64e07be544
When compiling Qemu with older kernel headers, the PVR setting mechanism isn't available yet. Unfortunately, back then I didn't add a capability we could check against, so all we can do is add a configure test to see if we support PVR setting. For BookE, we don't care yet. This fixes compilation errors with KVM enabled on older kernel headers (like 2.6.32). Signed-off-by: Alexander Graf <agraf@suse.de>
581 lines
16 KiB
C
581 lines
16 KiB
C
/*
|
|
* PowerPC implementation of KVM hooks
|
|
*
|
|
* Copyright IBM Corp. 2007
|
|
* Copyright (C) 2011 Freescale Semiconductor, Inc.
|
|
*
|
|
* Authors:
|
|
* Jerone Young <jyoung5@us.ibm.com>
|
|
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
|
|
* Hollis Blanchard <hollisb@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu-timer.h"
|
|
#include "sysemu.h"
|
|
#include "kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "cpu.h"
|
|
#include "device_tree.h"
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define dprintf(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define dprintf(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static int cap_interrupt_unset = false;
|
|
static int cap_interrupt_level = false;
|
|
static int cap_segstate;
|
|
#ifdef KVM_CAP_PPC_BOOKE_SREGS
|
|
static int cap_booke_sregs;
|
|
#endif
|
|
|
|
/* XXX We have a race condition where we actually have a level triggered
|
|
* interrupt, but the infrastructure can't expose that yet, so the guest
|
|
* takes but ignores it, goes to sleep and never gets notified that there's
|
|
* still an interrupt pending.
|
|
*
|
|
* As a quick workaround, let's just wake up again 20 ms after we injected
|
|
* an interrupt. That way we can assure that we're always reinjecting
|
|
* interrupts in case the guest swallowed them.
|
|
*/
|
|
static QEMUTimer *idle_timer;
|
|
|
|
static void kvm_kick_env(void *env)
|
|
{
|
|
qemu_cpu_kick(env);
|
|
}
|
|
|
|
int kvm_arch_init(KVMState *s)
|
|
{
|
|
#ifdef KVM_CAP_PPC_UNSET_IRQ
|
|
cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
|
|
#endif
|
|
#ifdef KVM_CAP_PPC_IRQ_LEVEL
|
|
cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
|
|
#endif
|
|
#ifdef KVM_CAP_PPC_SEGSTATE
|
|
cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
|
|
#endif
|
|
#ifdef KVM_CAP_PPC_BOOKE_SREGS
|
|
cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
|
|
#endif
|
|
|
|
if (!cap_interrupt_level) {
|
|
fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
|
|
"VM to stall at times!\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_sync_sregs(CPUState *cenv)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
int ret;
|
|
|
|
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
|
|
/* What we're really trying to say is "if we're on BookE, we use
|
|
the native PVR for now". This is the only sane way to check
|
|
it though, so we potentially confuse users that they can run
|
|
BookE guests on BookS. Let's hope nobody dares enough :) */
|
|
return 0;
|
|
} else {
|
|
if (!cap_segstate) {
|
|
fprintf(stderr, "kvm error: missing PVR setting capability\n");
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_KVM_PPC_PVR)
|
|
if (1) {
|
|
fprintf(stderr, "kvm error: missing PVR setting capability\n");
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_PPC_PVR
|
|
sregs.pvr = cenv->spr[SPR_PVR];
|
|
#endif
|
|
return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cenv)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_arch_sync_sregs(cenv);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_reset_vcpu(CPUState *env)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_put_registers(CPUState *env, int level)
|
|
{
|
|
struct kvm_regs regs;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
regs.ctr = env->ctr;
|
|
regs.lr = env->lr;
|
|
regs.xer = env->xer;
|
|
regs.msr = env->msr;
|
|
regs.pc = env->nip;
|
|
|
|
regs.srr0 = env->spr[SPR_SRR0];
|
|
regs.srr1 = env->spr[SPR_SRR1];
|
|
|
|
regs.sprg0 = env->spr[SPR_SPRG0];
|
|
regs.sprg1 = env->spr[SPR_SPRG1];
|
|
regs.sprg2 = env->spr[SPR_SPRG2];
|
|
regs.sprg3 = env->spr[SPR_SPRG3];
|
|
regs.sprg4 = env->spr[SPR_SPRG4];
|
|
regs.sprg5 = env->spr[SPR_SPRG5];
|
|
regs.sprg6 = env->spr[SPR_SPRG6];
|
|
regs.sprg7 = env->spr[SPR_SPRG7];
|
|
|
|
regs.pid = env->spr[SPR_BOOKE_PID];
|
|
|
|
for (i = 0;i < 32; i++)
|
|
regs.gpr[i] = env->gpr[i];
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *env)
|
|
{
|
|
struct kvm_regs regs;
|
|
struct kvm_sregs sregs;
|
|
uint32_t cr;
|
|
int i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
cr = regs.cr;
|
|
for (i = 7; i >= 0; i--) {
|
|
env->crf[i] = cr & 15;
|
|
cr >>= 4;
|
|
}
|
|
|
|
env->ctr = regs.ctr;
|
|
env->lr = regs.lr;
|
|
env->xer = regs.xer;
|
|
env->msr = regs.msr;
|
|
env->nip = regs.pc;
|
|
|
|
env->spr[SPR_SRR0] = regs.srr0;
|
|
env->spr[SPR_SRR1] = regs.srr1;
|
|
|
|
env->spr[SPR_SPRG0] = regs.sprg0;
|
|
env->spr[SPR_SPRG1] = regs.sprg1;
|
|
env->spr[SPR_SPRG2] = regs.sprg2;
|
|
env->spr[SPR_SPRG3] = regs.sprg3;
|
|
env->spr[SPR_SPRG4] = regs.sprg4;
|
|
env->spr[SPR_SPRG5] = regs.sprg5;
|
|
env->spr[SPR_SPRG6] = regs.sprg6;
|
|
env->spr[SPR_SPRG7] = regs.sprg7;
|
|
|
|
env->spr[SPR_BOOKE_PID] = regs.pid;
|
|
|
|
for (i = 0;i < 32; i++)
|
|
env->gpr[i] = regs.gpr[i];
|
|
|
|
#ifdef KVM_CAP_PPC_BOOKE_SREGS
|
|
if (cap_booke_sregs) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_BASE) {
|
|
env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
|
|
env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
|
|
env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
|
|
env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
|
|
env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
|
|
env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
|
|
env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
|
|
env->spr[SPR_DECR] = sregs.u.e.dec;
|
|
env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
|
|
env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
|
|
env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
|
|
env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
|
|
env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
|
|
env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
|
|
env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
|
|
env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_64) {
|
|
env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
|
|
env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
|
|
env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
|
|
env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
|
|
env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
|
|
env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
|
|
env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
|
|
env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
|
|
env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
|
|
env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
|
|
env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
|
|
env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
|
|
env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
|
|
env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
|
|
env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
|
|
env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
|
|
env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
|
|
env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPE) {
|
|
env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
|
|
env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
|
|
env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PM) {
|
|
env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PC) {
|
|
env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
|
|
env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
|
|
}
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
|
|
env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
|
|
env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
|
|
env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
|
|
env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
|
|
env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
|
|
env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
|
|
env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
|
|
env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
|
|
env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
|
|
env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_EXP) {
|
|
env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PD) {
|
|
env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
|
|
env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
|
|
}
|
|
|
|
if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
|
|
env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
|
|
env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
|
|
env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
|
|
|
|
if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
|
|
env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
|
|
env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef KVM_CAP_PPC_SEGSTATE
|
|
if (cap_segstate) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ppc_store_sdr1(env, sregs.u.s.sdr1);
|
|
|
|
/* Sync SLB */
|
|
#ifdef TARGET_PPC64
|
|
for (i = 0; i < 64; i++) {
|
|
ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
|
|
sregs.u.s.ppc64.slb[i].slbv);
|
|
}
|
|
#endif
|
|
|
|
/* Sync SRs */
|
|
for (i = 0; i < 16; i++) {
|
|
env->sr[i] = sregs.u.s.ppc32.sr[i];
|
|
}
|
|
|
|
/* Sync BATs */
|
|
for (i = 0; i < 8; i++) {
|
|
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
|
|
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
|
|
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
|
|
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_set_interrupt(CPUState *env, int irq, int level)
|
|
{
|
|
unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
|
|
|
|
if (irq != PPC_INTERRUPT_EXT) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
|
|
return 0;
|
|
}
|
|
|
|
kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(TARGET_PPCEMB)
|
|
#define PPC_INPUT_INT PPC40x_INPUT_INT
|
|
#elif defined(TARGET_PPC64)
|
|
#define PPC_INPUT_INT PPC970_INPUT_INT
|
|
#else
|
|
#define PPC_INPUT_INT PPC6xx_INPUT_INT
|
|
#endif
|
|
|
|
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
|
|
{
|
|
int r;
|
|
unsigned irq;
|
|
|
|
/* PowerPC Qemu tracks the various core input pins (interrupt, critical
|
|
* interrupt, reset, etc) in PPC-specific env->irq_input_state. */
|
|
if (!cap_interrupt_level &&
|
|
run->ready_for_interrupt_injection &&
|
|
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->irq_input_state & (1<<PPC_INPUT_INT)))
|
|
{
|
|
/* For now KVM disregards the 'irq' argument. However, in the
|
|
* future KVM could cache it in-kernel to avoid a heavyweight exit
|
|
* when reading the UIC.
|
|
*/
|
|
irq = KVM_INTERRUPT_SET;
|
|
|
|
dprintf("injected interrupt %d\n", irq);
|
|
r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
|
|
if (r < 0)
|
|
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
|
|
|
|
/* Always wake up soon in case the interrupt was level based */
|
|
qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
|
|
(get_ticks_per_sec() / 50));
|
|
}
|
|
|
|
/* We don't know if there are more interrupts pending after this. However,
|
|
* the guest will return to userspace in the course of handling this one
|
|
* anyways, so we will get a chance to deliver the rest. */
|
|
}
|
|
|
|
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *env)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_handle_halt(CPUState *env)
|
|
{
|
|
if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
|
|
env->halted = 1;
|
|
env->exception_index = EXCP_HLT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* map dcr access to existing qemu dcr emulation */
|
|
static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
|
|
{
|
|
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
|
|
{
|
|
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_DCR:
|
|
if (run->dcr.is_write) {
|
|
dprintf("handle dcr write\n");
|
|
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
|
|
} else {
|
|
dprintf("handle dcr read\n");
|
|
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
|
|
}
|
|
break;
|
|
case KVM_EXIT_HLT:
|
|
dprintf("handle halt\n");
|
|
ret = kvmppc_handle_halt(env);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int read_cpuinfo(const char *field, char *value, int len)
|
|
{
|
|
FILE *f;
|
|
int ret = -1;
|
|
int field_len = strlen(field);
|
|
char line[512];
|
|
|
|
f = fopen("/proc/cpuinfo", "r");
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
do {
|
|
if(!fgets(line, sizeof(line), f)) {
|
|
break;
|
|
}
|
|
if (!strncmp(line, field, field_len)) {
|
|
strncpy(value, line, len);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} while(*line);
|
|
|
|
fclose(f);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t kvmppc_get_tbfreq(void)
|
|
{
|
|
char line[512];
|
|
char *ns;
|
|
uint32_t retval = get_ticks_per_sec();
|
|
|
|
if (read_cpuinfo("timebase", line, sizeof(line))) {
|
|
return retval;
|
|
}
|
|
|
|
if (!(ns = strchr(line, ':'))) {
|
|
return retval;
|
|
}
|
|
|
|
ns++;
|
|
|
|
retval = atoi(ns);
|
|
return retval;
|
|
}
|
|
|
|
int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
|
|
{
|
|
uint32_t *hc = (uint32_t*)buf;
|
|
|
|
#ifdef KVM_CAP_PPC_GET_PVINFO
|
|
struct kvm_ppc_pvinfo pvinfo;
|
|
|
|
if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
|
|
!kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
|
|
memcpy(buf, pvinfo.hcall, buf_len);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Fallback to always fail hypercalls:
|
|
*
|
|
* li r3, -1
|
|
* nop
|
|
* nop
|
|
* nop
|
|
*/
|
|
|
|
hc[0] = 0x3860ffff;
|
|
hc[1] = 0x60000000;
|
|
hc[2] = 0x60000000;
|
|
hc[3] = 0x60000000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *env)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|