
flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
|
|
}
|
|
#endif
|
|
|
|
flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
|
|
flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
|
|
if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
|
|
flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
|
|
}
|
|
if (env->cur_pmbase != 0) {
|
|
flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
|
|
}
|
|
|
|
*pflags = flags;
|
|
}
|
|
|
|
void riscv_cpu_update_mask(CPURISCVState *env)
|
|
{
|
|
target_ulong mask = -1, base = 0;
|
|
/*
|
|
* TODO: Current RVJ spec does not specify
|
|
* how the extension interacts with XLEN.
|
|
*/
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (riscv_has_ext(env, RVJ)) {
|
|
switch (env->priv) {
|
|
case PRV_M:
|
|
if (env->mmte & M_PM_ENABLE) {
|
|
mask = env->mpmmask;
|
|
base = env->mpmbase;
|
|
}
|
|
break;
|
|
case PRV_S:
|
|
if (env->mmte & S_PM_ENABLE) {
|
|
mask = env->spmmask;
|
|
base = env->spmbase;
|
|
}
|
|
break;
|
|
case PRV_U:
|
|
if (env->mmte & U_PM_ENABLE) {
|
|
mask = env->upmmask;
|
|
base = env->upmbase;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
#endif
|
|
if (env->xl == MXL_RV32) {
|
|
env->cur_pmmask = mask & UINT32_MAX;
|
|
env->cur_pmbase = base & UINT32_MAX;
|
|
} else {
|
|
env->cur_pmmask = mask;
|
|
env->cur_pmbase = base;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
/*
|
|
* The HS-mode is allowed to configure priority only for the
|
|
* following VS-mode local interrupts:
|
|
*
|
|
* 0 (Reserved interrupt, reads as zero)
|
|
* 1 Supervisor software interrupt
|
|
* 4 (Reserved interrupt, reads as zero)
|
|
* 5 Supervisor timer interrupt
|
|
* 8 (Reserved interrupt, reads as zero)
|
|
* 13 (Reserved interrupt)
|
|
* 14 "
|
|
* 15 "
|
|
* 16 "
|
|
* 17 "
|
|
* 18 "
|
|
* 19 "
|
|
* 20 "
|
|
* 21 "
|
|
* 22 "
|
|
* 23 "
|
|
*/
|
|
|
|
static const int hviprio_index2irq[] = {
|
|
0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
|
|
static const int hviprio_index2rdzero[] = {
|
|
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
|
|
{
|
|
if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (out_irq) {
|
|
*out_irq = hviprio_index2irq[index];
|
|
}
|
|
|
|
if (out_rdzero) {
|
|
*out_rdzero = hviprio_index2rdzero[index];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Default priorities of local interrupts are defined in the
|
|
* RISC-V Advanced Interrupt Architecture specification.
|
|
*
|
|
* ----------------------------------------------------------------
|
|
* Default |
|
|
* Priority | Major Interrupt Numbers
|
|
* ----------------------------------------------------------------
|
|
* Highest | 47, 23, 46, 45, 22, 44,
|
|
* | 43, 21, 42, 41, 20, 40
|
|
* |
|
|
* | 11 (0b), 3 (03), 7 (07)
|
|
* | 9 (09), 1 (01), 5 (05)
|
|
* | 12 (0c)
|
|
* | 10 (0a), 2 (02), 6 (06)
|
|
* |
|
|
* | 39, 19, 38, 37, 18, 36,
|
|
* Lowest | 35, 17, 34, 33, 16, 32
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static const uint8_t default_iprio[64] = {
|
|
/* Custom interrupts 48 to 63 */
|
|
[63] = IPRIO_MMAXIPRIO,
|
|
[62] = IPRIO_MMAXIPRIO,
|
|
[61] = IPRIO_MMAXIPRIO,
|
|
[60] = IPRIO_MMAXIPRIO,
|
|
[59] = IPRIO_MMAXIPRIO,
|
|
[58] = IPRIO_MMAXIPRIO,
|
|
[57] = IPRIO_MMAXIPRIO,
|
|
[56] = IPRIO_MMAXIPRIO,
|
|
[55] = IPRIO_MMAXIPRIO,
|
|
[54] = IPRIO_MMAXIPRIO,
|
|
[53] = IPRIO_MMAXIPRIO,
|
|
[52] = IPRIO_MMAXIPRIO,
|
|
[51] = IPRIO_MMAXIPRIO,
|
|
[50] = IPRIO_MMAXIPRIO,
|
|
[49] = IPRIO_MMAXIPRIO,
|
|
[48] = IPRIO_MMAXIPRIO,
|
|
|
|
/* Custom interrupts 24 to 31 */
|
|
[31] = IPRIO_MMAXIPRIO,
|
|
[30] = IPRIO_MMAXIPRIO,
|
|
[29] = IPRIO_MMAXIPRIO,
|
|
[28] = IPRIO_MMAXIPRIO,
|
|
[27] = IPRIO_MMAXIPRIO,
|
|
[26] = IPRIO_MMAXIPRIO,
|
|
[25] = IPRIO_MMAXIPRIO,
|
|
[24] = IPRIO_MMAXIPRIO,
|
|
|
|
[47] = IPRIO_DEFAULT_UPPER,
|
|
[23] = IPRIO_DEFAULT_UPPER + 1,
|
|
[46] = IPRIO_DEFAULT_UPPER + 2,
|
|
[45] = IPRIO_DEFAULT_UPPER + 3,
|
|
[22] = IPRIO_DEFAULT_UPPER + 4,
|
|
[44] = IPRIO_DEFAULT_UPPER + 5,
|
|
|
|
[43] = IPRIO_DEFAULT_UPPER + 6,
|
|
[21] = IPRIO_DEFAULT_UPPER + 7,
|
|
[42] = IPRIO_DEFAULT_UPPER + 8,
|
|
[41] = IPRIO_DEFAULT_UPPER + 9,
|
|
[20] = IPRIO_DEFAULT_UPPER + 10,
|
|
[40] = IPRIO_DEFAULT_UPPER + 11,
|
|
|
|
[11] = IPRIO_DEFAULT_M,
|
|
[3] = IPRIO_DEFAULT_M + 1,
|
|
[7] = IPRIO_DEFAULT_M + 2,
|
|
|
|
[9] = IPRIO_DEFAULT_S,
|
|
[1] = IPRIO_DEFAULT_S + 1,
|
|
[5] = IPRIO_DEFAULT_S + 2,
|
|
|
|
[12] = IPRIO_DEFAULT_SGEXT,
|
|
|
|
[10] = IPRIO_DEFAULT_VS,
|
|
[2] = IPRIO_DEFAULT_VS + 1,
|
|
[6] = IPRIO_DEFAULT_VS + 2,
|
|
|
|
[39] = IPRIO_DEFAULT_LOWER,
|
|
[19] = IPRIO_DEFAULT_LOWER + 1,
|
|
[38] = IPRIO_DEFAULT_LOWER + 2,
|
|
[37] = IPRIO_DEFAULT_LOWER + 3,
|
|
[18] = IPRIO_DEFAULT_LOWER + 4,
|
|
[36] = IPRIO_DEFAULT_LOWER + 5,
|
|
|
|
[35] = IPRIO_DEFAULT_LOWER + 6,
|
|
[17] = IPRIO_DEFAULT_LOWER + 7,
|
|
[34] = IPRIO_DEFAULT_LOWER + 8,
|
|
[33] = IPRIO_DEFAULT_LOWER + 9,
|
|
[16] = IPRIO_DEFAULT_LOWER + 10,
|
|
[32] = IPRIO_DEFAULT_LOWER + 11,
|
|
};
|
|
|
|
uint8_t riscv_cpu_default_priority(int irq)
|
|
{
|
|
if (irq < 0 || irq > 63) {
|
|
return IPRIO_MMAXIPRIO;
|
|
}
|
|
|
|
return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
|
|
};
|
|
|
|
static int riscv_cpu_pending_to_irq(CPURISCVState *env,
|
|
int extirq, unsigned int extirq_def_prio,
|
|
uint64_t pending, uint8_t *iprio)
|
|
{
|
|
int irq, best_irq = RISCV_EXCP_NONE;
|
|
unsigned int prio, best_prio = UINT_MAX;
|
|
|
|
if (!pending) {
|
|
return RISCV_EXCP_NONE;
|
|
}
|
|
|
|
irq = ctz64(pending);
|
|
if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
|
|
riscv_cpu_cfg(env)->ext_ssaia)) {
|
|
return irq;
|
|
}
|
|
|
|
pending = pending >> irq;
|
|
while (pending) {
|
|
prio = iprio[irq];
|
|
if (!prio) {
|
|
if (irq == extirq) {
|
|
prio = extirq_def_prio;
|
|
} else {
|
|
prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
|
|
1 : IPRIO_MMAXIPRIO;
|
|
}
|
|
}
|
|
if ((pending & 0x1) && (prio <= best_prio)) {
|
|
best_irq = irq;
|
|
best_prio = prio;
|
|
}
|
|
irq++;
|
|
pending = pending >> 1;
|
|
}
|
|
|
|
return best_irq;
|
|
}
|
|
|
|
uint64_t riscv_cpu_all_pending(CPURISCVState *env)
|
|
{
|
|
uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
|
|
uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
|
|
uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
|
|
|
|
return (env->mip | vsgein | vstip) & env->mie;
|
|
}
|
|
|
|
int riscv_cpu_mirq_pending(CPURISCVState *env)
|
|
{
|
|
uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
|
|
~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
|
|
|
|
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
|
|
irqs, env->miprio);
|
|
}
|
|
|
|
int riscv_cpu_sirq_pending(CPURISCVState *env)
|
|
{
|
|
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
|
|
~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
|
|
|
|
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
|
|
irqs, env->siprio);
|
|
}
|
|
|
|
int riscv_cpu_vsirq_pending(CPURISCVState *env)
|
|
{
|
|
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
|
|
(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
|
|
|
|
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
|
|
irqs >> 1, env->hviprio);
|
|
}
|
|
|
|
static int riscv_cpu_local_irq_pending(CPURISCVState *env)
|
|
{
|
|
int virq;
|
|
uint64_t irqs, pending, mie, hsie, vsie;
|
|
|
|
/* Determine interrupt enable state of all privilege modes */
|
|
if (env->virt_enabled) {
|
|
mie = 1;
|
|
hsie = 1;
|
|
vsie = (env->priv < PRV_S) ||
|
|
(env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
|
|
} else {
|
|
mie = (env->priv < PRV_M) ||
|
|
(env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
|
|
hsie = (env->priv < PRV_S) ||
|
|
(env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
|
|
vsie = 0;
|
|
}
|
|
|
|
/* Determine all pending interrupts */
|
|
pending = riscv_cpu_all_pending(env);
|
|
|
|
/* Check M-mode interrupts */
|
|
irqs = pending & ~env->mideleg & -mie;
|
|
if (irqs) {
|
|
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
|
|
irqs, env->miprio);
|
|
}
|
|
|
|
/* Check HS-mode interrupts */
|
|
irqs = pending & env->mideleg & ~env->hideleg & -hsie;
|
|
if (irqs) {
|
|
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
|
|
irqs, env->siprio);
|
|
}
|
|
|
|
/* Check VS-mode interrupts */
|
|
irqs = pending & env->mideleg & env->hideleg & -vsie;
|
|
if (irqs) {
|
|
virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
|
|
irqs >> 1, env->hviprio);
|
|
return (virq <= 0) ? virq : virq + 1;
|
|
}
|
|
|
|
/* Indicate no pending interrupt */
|
|
return RISCV_EXCP_NONE;
|
|
}
|
|
|
|
bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
int interruptno = riscv_cpu_local_irq_pending(env);
|
|
if (interruptno >= 0) {
|
|
cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
|
|
riscv_cpu_do_interrupt(cs);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return true is floating point support is currently enabled */
|
|
bool riscv_cpu_fp_enabled(CPURISCVState *env)
|
|
{
|
|
if (env->mstatus & MSTATUS_FS) {
|
|
if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true is vector support is currently enabled */
|
|
bool riscv_cpu_vector_enabled(CPURISCVState *env)
|
|
{
|
|
if (env->mstatus & MSTATUS_VS) {
|
|
if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
|
|
{
|
|
uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
|
|
MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
|
|
MSTATUS64_UXL | MSTATUS_VS;
|
|
|
|
if (riscv_has_ext(env, RVF)) {
|
|
mstatus_mask |= MSTATUS_FS;
|
|
}
|
|
bool current_virt = env->virt_enabled;
|
|
|
|
g_assert(riscv_has_ext(env, RVH));
|
|
|
|
if (current_virt) {
|
|
/* Current V=1 and we are about to change to V=0 */
|
|
env->vsstatus = env->mstatus & mstatus_mask;
|
|
env->mstatus &= ~mstatus_mask;
|
|
env->mstatus |= env->mstatus_hs;
|
|
|
|
env->vstvec = env->stvec;
|
|
env->stvec = env->stvec_hs;
|
|
|
|
env->vsscratch = env->sscratch;
|
|
env->sscratch = env->sscratch_hs;
|
|
|
|
env->vsepc = env->sepc;
|
|
env->sepc = env->sepc_hs;
|
|
|
|
env->vscause = env->scause;
|
|
env->scause = env->scause_hs;
|
|
|
|
env->vstval = env->stval;
|
|
env->stval = env->stval_hs;
|
|
|
|
env->vsatp = env->satp;
|
|
env->satp = env->satp_hs;
|
|
} else {
|
|
/* Current V=0 and we are about to change to V=1 */
|
|
env->mstatus_hs = env->mstatus & mstatus_mask;
|
|
env->mstatus &= ~mstatus_mask;
|
|
env->mstatus |= env->vsstatus;
|
|
|
|
env->stvec_hs = env->stvec;
|
|
env->stvec = env->vstvec;
|
|
|
|
env->sscratch_hs = env->sscratch;
|
|
env->sscratch = env->vsscratch;
|
|
|
|
env->sepc_hs = env->sepc;
|
|
env->sepc = env->vsepc;
|
|
|
|
env->scause_hs = env->scause;
|
|
env->scause = env->vscause;
|
|
|
|
env->stval_hs = env->stval;
|
|
env->stval = env->vstval;
|
|
|
|
env->satp_hs = env->satp;
|
|
env->satp = env->vsatp;
|
|
}
|
|
}
|
|
|
|
target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
|
|
{
|
|
if (!riscv_has_ext(env, RVH)) {
|
|
return 0;
|
|
}
|
|
|
|
return env->geilen;
|
|
}
|
|
|
|
void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
|
|
{
|
|
if (!riscv_has_ext(env, RVH)) {
|
|
return;
|
|
}
|
|
|
|
if (geilen > (TARGET_LONG_BITS - 1)) {
|
|
return;
|
|
}
|
|
|
|
env->geilen = geilen;
|
|
}
|
|
|
|
/* This function can only be called to set virt when RVH is enabled */
|
|
void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
|
|
{
|
|
/* Flush the TLB on all virt mode changes. */
|
|
if (env->virt_enabled != enable) {
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
|
|
env->virt_enabled = enable;
|
|
|
|
if (enable) {
|
|
/*
|
|
* The guest external interrupts from an interrupt controller are
|
|
* delivered only when the Guest/VM is running (i.e. V=1). This means
|
|
* any guest external interrupt which is triggered while the Guest/VM
|
|
* is not running (i.e. V=0) will be missed on QEMU resulting in guest
|
|
* with sluggish response to serial console input and other I/O events.
|
|
*
|
|
* To solve this, we check and inject interrupt after setting V=1.
|
|
*/
|
|
riscv_cpu_update_mip(env, 0, 0);
|
|
}
|
|
}
|
|
|
|
int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
|
|
{
|
|
CPURISCVState *env = &cpu->env;
|
|
if (env->miclaim & interrupts) {
|
|
return -1;
|
|
} else {
|
|
env->miclaim |= interrupts;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
|
|
|
|
if (env->virt_enabled) {
|
|
gein = get_field(env->hstatus, HSTATUS_VGEIN);
|
|
vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
|
|
}
|
|
|
|
vstip = env->vstime_irq ? MIP_VSTIP : 0;
|
|
|
|
QEMU_IOTHREAD_LOCK_GUARD();
|
|
|
|
env->mip = (env->mip & ~mask) | (value & mask);
|
|
|
|
if (env->mip | vsgein | vstip) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
}
|
|
|
|
return old;
|
|
}
|
|
|
|
void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
|
|
void *arg)
|
|
{
|
|
env->rdtime_fn = fn;
|
|
env->rdtime_fn_arg = arg;
|
|
}
|
|
|
|
void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
|
|
int (*rmw_fn)(void *arg,
|
|
target_ulong reg,
|
|
target_ulong *val,
|
|
target_ulong new_val,
|
|
target_ulong write_mask),
|
|
void *rmw_fn_arg)
|
|
{
|
|
if (priv <= PRV_M) {
|
|
env->aia_ireg_rmw_fn[priv] = rmw_fn;
|
|
env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
|
|
}
|
|
}
|
|
|
|
void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
|
|
{
|
|
g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
|
|
|
|
if (icount_enabled() && newpriv != env->priv) {
|
|
riscv_itrigger_update_priv(env);
|
|
}
|
|
/* tlb_flush is unnecessary as mode is contained in mmu_idx */
|
|
env->priv = newpriv;
|
|
env->xl = cpu_recompute_xl(env);
|
|
riscv_cpu_update_mask(env);
|
|
|
|
/*
|
|
* Clear the load reservation - otherwise a reservation placed in one
|
|
* context/process can be used by another, resulting in an SC succeeding
|
|
* incorrectly. Version 2.2 of the ISA specification explicitly requires
|
|
* this behaviour, while later revisions say that the kernel "should" use
|
|
* an SC instruction to force the yielding of a load reservation on a
|
|
* preemptive context switch. As a result, do both.
|
|
*/
|
|
env->load_res = -1;
|
|
}
|
|
|
|
/*
|
|
* get_physical_address_pmp - check PMP permission for this physical address
|
|
*
|
|
* Match the PMP region and check permission for this physical address and it's
|
|
* TLB page. Returns 0 if the permission checking was successful
|
|
*
|
|
* @env: CPURISCVState
|
|
* @prot: The returned protection attributes
|
|
* @tlb_size: TLB page size containing addr. It could be modified after PMP
|
|
* permission checking. NULL if not set TLB page for addr.
|
|
* @addr: The physical address to be checked permission
|
|
* @access_type: The type of MMU access
|
|
* @mode: Indicates current privilege level.
|
|
*/
|
|
static int get_physical_address_pmp(CPURISCVState *env, int *prot,
|
|
target_ulong *tlb_size, hwaddr addr,
|
|
int size, MMUAccessType access_type,
|
|
int mode)
|
|
{
|
|
pmp_priv_t pmp_priv;
|
|
int pmp_index = -1;
|
|
|
|
if (!riscv_cpu_cfg(env)->pmp) {
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TRANSLATE_SUCCESS;
|
|
}
|
|
|
|
pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
|
|
&pmp_priv, mode);
|
|
if (pmp_index < 0) {
|
|
*prot = 0;
|
|
return TRANSLATE_PMP_FAIL;
|
|
}
|
|
|
|
*prot = pmp_priv_to_page_prot(pmp_priv);
|
|
if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
|
|
target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
|
|
target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
|
|
|
|
*tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
|
|
}
|
|
|
|
return TRANSLATE_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* get_physical_address - get the physical address for this virtual address
|
|
*
|
|
* Do a page table walk to obtain the physical address corresponding to a
|
|
* virtual address. Returns 0 if the translation was successful
|
|
*
|
|
* Adapted from Spike's mmu_t::translate and mmu_t::walk
|
|
*
|
|
* @env: CPURISCVState
|
|
* @physical: This will be set to the calculated physical address
|
|
* @prot: The returned protection attributes
|
|
* @addr: The virtual address or guest physical address to be translated
|
|
* @fault_pte_addr: If not NULL, this will be set to fault pte address
|
|
* when a error occurs on pte address translation.
|
|
* This will already be shifted to match htval.
|
|
* @access_type: The type of MMU access
|
|
* @mmu_idx: Indicates current privilege level
|
|
* @first_stage: Are we in first stage translation?
|
|
* Second stage is used for hypervisor guest translation
|
|
* @two_stage: Are we going to perform two stage translation
|
|
* @is_debug: Is this access from a debugger or the monitor?
|
|
*/
|
|
static int get_physical_address(CPURISCVState *env, hwaddr *physical,
|
|
int *prot, vaddr addr,
|
|
target_ulong *fault_pte_addr,
|
|
int access_type, int mmu_idx,
|
|
bool first_stage, bool two_stage,
|
|
bool is_debug)
|
|
{
|
|
/*
|
|
* NOTE: the env->pc value visible here will not be
|
|
* correct, but the value visible to the exception handler
|
|
* (riscv_cpu_do_interrupt) is correct
|
|
*/
|
|
MemTxResult res;
|
|
MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
|
|
int mode = mmuidx_priv(mmu_idx);
|
|
bool use_background = false;
|
|
hwaddr ppn;
|
|
int napot_bits = 0;
|
|
target_ulong napot_mask;
|
|
|
|
/*
|
|
* Check if we should use the background registers for the two
|
|
* stage translation. We don't need to check if we actually need
|
|
* two stage translation as that happened before this function
|
|
* was called. Background registers will be used if the guest has
|
|
* forced a two stage translation to be on (in HS or M mode).
|
|
*/
|
|
if (!env->virt_enabled && two_stage) {
|
|
use_background = true;
|
|
}
|
|
|
|
/*
|
|
* MPRV does not affect the virtual-machine load/store
|
|
* instructions, HLV, HLVX, and HSV.
|
|
*/
|
|
if (mmuidx_2stage(mmu_idx)) {
|
|
mode = get_field(env->hstatus, HSTATUS_SPVP);
|
|
}
|
|
|
|
if (first_stage == false) {
|
|
/*
|
|
* We are in stage 2 translation, this is similar to stage 1.
|
|
* Stage 2 is always taken as U-mode
|
|
*/
|
|
mode = PRV_U;
|
|
}
|
|
|
|
if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
|
|
*physical = addr;
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TRANSLATE_SUCCESS;
|
|
}
|
|
|
|
*prot = 0;
|
|
|
|
hwaddr base;
|
|
int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
|
|
|
|
if (first_stage == true) {
|
|
mxr = get_field(env->mstatus, MSTATUS_MXR);
|
|
} else {
|
|
mxr = get_field(env->vsstatus, MSTATUS_MXR);
|
|
}
|
|
|
|
if (first_stage == true) {
|
|
if (use_background) {
|
|
if (riscv_cpu_mxl(env) == MXL_RV32) {
|
|
base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
|
|
vm = get_field(env->vsatp, SATP32_MODE);
|
|
} else {
|
|
base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
|
|
vm = get_field(env->vsatp, SATP64_MODE);
|
|
}
|
|
} else {
|
|
if (riscv_cpu_mxl(env) == MXL_RV32) {
|
|
base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
|
|
vm = get_field(env->satp, SATP32_MODE);
|
|
} else {
|
|
base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
|
|
vm = get_field(env->satp, SATP64_MODE);
|
|
}
|
|
}
|
|
widened = 0;
|
|
} else {
|
|
if (riscv_cpu_mxl(env) == MXL_RV32) {
|
|
base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
|
|
vm = get_field(env->hgatp, SATP32_MODE);
|
|
} else {
|
|
base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
|
|
vm = get_field(env->hgatp, SATP64_MODE);
|
|
}
|
|
widened = 2;
|
|
}
|
|
/* status.SUM will be ignored if execute on background */
|
|
sum = mmuidx_sum(mmu_idx) || use_background || is_debug;
|
|
switch (vm) {
|
|
case VM_1_10_SV32:
|
|
levels = 2; ptidxbits = 10; ptesize = 4; break;
|
|
case VM_1_10_SV39:
|
|
levels = 3; ptidxbits = 9; ptesize = 8; break;
|
|
case VM_1_10_SV48:
|
|
levels = 4; ptidxbits = 9; ptesize = 8; break;
|
|
case VM_1_10_SV57:
|
|
levels = 5; ptidxbits = 9; ptesize = 8; break;
|
|
case VM_1_10_MBARE:
|
|
*physical = addr;
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TRANSLATE_SUCCESS;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
CPUState *cs = env_cpu(env);
|
|
int va_bits = PGSHIFT + levels * ptidxbits + widened;
|
|
target_ulong mask, masked_msbs;
|
|
|
|
if (TARGET_LONG_BITS > (va_bits - 1)) {
|
|
mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
|
|
} else {
|
|
mask = 0;
|
|
}
|
|
masked_msbs = (addr >> (va_bits - 1)) & mask;
|
|
|
|
if (masked_msbs != 0 && masked_msbs != mask) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
|
|
int ptshift = (levels - 1) * ptidxbits;
|
|
int i;
|
|
|
|
#if !TCG_OVERSIZED_GUEST
|
|
restart:
|
|
#endif
|
|
for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
|
|
target_ulong idx;
|
|
if (i == 0) {
|
|
idx = (addr >> (PGSHIFT + ptshift)) &
|
|
((1 << (ptidxbits + widened)) - 1);
|
|
} else {
|
|
idx = (addr >> (PGSHIFT + ptshift)) &
|
|
((1 << ptidxbits) - 1);
|
|
}
|
|
|
|
/* check that physical address of PTE is legal */
|
|
hwaddr pte_addr;
|
|
|
|
if (two_stage && first_stage) {
|
|
int vbase_prot;
|
|
hwaddr vbase;
|
|
|
|
/* Do the second stage translation on the base PTE address. */
|
|
int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
|
|
base, NULL, MMU_DATA_LOAD,
|
|
mmu_idx, false, true,
|
|
is_debug);
|
|
|
|
if (vbase_ret != TRANSLATE_SUCCESS) {
|
|
if (fault_pte_addr) {
|
|
*fault_pte_addr = (base + idx * ptesize) >> 2;
|
|
}
|
|
return TRANSLATE_G_STAGE_FAIL;
|
|
}
|
|
|
|
pte_addr = vbase + idx * ptesize;
|
|
} else {
|
|
pte_addr = base + idx * ptesize;
|
|
}
|
|
|
|
int pmp_prot;
|
|
int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
|
|
sizeof(target_ulong),
|
|
MMU_DATA_LOAD, PRV_S);
|
|
if (pmp_ret != TRANSLATE_SUCCESS) {
|
|
return TRANSLATE_PMP_FAIL;
|
|
}
|
|
|
|
target_ulong pte;
|
|
if (riscv_cpu_mxl(env) == MXL_RV32) {
|
|
pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
|
|
} else {
|
|
pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
|
|
}
|
|
|
|
if (res != MEMTX_OK) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
|
|
bool pbmte = env->menvcfg & MENVCFG_PBMTE;
|
|
bool hade = env->menvcfg & MENVCFG_HADE;
|
|
|
|
if (first_stage && two_stage && env->virt_enabled) {
|
|
pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
|
|
hade = hade && (env->henvcfg & HENVCFG_HADE);
|
|
}
|
|
|
|
if (riscv_cpu_sxl(env) == MXL_RV32) {
|
|
ppn = pte >> PTE_PPN_SHIFT;
|
|
} else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
|
|
ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
|
|
} else {
|
|
ppn = pte >> PTE_PPN_SHIFT;
|
|
if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
}
|
|
|
|
if (!(pte & PTE_V)) {
|
|
/* Invalid PTE */
|
|
return TRANSLATE_FAIL;
|
|
} else if (!pbmte && (pte & PTE_PBMT)) {
|
|
return TRANSLATE_FAIL;
|
|
} else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
|
|
/* Inner PTE, continue walking */
|
|
if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
base = ppn << PGSHIFT;
|
|
} else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
|
|
/* Reserved leaf PTE flags: PTE_W */
|
|
return TRANSLATE_FAIL;
|
|
} else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
|
|
/* Reserved leaf PTE flags: PTE_W + PTE_X */
|
|
return TRANSLATE_FAIL;
|
|
} else if ((pte & PTE_U) && ((mode != PRV_U) &&
|
|
(!sum || access_type == MMU_INST_FETCH))) {
|
|
/* User PTE flags when not U mode and mstatus.SUM is not set,
|
|
or the access type is an instruction fetch */
|
|
return TRANSLATE_FAIL;
|
|
} else if (!(pte & PTE_U) && (mode != PRV_S)) {
|
|
/* Supervisor PTE flags when not S mode */
|
|
return TRANSLATE_FAIL;
|
|
} else if (ppn & ((1ULL << ptshift) - 1)) {
|
|
/* Misaligned PPN */
|
|
return TRANSLATE_FAIL;
|
|
} else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
|
|
((pte & PTE_X) && mxr))) {
|
|
/* Read access check failed */
|
|
return TRANSLATE_FAIL;
|
|
} else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
|
|
/* Write access check failed */
|
|
return TRANSLATE_FAIL;
|
|
} else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
|
|
/* Fetch access check failed */
|
|
return TRANSLATE_FAIL;
|
|
} else {
|
|
/* if necessary, set accessed and dirty bits. */
|
|
target_ulong updated_pte = pte | PTE_A |
|
|
(access_type == MMU_DATA_STORE ? PTE_D : 0);
|
|
|
|
/* Page table updates need to be atomic with MTTCG enabled */
|
|
if (updated_pte != pte) {
|
|
if (!hade) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
|
|
/*
|
|
* - if accessed or dirty bits need updating, and the PTE is
|
|
* in RAM, then we do so atomically with a compare and swap.
|
|
* - if the PTE is in IO space or ROM, then it can't be updated
|
|
* and we return TRANSLATE_FAIL.
|
|
* - if the PTE changed by the time we went to update it, then
|
|
* it is no longer valid and we must re-walk the page table.
|
|
*/
|
|
MemoryRegion *mr;
|
|
hwaddr l = sizeof(target_ulong), addr1;
|
|
mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
|
|
false, MEMTXATTRS_UNSPECIFIED);
|
|
if (memory_region_is_ram(mr)) {
|
|
target_ulong *pte_pa =
|
|
qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
#if TCG_OVERSIZED_GUEST
|
|
/*
|
|
* MTTCG is not enabled on oversized TCG guests so
|
|
* page table updates do not need to be atomic
|
|
*/
|
|
*pte_pa = pte = updated_pte;
|
|
#else
|
|
target_ulong old_pte =
|
|
qatomic_cmpxchg(pte_pa, pte, updated_pte);
|
|
if (old_pte != pte) {
|
|
goto restart;
|
|
} else {
|
|
pte = updated_pte;
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* misconfigured PTE in ROM (AD bits are not preset) or
|
|
* PTE is in IO space and can't be updated atomically
|
|
*/
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* for superpage mappings, make a fake leaf PTE for the TLB's
|
|
* benefit.
|
|
*/
|
|
target_ulong vpn = addr >> PGSHIFT;
|
|
|
|
if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
|
|
napot_bits = ctzl(ppn) + 1;
|
|
if ((i != (levels - 1)) || (napot_bits != 4)) {
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
}
|
|
|
|
napot_mask = (1 << napot_bits) - 1;
|
|
*physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
|
|
(vpn & (((target_ulong)1 << ptshift) - 1))
|
|
) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
|
|
|
|
/* set permissions on the TLB entry */
|
|
if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
|
|
*prot |= PAGE_READ;
|
|
}
|
|
if (pte & PTE_X) {
|
|
*prot |= PAGE_EXEC;
|
|
}
|
|
/*
|
|
* add write permission on stores or if the page is already dirty,
|
|
* so that we TLB miss on later writes to update the dirty bit
|
|
*/
|
|
if ((pte & PTE_W) &&
|
|
(access_type == MMU_DATA_STORE || (pte & PTE_D))) {
|
|
*prot |= PAGE_WRITE;
|
|
}
|
|
return TRANSLATE_SUCCESS;
|
|
}
|
|
}
|
|
return TRANSLATE_FAIL;
|
|
}
|
|
|
|
static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
|
|
MMUAccessType access_type, bool pmp_violation,
|
|
bool first_stage, bool two_stage,
|
|
bool two_stage_indirect)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int page_fault_exceptions, vm;
|
|
uint64_t stap_mode;
|
|
|
|
if (riscv_cpu_mxl(env) == MXL_RV32) {
|
|
stap_mode = SATP32_MODE;
|
|
} else {
|
|
stap_mode = SATP64_MODE;
|
|
}
|
|
|
|
if (first_stage) {
|
|
vm = get_field(env->satp, stap_mode);
|
|
} else {
|
|
vm = get_field(env->hgatp, stap_mode);
|
|
}
|
|
|
|
page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
|
|
|
|
switch (access_type) {
|
|
case MMU_INST_FETCH:
|
|
if (env->virt_enabled && !first_stage) {
|
|
cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
|
|
} else {
|
|
cs->exception_index = page_fault_exceptions ?
|
|
RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
|
|
}
|
|
break;
|
|
case MMU_DATA_LOAD:
|
|
if (two_stage && !first_stage) {
|
|
cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
|
|
} else {
|
|
cs->exception_index = page_fault_exceptions ?
|
|
RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
|
|
}
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
if (two_stage && !first_stage) {
|
|
cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
|
|
} else {
|
|
cs->exception_index = page_fault_exceptions ?
|
|
RISCV_EXCP_STORE_PAGE_FAULT :
|
|
RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
env->badaddr = address;
|
|
env->two_stage_lookup = two_stage;
|
|
env->two_stage_indirect_lookup = two_stage_indirect;
|
|
}
|
|
|
|
hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
{
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
hwaddr phys_addr;
|
|
int prot;
|
|
int mmu_idx = cpu_mmu_index(&cpu->env, false);
|
|
|
|
if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
|
|
true, env->virt_enabled, true)) {
|
|
return -1;
|
|
}
|
|
|
|
if (env->virt_enabled) {
|
|
if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
|
|
0, mmu_idx, false, true, true)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return phys_addr & TARGET_PAGE_MASK;
|
|
}
|
|
|
|
void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr)
|
|
{
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
|
|
if (access_type == MMU_DATA_STORE) {
|
|
cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
|
|
} else if (access_type == MMU_DATA_LOAD) {
|
|
cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
|
|
} else {
|
|
cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
|
|
}
|
|
|
|
env->badaddr = addr;
|
|
env->two_stage_lookup = env->virt_enabled || mmuidx_2stage(mmu_idx);
|
|
env->two_stage_indirect_lookup = false;
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
switch (access_type) {
|
|
case MMU_INST_FETCH:
|
|
cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
|
|
break;
|
|
case MMU_DATA_LOAD:
|
|
cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
env->badaddr = addr;
|
|
env->two_stage_lookup = env->virt_enabled || mmuidx_2stage(mmu_idx);
|
|
env->two_stage_indirect_lookup = false;
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
|
|
static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
|
|
{
|
|
enum riscv_pmu_event_idx pmu_event_type;
|
|
|
|
switch (access_type) {
|
|
case MMU_INST_FETCH:
|
|
pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
|
|
break;
|
|
case MMU_DATA_LOAD:
|
|
pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
riscv_pmu_incr_ctr(cpu, pmu_event_type);
|
|
}
|
|
|
|
bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr)
|
|
{
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
vaddr im_address;
|
|
hwaddr pa = 0;
|
|
int prot, prot2, prot_pmp;
|
|
bool pmp_violation = false;
|
|
bool first_stage_error = true;
|
|
bool two_stage_lookup = false;
|
|
bool two_stage_indirect_error = false;
|
|
int ret = TRANSLATE_FAIL;
|
|
int mode = mmu_idx;
|
|
/* default TLB page size */
|
|
target_ulong tlb_size = TARGET_PAGE_SIZE;
|
|
|
|
env->guest_phys_fault_addr = 0;
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
|
|
__func__, address, access_type, mmu_idx);
|
|
|
|
/*
|
|
* MPRV does not affect the virtual-machine load/store
|
|
* instructions, HLV, HLVX, and HSV.
|
|
*/
|
|
if (mmuidx_2stage(mmu_idx)) {
|
|
mode = get_field(env->hstatus, HSTATUS_SPVP);
|
|
} else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
|
|
get_field(env->mstatus, MSTATUS_MPRV)) {
|
|
mode = get_field(env->mstatus, MSTATUS_MPP);
|
|
if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
|
|
two_stage_lookup = true;
|
|
}
|
|
}
|
|
|
|
pmu_tlb_fill_incr_ctr(cpu, access_type);
|
|
if (env->virt_enabled ||
|
|
((mmuidx_2stage(mmu_idx) || two_stage_lookup) &&
|
|
access_type != MMU_INST_FETCH)) {
|
|
/* Two stage lookup */
|
|
ret = get_physical_address(env, &pa, &prot, address,
|
|
&env->guest_phys_fault_addr, access_type,
|
|
mmu_idx, true, true, false);
|
|
|
|
/*
|
|
* A G-stage exception may be triggered during two state lookup.
|
|
* And the env->guest_phys_fault_addr has already been set in
|
|
* get_physical_address().
|
|
*/
|
|
if (ret == TRANSLATE_G_STAGE_FAIL) {
|
|
first_stage_error = false;
|
|
two_stage_indirect_error = true;
|
|
access_type = MMU_DATA_LOAD;
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
|
|
HWADDR_FMT_plx " prot %d\n",
|
|
__func__, address, ret, pa, prot);
|
|
|
|
if (ret == TRANSLATE_SUCCESS) {
|
|
/* Second stage lookup */
|
|
im_address = pa;
|
|
|
|
ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
|
|
access_type, mmu_idx, false, true,
|
|
false);
|
|
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s 2nd-stage address=%" VADDR_PRIx
|
|
" ret %d physical "
|
|
HWADDR_FMT_plx " prot %d\n",
|
|
__func__, im_address, ret, pa, prot2);
|
|
|
|
prot &= prot2;
|
|
|
|
if (ret == TRANSLATE_SUCCESS) {
|
|
ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
|
|
size, access_type, mode);
|
|
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s PMP address=" HWADDR_FMT_plx " ret %d prot"
|
|
" %d tlb_size " TARGET_FMT_lu "\n",
|
|
__func__, pa, ret, prot_pmp, tlb_size);
|
|
|
|
prot &= prot_pmp;
|
|
}
|
|
|
|
if (ret != TRANSLATE_SUCCESS) {
|
|
/*
|
|
* Guest physical address translation failed, this is a HS
|
|
* level exception
|
|
*/
|
|
first_stage_error = false;
|
|
env->guest_phys_fault_addr = (im_address |
|
|
(address &
|
|
(TARGET_PAGE_SIZE - 1))) >> 2;
|
|
}
|
|
}
|
|
} else {
|
|
/* Single stage lookup */
|
|
ret = get_physical_address(env, &pa, &prot, address, NULL,
|
|
access_type, mmu_idx, true, false, false);
|
|
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s address=%" VADDR_PRIx " ret %d physical "
|
|
HWADDR_FMT_plx " prot %d\n",
|
|
__func__, address, ret, pa, prot);
|
|
|
|
if (ret == TRANSLATE_SUCCESS) {
|
|
ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
|
|
size, access_type, mode);
|
|
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s PMP address=" HWADDR_FMT_plx " ret %d prot"
|
|
" %d tlb_size " TARGET_FMT_lu "\n",
|
|
__func__, pa, ret, prot_pmp, tlb_size);
|
|
|
|
prot &= prot_pmp;
|
|
}
|
|
}
|
|
|
|
if (ret == TRANSLATE_PMP_FAIL) {
|
|
pmp_violation = true;
|
|
}
|
|
|
|
if (ret == TRANSLATE_SUCCESS) {
|
|
tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
|
|
prot, mmu_idx, tlb_size);
|
|
return true;
|
|
} else if (probe) {
|
|
return false;
|
|
} else {
|
|
raise_mmu_exception(env, address, access_type, pmp_violation,
|
|
first_stage_error,
|
|
env->virt_enabled || mmuidx_2stage(mmu_idx),
|
|
two_stage_indirect_error);
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static target_ulong riscv_transformed_insn(CPURISCVState *env,
|
|
target_ulong insn,
|
|
target_ulong taddr)
|
|
{
|
|
target_ulong xinsn = 0;
|
|
target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
|
|
|
|
/*
|
|
* Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
|
|
* be uncompressed. The Quadrant 1 of RVC instruction space need
|
|
* not be transformed because these instructions won't generate
|
|
* any load/store trap.
|
|
*/
|
|
|
|
if ((insn & 0x3) != 0x3) {
|
|
/* Transform 16bit instruction into 32bit instruction */
|
|
switch (GET_C_OP(insn)) {
|
|
case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
|
|
switch (GET_C_FUNC(insn)) {
|
|
case OPC_RISC_C_FUNC_FLD_LQ:
|
|
if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
|
|
xinsn = OPC_RISC_FLD;
|
|
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_LD_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_LW: /* C.LW */
|
|
xinsn = OPC_RISC_LW;
|
|
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_LW_IMM(insn);
|
|
access_size = 4;
|
|
break;
|
|
case OPC_RISC_C_FUNC_FLW_LD:
|
|
if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
|
|
xinsn = OPC_RISC_FLW;
|
|
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_LW_IMM(insn);
|
|
access_size = 4;
|
|
} else { /* C.LD (RV64/RV128) */
|
|
xinsn = OPC_RISC_LD;
|
|
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_LD_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_FSD_SQ:
|
|
if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
|
|
xinsn = OPC_RISC_FSD;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_SD_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_SW: /* C.SW */
|
|
xinsn = OPC_RISC_SW;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_SW_IMM(insn);
|
|
access_size = 4;
|
|
break;
|
|
case OPC_RISC_C_FUNC_FSW_SD:
|
|
if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
|
|
xinsn = OPC_RISC_FSW;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_SW_IMM(insn);
|
|
access_size = 4;
|
|
} else { /* C.SD (RV64/RV128) */
|
|
xinsn = OPC_RISC_SD;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
|
|
access_rs1 = GET_C_RS1S(insn);
|
|
access_imm = GET_C_SD_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
|
|
switch (GET_C_FUNC(insn)) {
|
|
case OPC_RISC_C_FUNC_FLDSP_LQSP:
|
|
if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
|
|
xinsn = OPC_RISC_FLD;
|
|
xinsn = SET_RD(xinsn, GET_C_RD(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_LDSP_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
|
|
xinsn = OPC_RISC_LW;
|
|
xinsn = SET_RD(xinsn, GET_C_RD(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_LWSP_IMM(insn);
|
|
access_size = 4;
|
|
break;
|
|
case OPC_RISC_C_FUNC_FLWSP_LDSP:
|
|
if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
|
|
xinsn = OPC_RISC_FLW;
|
|
xinsn = SET_RD(xinsn, GET_C_RD(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_LWSP_IMM(insn);
|
|
access_size = 4;
|
|
} else { /* C.LDSP (RV64/RV128) */
|
|
xinsn = OPC_RISC_LD;
|
|
xinsn = SET_RD(xinsn, GET_C_RD(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_LDSP_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_FSDSP_SQSP:
|
|
if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
|
|
xinsn = OPC_RISC_FSD;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_SDSP_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
|
|
xinsn = OPC_RISC_SW;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_SWSP_IMM(insn);
|
|
access_size = 4;
|
|
break;
|
|
case 7:
|
|
if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
|
|
xinsn = OPC_RISC_FSW;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_SWSP_IMM(insn);
|
|
access_size = 4;
|
|
} else { /* C.SDSP (RV64/RV128) */
|
|
xinsn = OPC_RISC_SD;
|
|
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
|
|
access_rs1 = 2;
|
|
access_imm = GET_C_SDSP_IMM(insn);
|
|
access_size = 8;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Clear Bit1 of transformed instruction to indicate that
|
|
* original insruction was a 16bit instruction
|
|
*/
|
|
xinsn &= ~((target_ulong)0x2);
|
|
} else {
|
|
/* Transform 32bit (or wider) instructions */
|
|
switch (MASK_OP_MAJOR(insn)) {
|
|
case OPC_RISC_ATOMIC:
|
|
xinsn = insn;
|
|
access_rs1 = GET_RS1(insn);
|
|
access_size = 1 << GET_FUNCT3(insn);
|
|
break;
|
|
case OPC_RISC_LOAD:
|
|
case OPC_RISC_FP_LOAD:
|
|
xinsn = SET_I_IMM(insn, 0);
|
|
access_rs1 = GET_RS1(insn);
|
|
access_imm = GET_IMM(insn);
|
|
access_size = 1 << GET_FUNCT3(insn);
|
|
break;
|
|
case OPC_RISC_STORE:
|
|
case OPC_RISC_FP_STORE:
|
|
xinsn = SET_S_IMM(insn, 0);
|
|
access_rs1 = GET_RS1(insn);
|
|
access_imm = GET_STORE_IMM(insn);
|
|
access_size = 1 << GET_FUNCT3(insn);
|
|
break;
|
|
case OPC_RISC_SYSTEM:
|
|
if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
|
|
xinsn = insn;
|
|
access_rs1 = GET_RS1(insn);
|
|
access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
|
|
access_size = 1 << access_size;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (access_size) {
|
|
xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
|
|
(access_size - 1));
|
|
}
|
|
|
|
return xinsn;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
/*
|
|
* Handle Traps
|
|
*
|
|
* Adapted from Spike's processor_t::take_trap.
|
|
*
|
|
*/
|
|
void riscv_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
RISCVCPU *cpu = RISCV_CPU(cs);
|
|
CPURISCVState *env = &cpu->env;
|
|
bool write_gva = false;
|
|
uint64_t s;
|
|
|
|
/*
|
|
* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
|
|
* so we mask off the MSB and separate into trap type and cause.
|
|
*/
|
|
bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
|
|
target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
|
|
uint64_t deleg = async ? env->mideleg : env->medeleg;
|
|
target_ulong tval = 0;
|
|
target_ulong tinst = 0;
|
|
target_ulong htval = 0;
|
|
target_ulong mtval2 = 0;
|
|
|
|
if (cause == RISCV_EXCP_SEMIHOST) {
|
|
do_common_semihosting(cs);
|
|
env->pc += 4;
|
|
return;
|
|
}
|
|
|
|
if (!async) {
|
|
/* set tval to badaddr for traps with address information */
|
|
switch (cause) {
|
|
case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
|
|
case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
|
|
case RISCV_EXCP_LOAD_ADDR_MIS:
|
|
case RISCV_EXCP_STORE_AMO_ADDR_MIS:
|
|
case RISCV_EXCP_LOAD_ACCESS_FAULT:
|
|
case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
|
|
case RISCV_EXCP_LOAD_PAGE_FAULT:
|
|
case RISCV_EXCP_STORE_PAGE_FAULT:
|
|
write_gva = env->two_stage_lookup;
|
|
tval = env->badaddr;
|
|
if (env->two_stage_indirect_lookup) {
|
|
/*
|
|
* special pseudoinstruction for G-stage fault taken while
|
|
* doing VS-stage page table walk.
|
|
*/
|
|
tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
|
|
} else {
|
|
/*
|
|
* The "Addr. Offset" field in transformed instruction is
|
|
* non-zero only for misaligned access.
|
|
*/
|
|
tinst = riscv_transformed_insn(env, env->bins, tval);
|
|
}
|
|
break;
|
|
case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
|
|
case RISCV_EXCP_INST_ADDR_MIS:
|
|
case RISCV_EXCP_INST_ACCESS_FAULT:
|
|
case RISCV_EXCP_INST_PAGE_FAULT:
|
|
write_gva = env->two_stage_lookup;
|
|
tval = env->badaddr;
|
|
if (env->two_stage_indirect_lookup) {
|
|
/*
|
|
* special pseudoinstruction for G-stage fault taken while
|
|
* doing VS-stage page table walk.
|
|
*/
|
|
tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
|
|
}
|
|
break;
|
|
case RISCV_EXCP_ILLEGAL_INST:
|
|
case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
|
|
tval = env->bins;
|
|
break;
|
|
case RISCV_EXCP_BREAKPOINT:
|
|
if (cs->watchpoint_hit) {
|
|
tval = cs->watchpoint_hit->hitaddr;
|
|
cs->watchpoint_hit = NULL;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/* ecall is dispatched as one cause so translate based on mode */
|
|
if (cause == RISCV_EXCP_U_ECALL) {
|
|
assert(env->priv <= 3);
|
|
|
|
if (env->priv == PRV_M) {
|
|
cause = RISCV_EXCP_M_ECALL;
|
|
} else if (env->priv == PRV_S && env->virt_enabled) {
|
|
cause = RISCV_EXCP_VS_ECALL;
|
|
} else if (env->priv == PRV_S && !env->virt_enabled) {
|
|
cause = RISCV_EXCP_S_ECALL;
|
|
} else if (env->priv == PRV_U) {
|
|
cause = RISCV_EXCP_U_ECALL;
|
|
}
|
|
}
|
|
}
|
|
|
|
trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
|
|
riscv_cpu_get_trap_name(cause, async));
|
|
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
|
|
"epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
|
|
__func__, env->mhartid, async, cause, env->pc, tval,
|
|
riscv_cpu_get_trap_name(cause, async));
|
|
|
|
if (env->priv <= PRV_S &&
|
|
cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
|
|
/* handle the trap in S-mode */
|
|
if (riscv_has_ext(env, RVH)) {
|
|
uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
|
|
|
|
if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
|
|
/* Trap to VS mode */
|
|
/*
|
|
* See if we need to adjust cause. Yes if its VS mode interrupt
|
|
* no if hypervisor has delegated one of hs mode's interrupt
|
|
*/
|
|
if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
|
|
cause == IRQ_VS_EXT) {
|
|
cause = cause - 1;
|
|
}
|
|
write_gva = false;
|
|
} else if (env->virt_enabled) {
|
|
/* Trap into HS mode, from virt */
|
|
riscv_cpu_swap_hypervisor_regs(env);
|
|
env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
|
|
env->priv);
|
|
env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
|
|
|
|
htval = env->guest_phys_fault_addr;
|
|
|
|
riscv_cpu_set_virt_enabled(env, 0);
|
|
} else {
|
|
/* Trap into HS mode */
|
|
env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
|
|
htval = env->guest_phys_fault_addr;
|
|
}
|
|
env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
|
|
}
|
|
|
|
s = env->mstatus;
|
|
s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
|
|
s = set_field(s, MSTATUS_SPP, env->priv);
|
|
s = set_field(s, MSTATUS_SIE, 0);
|
|
env->mstatus = s;
|
|
env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
|
|
env->sepc = env->pc;
|
|
env->stval = tval;
|
|
env->htval = htval;
|
|
env->htinst = tinst;
|
|
env->pc = (env->stvec >> 2 << 2) +
|
|
((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
|
|
riscv_cpu_set_mode(env, PRV_S);
|
|
} else {
|
|
/* handle the trap in M-mode */
|
|
if (riscv_has_ext(env, RVH)) {
|
|
if (env->virt_enabled) {
|
|
riscv_cpu_swap_hypervisor_regs(env);
|
|
}
|
|
env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
|
|
env->virt_enabled);
|
|
if (env->virt_enabled && tval) {
|
|
env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
|
|
}
|
|
|
|
mtval2 = env->guest_phys_fault_addr;
|
|
|
|
/* Trapping to M mode, virt is disabled */
|
|
riscv_cpu_set_virt_enabled(env, 0);
|
|
}
|
|
|
|
s = env->mstatus;
|
|
s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
|
|
s = set_field(s, MSTATUS_MPP, env->priv);
|
|
s = set_field(s, MSTATUS_MIE, 0);
|
|
env->mstatus = s;
|
|
env->mcause = cause | ~(((target_ulong)-1) >> async);
|
|
env->mepc = env->pc;
|
|
env->mtval = tval;
|
|
env->mtval2 = mtval2;
|
|
env->mtinst = tinst;
|
|
env->pc = (env->mtvec >> 2 << 2) +
|
|
((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
|
|
riscv_cpu_set_mode(env, PRV_M);
|
|
}
|
|
|
|
/*
|
|
* NOTE: it is not necessary to yield load reservations here. It is only
|
|
* necessary for an SC from "another hart" to cause a load reservation
|
|
* to be yielded. Refer to the memory consistency model section of the
|
|
* RISC-V ISA Specification.
|
|
*/
|
|
|
|
env->two_stage_lookup = false;
|
|
env->two_stage_indirect_lookup = false;
|
|
#endif
|
|
cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
|
|
}
|