qemu/target/ppc/gdbstub.c
Benjamin Gray ed399ade3c target/ppc: Fix GDB register indexing on secondary CPUs
The GDB server protocol assigns an arbitrary numbering of the SPRs.
We track this correspondence on each SPR with gdb_id, using it to
resolve any SPR requests GDB makes.

Early on we generate an XML representation of the SPRs to give GDB,
including this numbering. However the XML is cached globally, and we
skip setting the SPR gdb_id values on subsequent threads if we detect
it is cached. This causes QEMU to fail to resolve SPR requests against
secondary CPUs because it cannot find the matching gdb_id value on that
thread's SPRs.

This is a minimal fix to first assign the gdb_id values, then return
early if the XML is cached. Otherwise we generate the XML using the
now already initialised gdb_id values.

Fixes: 1b53948ff8 ("target/ppc: Use GDBFeature for dynamic XML")
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Benjamin Gray <bgray@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2024-03-30 18:50:24 +10:00

650 lines
16 KiB
C

/*
* PowerPC gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/gdbstub.h"
#include "gdbstub/helpers.h"
#include "internal.h"
static int ppc_gdb_register_len_apple(int n)
{
switch (n) {
case 0 ... 31:
/* gprs */
return 8;
case 32 ... 63:
/* fprs */
return 8;
case 64 ... 95:
return 16;
case 64 + 32: /* nip */
case 65 + 32: /* msr */
case 67 + 32: /* lr */
case 68 + 32: /* ctr */
case 70 + 32: /* fpscr */
return 8;
case 66 + 32: /* cr */
case 69 + 32: /* xer */
return 4;
default:
return 0;
}
}
static int ppc_gdb_register_len(int n)
{
switch (n) {
case 0 ... 31:
/* gprs */
return sizeof(target_ulong);
case 66:
/* cr */
case 69:
/* xer */
return 4;
case 64:
/* nip */
case 65:
/* msr */
case 67:
/* lr */
case 68:
/* ctr */
return sizeof(target_ulong);
default:
return 0;
}
}
/*
* We need to present the registers to gdb in the "current" memory
* ordering. For user-only mode we get this for free;
* TARGET_BIG_ENDIAN is set to the proper ordering for the
* binary, and cannot be changed. For system mode,
* TARGET_BIG_ENDIAN is always set, and we must check the current
* mode of the chip to see if we're running in little-endian.
*/
void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len)
{
#ifndef CONFIG_USER_ONLY
if (!FIELD_EX64(env->msr, MSR, LE)) {
/* do nothing */
} else if (len == 4) {
bswap32s((uint32_t *)mem_buf);
} else if (len == 8) {
bswap64s((uint64_t *)mem_buf);
} else if (len == 16) {
bswap128s((Int128 *)mem_buf);
} else {
g_assert_not_reached();
}
#endif
}
/*
* Old gdb always expects FP registers. Newer (xml-aware) gdb only
* expects whatever the target description contains. Due to a
* historical mishap the FP registers appear in between core integer
* regs and PC, MSR, CR, and so forth. We hack round this by giving
* the FP regs zero size when talking to a newer gdb.
*/
int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n)
{
CPUPPCState *env = cpu_env(cs);
uint8_t *mem_buf;
int r = ppc_gdb_register_len(n);
if (!r) {
return r;
}
if (n < 32) {
/* gprs */
gdb_get_regl(buf, env->gpr[n]);
} else {
switch (n) {
case 64:
gdb_get_regl(buf, env->nip);
break;
case 65:
gdb_get_regl(buf, env->msr);
break;
case 66:
{
uint32_t cr = ppc_get_cr(env);
gdb_get_reg32(buf, cr);
break;
}
case 67:
gdb_get_regl(buf, env->lr);
break;
case 68:
gdb_get_regl(buf, env->ctr);
break;
case 69:
gdb_get_reg32(buf, cpu_read_xer(env));
break;
}
}
mem_buf = buf->data + buf->len - r;
ppc_maybe_bswap_register(env, mem_buf, r);
return r;
}
int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n)
{
CPUPPCState *env = cpu_env(cs);
uint8_t *mem_buf;
int r = ppc_gdb_register_len_apple(n);
if (!r) {
return r;
}
if (n < 32) {
/* gprs */
gdb_get_reg64(buf, env->gpr[n]);
} else if (n < 64) {
/* fprs */
gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32));
} else if (n < 96) {
/* Altivec */
gdb_get_reg64(buf, n - 64);
gdb_get_reg64(buf, 0);
} else {
switch (n) {
case 64 + 32:
gdb_get_reg64(buf, env->nip);
break;
case 65 + 32:
gdb_get_reg64(buf, env->msr);
break;
case 66 + 32:
{
uint32_t cr = ppc_get_cr(env);
gdb_get_reg32(buf, cr);
break;
}
case 67 + 32:
gdb_get_reg64(buf, env->lr);
break;
case 68 + 32:
gdb_get_reg64(buf, env->ctr);
break;
case 69 + 32:
gdb_get_reg32(buf, cpu_read_xer(env));
break;
case 70 + 32:
gdb_get_reg64(buf, env->fpscr);
break;
}
}
mem_buf = buf->data + buf->len - r;
ppc_maybe_bswap_register(env, mem_buf, r);
return r;
}
int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
CPUPPCState *env = cpu_env(cs);
int r = ppc_gdb_register_len(n);
if (!r) {
return r;
}
ppc_maybe_bswap_register(env, mem_buf, r);
if (n < 32) {
/* gprs */
env->gpr[n] = ldtul_p(mem_buf);
} else if (n < 64) {
/* fprs */
*cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
} else {
switch (n) {
case 64:
env->nip = ldtul_p(mem_buf);
break;
case 65:
ppc_store_msr(env, ldtul_p(mem_buf));
break;
case 66:
{
uint32_t cr = ldl_p(mem_buf);
ppc_set_cr(env, cr);
break;
}
case 67:
env->lr = ldtul_p(mem_buf);
break;
case 68:
env->ctr = ldtul_p(mem_buf);
break;
case 69:
cpu_write_xer(env, ldl_p(mem_buf));
break;
case 70:
/* fpscr */
ppc_store_fpscr(env, ldtul_p(mem_buf));
break;
}
}
return r;
}
int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
{
CPUPPCState *env = cpu_env(cs);
int r = ppc_gdb_register_len_apple(n);
if (!r) {
return r;
}
ppc_maybe_bswap_register(env, mem_buf, r);
if (n < 32) {
/* gprs */
env->gpr[n] = ldq_p(mem_buf);
} else if (n < 64) {
/* fprs */
*cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
} else {
switch (n) {
case 64 + 32:
env->nip = ldq_p(mem_buf);
break;
case 65 + 32:
ppc_store_msr(env, ldq_p(mem_buf));
break;
case 66 + 32:
{
uint32_t cr = ldl_p(mem_buf);
ppc_set_cr(env, cr);
break;
}
case 67 + 32:
env->lr = ldq_p(mem_buf);
break;
case 68 + 32:
env->ctr = ldq_p(mem_buf);
break;
case 69 + 32:
cpu_write_xer(env, ldl_p(mem_buf));
break;
case 70 + 32:
/* fpscr */
ppc_store_fpscr(env, ldq_p(mem_buf));
break;
}
}
return r;
}
#ifndef CONFIG_USER_ONLY
static void gdb_gen_spr_feature(CPUState *cs)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
GDBFeatureBuilder builder;
unsigned int num_regs = 0;
int i;
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
ppc_spr_t *spr = &env->spr_cb[i];
if (!spr->name) {
continue;
}
/*
* GDB identifies registers based on the order they are
* presented in the XML. These ids will not match QEMU's
* representation (which follows the PowerISA).
*
* Store the position of the current register description so
* we can make the correspondence later.
*/
spr->gdb_id = num_regs;
num_regs++;
}
if (pcc->gdb_spr.xml) {
return;
}
gdb_feature_builder_init(&builder, &pcc->gdb_spr,
"org.qemu.power.spr", "power-spr.xml",
cs->gdb_num_regs);
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
ppc_spr_t *spr = &env->spr_cb[i];
if (!spr->name) {
continue;
}
gdb_feature_builder_append_reg(&builder, g_ascii_strdown(spr->name, -1),
TARGET_LONG_BITS, spr->gdb_id,
"int", "spr");
}
gdb_feature_builder_end(&builder);
}
#endif
#if !defined(CONFIG_USER_ONLY)
static int gdb_find_spr_idx(CPUPPCState *env, int n)
{
int i;
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
ppc_spr_t *spr = &env->spr_cb[i];
if (spr->name && spr->gdb_id == n) {
return i;
}
}
return -1;
}
static int gdb_get_spr_reg(CPUState *cs, GByteArray *buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int reg;
int len;
reg = gdb_find_spr_idx(env, n);
if (reg < 0) {
return 0;
}
len = TARGET_LONG_SIZE;
/* Handle those SPRs that are not part of the env->spr[] array */
target_ulong val;
switch (reg) {
#if defined(TARGET_PPC64)
case SPR_CFAR:
val = env->cfar;
break;
#endif
case SPR_HDEC:
val = cpu_ppc_load_hdecr(env);
break;
case SPR_TBL:
val = cpu_ppc_load_tbl(env);
break;
case SPR_TBU:
val = cpu_ppc_load_tbu(env);
break;
case SPR_DECR:
val = cpu_ppc_load_decr(env);
break;
default:
val = env->spr[reg];
}
gdb_get_regl(buf, val);
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, len), len);
return len;
}
static int gdb_set_spr_reg(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int reg;
int len;
reg = gdb_find_spr_idx(env, n);
if (reg < 0) {
return 0;
}
len = TARGET_LONG_SIZE;
ppc_maybe_bswap_register(env, mem_buf, len);
/* Handle those SPRs that are not part of the env->spr[] array */
target_ulong val = ldn_p(mem_buf, len);
switch (reg) {
#if defined(TARGET_PPC64)
case SPR_CFAR:
env->cfar = val;
break;
#endif
default:
env->spr[reg] = val;
}
return len;
}
#endif
static int gdb_get_float_reg(CPUState *cs, GByteArray *buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
uint8_t *mem_buf;
if (n < 32) {
gdb_get_reg64(buf, *cpu_fpr_ptr(env, n));
mem_buf = gdb_get_reg_ptr(buf, 8);
ppc_maybe_bswap_register(env, mem_buf, 8);
return 8;
}
if (n == 32) {
gdb_get_reg32(buf, env->fpscr);
mem_buf = gdb_get_reg_ptr(buf, 4);
ppc_maybe_bswap_register(env, mem_buf, 4);
return 4;
}
return 0;
}
static int gdb_set_float_reg(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
ppc_maybe_bswap_register(env, mem_buf, 8);
*cpu_fpr_ptr(env, n) = ldq_p(mem_buf);
return 8;
}
if (n == 32) {
ppc_maybe_bswap_register(env, mem_buf, 4);
ppc_store_fpscr(env, ldl_p(mem_buf));
return 4;
}
return 0;
}
static int gdb_get_avr_reg(CPUState *cs, GByteArray *buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
uint8_t *mem_buf;
if (n < 32) {
ppc_avr_t *avr = cpu_avr_ptr(env, n);
gdb_get_reg128(buf, avr->VsrD(0), avr->VsrD(1));
mem_buf = gdb_get_reg_ptr(buf, 16);
ppc_maybe_bswap_register(env, mem_buf, 16);
return 16;
}
if (n == 32) {
gdb_get_reg32(buf, ppc_get_vscr(env));
mem_buf = gdb_get_reg_ptr(buf, 4);
ppc_maybe_bswap_register(env, mem_buf, 4);
return 4;
}
if (n == 33) {
gdb_get_reg32(buf, (uint32_t)env->spr[SPR_VRSAVE]);
mem_buf = gdb_get_reg_ptr(buf, 4);
ppc_maybe_bswap_register(env, mem_buf, 4);
return 4;
}
return 0;
}
static int gdb_set_avr_reg(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
ppc_avr_t *avr = cpu_avr_ptr(env, n);
ppc_maybe_bswap_register(env, mem_buf, 16);
avr->VsrD(0) = ldq_p(mem_buf);
avr->VsrD(1) = ldq_p(mem_buf + 8);
return 16;
}
if (n == 32) {
ppc_maybe_bswap_register(env, mem_buf, 4);
ppc_store_vscr(env, ldl_p(mem_buf));
return 4;
}
if (n == 33) {
ppc_maybe_bswap_register(env, mem_buf, 4);
env->spr[SPR_VRSAVE] = (target_ulong)ldl_p(mem_buf);
return 4;
}
return 0;
}
static int gdb_get_spe_reg(CPUState *cs, GByteArray *buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
#if defined(TARGET_PPC64)
gdb_get_reg32(buf, env->gpr[n] >> 32);
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
#else
gdb_get_reg32(buf, env->gprh[n]);
#endif
return 4;
}
if (n == 32) {
gdb_get_reg64(buf, env->spe_acc);
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
return 8;
}
if (n == 33) {
gdb_get_reg32(buf, env->spe_fscr);
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
return 4;
}
return 0;
}
static int gdb_set_spe_reg(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
#if defined(TARGET_PPC64)
target_ulong lo = (uint32_t)env->gpr[n];
target_ulong hi;
ppc_maybe_bswap_register(env, mem_buf, 4);
hi = (target_ulong)ldl_p(mem_buf) << 32;
env->gpr[n] = lo | hi;
#else
env->gprh[n] = ldl_p(mem_buf);
#endif
return 4;
}
if (n == 32) {
ppc_maybe_bswap_register(env, mem_buf, 8);
env->spe_acc = ldq_p(mem_buf);
return 8;
}
if (n == 33) {
ppc_maybe_bswap_register(env, mem_buf, 4);
env->spe_fscr = ldl_p(mem_buf);
return 4;
}
return 0;
}
static int gdb_get_vsx_reg(CPUState *cs, GByteArray *buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
gdb_get_reg64(buf, *cpu_vsrl_ptr(env, n));
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
return 8;
}
return 0;
}
static int gdb_set_vsx_reg(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (n < 32) {
ppc_maybe_bswap_register(env, mem_buf, 8);
*cpu_vsrl_ptr(env, n) = ldq_p(mem_buf);
return 8;
}
return 0;
}
const gchar *ppc_gdb_arch_name(CPUState *cs)
{
#if defined(TARGET_PPC64)
return "powerpc:common64";
#else
return "powerpc:common";
#endif
}
void ppc_gdb_init(CPUState *cs, PowerPCCPUClass *pcc)
{
if (pcc->insns_flags & PPC_FLOAT) {
gdb_register_coprocessor(cs, gdb_get_float_reg, gdb_set_float_reg,
gdb_find_static_feature("power-fpu.xml"), 0);
}
if (pcc->insns_flags & PPC_ALTIVEC) {
gdb_register_coprocessor(cs, gdb_get_avr_reg, gdb_set_avr_reg,
gdb_find_static_feature("power-altivec.xml"),
0);
}
if (pcc->insns_flags & PPC_SPE) {
gdb_register_coprocessor(cs, gdb_get_spe_reg, gdb_set_spe_reg,
gdb_find_static_feature("power-spe.xml"), 0);
}
if (pcc->insns_flags2 & PPC2_VSX) {
gdb_register_coprocessor(cs, gdb_get_vsx_reg, gdb_set_vsx_reg,
gdb_find_static_feature("power-vsx.xml"), 0);
}
#ifndef CONFIG_USER_ONLY
gdb_gen_spr_feature(cs);
gdb_register_coprocessor(cs, gdb_get_spr_reg, gdb_set_spr_reg,
&pcc->gdb_spr, 0);
#endif
}