qemu/target/loongarch/gdbstub.c
Philippe Mathieu-Daudé 2a99b2af2c target/loongarch: Use explicit little-endian LD/ST API
The LoongArch architecture uses little endianness. Directly
use the little-endian LD/ST API.

Mechanical change using:

  $ end=le; \
    for acc in uw w l q tul; do \
      sed -i -e "s/ld${acc}_p(/ld${acc}_${end}_p(/" \
             -e "s/st${acc}_p(/st${acc}_${end}_p(/" \
        $(git grep -wlE '(ld|st)t?u?[wlq]_p' target/loongarch/); \
    done

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20241004163042.85922-13-philmd@linaro.org>
2024-10-15 12:13:59 -03:00

195 lines
4.8 KiB
C

/*
* LOONGARCH gdb server stub
*
* Copyright (c) 2021 Loongson Technology Corporation Limited
*
* SPDX-License-Identifier: LGPL-2.1+
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/gdbstub.h"
#include "gdbstub/helpers.h"
#include "vec.h"
uint64_t read_fcc(CPULoongArchState *env)
{
uint64_t ret = 0;
for (int i = 0; i < 8; ++i) {
ret |= (uint64_t)env->cf[i] << (i * 8);
}
return ret;
}
void write_fcc(CPULoongArchState *env, uint64_t val)
{
for (int i = 0; i < 8; ++i) {
env->cf[i] = (val >> (i * 8)) & 1;
}
}
int loongarch_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
CPULoongArchState *env = cpu_env(cs);
if (0 <= n && n <= 34) {
uint64_t val;
if (n < 32) {
val = env->gpr[n];
} else if (n == 32) {
/* orig_a0 */
val = 0;
} else if (n == 33) {
val = env->pc;
} else /* if (n == 34) */ {
val = env->CSR_BADV;
}
if (is_la64(env)) {
return gdb_get_reg64(mem_buf, val);
} else {
return gdb_get_reg32(mem_buf, val);
}
}
return 0;
}
int loongarch_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
CPULoongArchState *env = cpu_env(cs);
target_ulong tmp;
int read_length;
int length = 0;
if (is_la64(env)) {
tmp = ldq_le_p(mem_buf);
read_length = 8;
} else {
tmp = ldl_le_p(mem_buf);
read_length = 4;
}
if (0 <= n && n < 32) {
env->gpr[n] = tmp;
length = read_length;
} else if (n == 33) {
set_pc(env, tmp);
length = read_length;
}
return length;
}
static int loongarch_gdb_get_fpu(CPUState *cs, GByteArray *mem_buf, int n)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
if (0 <= n && n < 32) {
return gdb_get_reg64(mem_buf, env->fpr[n].vreg.D(0));
} else if (32 <= n && n < 40) {
return gdb_get_reg8(mem_buf, env->cf[n - 32]);
} else if (n == 40) {
return gdb_get_reg32(mem_buf, env->fcsr0);
}
return 0;
}
static int loongarch_gdb_set_fpu(CPUState *cs, uint8_t *mem_buf, int n)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
int length = 0;
if (0 <= n && n < 32) {
env->fpr[n].vreg.D(0) = ldq_le_p(mem_buf);
length = 8;
} else if (32 <= n && n < 40) {
env->cf[n - 32] = ldub_p(mem_buf);
length = 1;
} else if (n == 40) {
env->fcsr0 = ldl_le_p(mem_buf);
length = 4;
}
return length;
}
#define VREG_NUM 32
#define REG64_LEN 64
static int loongarch_gdb_get_vec(CPUState *cs, GByteArray *mem_buf, int n, int vl)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
int i, length = 0;
if (0 <= n && n < VREG_NUM) {
for (i = 0; i < vl / REG64_LEN; i++) {
length += gdb_get_reg64(mem_buf, env->fpr[n].vreg.D(i));
}
}
return length;
}
static int loongarch_gdb_set_vec(CPUState *cs, uint8_t *mem_buf, int n, int vl)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
int i, length = 0;
if (0 <= n && n < VREG_NUM) {
for (i = 0; i < vl / REG64_LEN; i++) {
env->fpr[n].vreg.D(i) = ldq_le_p(mem_buf + 8 * i);
length += 8;
}
}
return length;
}
static int loongarch_gdb_get_lsx(CPUState *cs, GByteArray *mem_buf, int n)
{
return loongarch_gdb_get_vec(cs, mem_buf, n, LSX_LEN);
}
static int loongarch_gdb_set_lsx(CPUState *cs, uint8_t *mem_buf, int n)
{
return loongarch_gdb_set_vec(cs, mem_buf, n, LSX_LEN);
}
static int loongarch_gdb_get_lasx(CPUState *cs, GByteArray *mem_buf, int n)
{
return loongarch_gdb_get_vec(cs, mem_buf, n, LASX_LEN);
}
static int loongarch_gdb_set_lasx(CPUState *cs, uint8_t *mem_buf, int n)
{
return loongarch_gdb_set_vec(cs, mem_buf, n, LASX_LEN);
}
void loongarch_cpu_register_gdb_regs_for_features(CPUState *cs)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, FP)) {
gdb_register_coprocessor(cs, loongarch_gdb_get_fpu, loongarch_gdb_set_fpu,
gdb_find_static_feature("loongarch-fpu.xml"), 0);
}
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, LSX)) {
gdb_register_coprocessor(cs, loongarch_gdb_get_lsx, loongarch_gdb_set_lsx,
gdb_find_static_feature("loongarch-lsx.xml"), 0);
}
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, LASX)) {
gdb_register_coprocessor(cs, loongarch_gdb_get_lasx, loongarch_gdb_set_lasx,
gdb_find_static_feature("loongarch-lasx.xml"), 0);
}
}