qemu/target/i386/tcg/decode-new.c.inc
Richard Henderson 1f7f72bdc4 target/i386: Wrap cc_op_live with a validity check
Assert that op is known and that cc_op_live_ is populated.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:33 +01:00

2889 lines
114 KiB
C++

/*
* New-style decoder for i386 instructions
*
* Copyright (c) 2022 Red Hat, Inc.
*
* Author: Paolo Bonzini <pbonzini@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* The decoder is mostly based on tables copied from the Intel SDM. As
* a result, most operand load and writeback is done entirely in common
* table-driven code using the same operand type (X86_TYPE_*) and
* size (X86_SIZE_*) codes used in the manual. There are a few differences
* though.
*
* Operand sizes
* -------------
*
* The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64
* ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the
* "v" or "z" sizes. The decoder simply makes them separate operand sizes.
*
* The manual lists immediate far destinations as Ap (technically an implicit
* argument). The decoder splits them into two immediates, using "Ip" for
* the offset part (that comes first in the instruction stream) and "Iw" for
* the segment/selector part. The size of the offset is given by s->dflag
* and the instructions are illegal in 64-bit mode, so the choice of "Ip"
* is somewhat arbitrary; "Iv" or "Iz" would work just as well.
*
* Operand types
* -------------
*
* For memory-only operands, if the emitter functions wants to rely on
* generic load and writeback, the decoder needs to know the type of the
* operand. Therefore, M is often replaced by the more specific EM and WM
* (respectively selecting an ALU operand, like the operand type E, or a
* vector operand like the operand type W).
*
* Immediates are almost always signed or masked away in helpers. Two
* common exceptions are IN/OUT and absolute jumps. For these, there is
* an additional custom operand type "I_unsigned". Alternatively, the
* mask could be applied (and the original sign-extended value would be
* optimized away by TCG) in the emitter function.
*
* Finally, a "nop" operand type is used for multi-byte NOPs. It accepts
* any value of mod including 11b (unlike M) but it does not try to
* interpret the operand (like M).
*
* Vector operands
* ---------------
*
* The main difference is that the V, U and W types are extended to
* cover MMX as well; if an instruction is like
*
* por Pq, Qq
* 66 por Vx, Hx, Wx
*
* only the second row is included and the instruction is marked as a
* valid MMX instruction. The MMX flag directs the decoder to rewrite
* the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
* "x" to "q" if there is no prefix.
*
* In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
* if the difference is expressed via prefixes. Individual instructions
* are separated by prefix in the generator functions.
*
* There is a custom size "xh" used to address half of a SSE/AVX operand.
* This points to a 64-bit operand for SSE operations, 128-bit operand
* for 256-bit AVX operands, etc. It is used for conversion operations
* such as VCVTPH2PS or VCVTSS2SD.
*
* There are a couple cases in which instructions (e.g. MOVD) write the
* whole XMM or MM register but are established incorrectly in the manual
* as "d" or "q". These have to be fixed for the decoder to work correctly.
*
* VEX exception classes
* ---------------------
*
* Speaking about imprecisions in the manual, the decoder treats all
* exception-class 4 instructions as having an optional VEX prefix, and
* all exception-class 6 instructions as having a mandatory VEX prefix.
* This is true except for a dozen instructions; these are in exception
* class 4 but do not ignore the VEX.W bit (which does not even exist
* without a VEX prefix). These instructions are mostly listed in Intel's
* table 2-16, but with a few exceptions.
*
* The AMD manual has more precise subclasses for exceptions, and unlike Intel
* they list the VEX.W requirements in the exception classes as well (except
* when they don't). AMD describes class 6 as "AVX Mixed Memory Argument"
* without defining what a mixed memory argument is, but still use 4 as the
* primary exception class... except when they don't.
*
* The summary is:
* Intel AMD VEX.W note
* -------------------------------------------------------------------
* vpblendd 4 4J 0
* vpblendvb 4 4E-X 0 (*)
* vpbroadcastq 6 6D 0 (+)
* vpermd/vpermps 4 4H 0 (§)
* vpermq/vpermpd 4 4H-1 1 (§)
* vpermilpd/vpermilps 4 6E 0 (^)
* vpmaskmovd 6 4K significant (^)
* vpsllv 4 4K significant
* vpsrav 4 4J 0
* vpsrlv 4 4K significant
* vtestps/vtestpd 4 4G 0
*
* (*) AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may
* explain why it is considered exception class 4. However,
* Intel says that VEX-only instructions should be in class 6...
*
* (+) Not found in Intel's table 2-16
*
* (§) 4H and 4H-1 do not mention VEX.W requirements, which are
* however present in the description of the instruction
*
* (^) these are the two cases in which Intel and AMD disagree on the
* primary exception class
*
* Instructions still in translate.c
* ---------------------------------
* Generation of TCG opcodes for almost all instructions is in emit.c.inc;
* this file interprets the prefixes and opcode bytes down to individual
* instruction mnemonics. There is only a handful of opcodes still using
* a switch statement to decode modrm bits 3-5 and prefixes after decoding
* is complete; these are relics of the older x86 decoder and their code
* generation is performed in translate.c.
*
* These unconverted opcodes also perform their own effective address
* generation using the gen_lea_modrm() function.
*
* There is nothing particularly complicated about them; simply, they don't
* need any nasty hacks in the decoder, and they shouldn't get in the way
* of the implementation of new x86 instructions, so they are left alone
* for the time being.
*
* x87:
* 0xD8 - 0xDF
*
* privileged/system:
* 0x0F 0x00 group 6 (SLDT, STR, LLDT, LTR, VERR, VERW)
* 0x0F 0x01 group 7 (SGDT, SIDT, LGDT, LIDT, SMSW, LMSW, INVLPG,
* MONITOR, MWAIT, CLAC, STAC, XGETBV, XSETBV,
* SWAPGS, RDTSCP)
* 0x0F 0xC7 (reg operand) group 9 (RDRAND, RDSEED, RDPID)
*
* MPX:
* 0x0F 0x1A BNDLDX, BNDMOV, BNDCL, BNDCU
* 0x0F 0x1B BNDSTX, BNDMOV, BNDMK, BNDCN
*/
#define X86_OP_NONE { 0 },
#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
.decode = glue(decode_, op), \
.op0 = glue(X86_TYPE_, op0_), \
.s0 = glue(X86_SIZE_, s0_), \
.op1 = glue(X86_TYPE_, op1_), \
.s1 = glue(X86_SIZE_, s1_), \
.op2 = glue(X86_TYPE_, op2_), \
.s2 = glue(X86_SIZE_, s2_), \
.is_decode = true, \
## __VA_ARGS__ \
}
#define X86_OP_GROUP1(op, op0, s0, ...) \
X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \
X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_GROUPw(op, op0, s0, ...) \
X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_GROUPwr(op, op0, s0, op1, s1, ...) \
X86_OP_GROUP3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__)
#define X86_OP_GROUP0(op, ...) \
X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
.gen = glue(gen_, op), \
.op0 = glue(X86_TYPE_, op0_), \
.s0 = glue(X86_SIZE_, s0_), \
.op1 = glue(X86_TYPE_, op1_), \
.s1 = glue(X86_SIZE_, s1_), \
.op2 = glue(X86_TYPE_, op2_), \
.s2 = glue(X86_SIZE_, s2_), \
## __VA_ARGS__ \
}
#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \
X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \
.op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \
## __VA_ARGS__)
/*
* Short forms that are mostly useful for ALU opcodes and other
* one-byte opcodes. For vector instructions it is usually
* clearer to write all three operands explicitly, because the
* corresponding gen_* function will use OP_PTRn rather than s->T0
* and s->T1.
*/
#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...) \
X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...) \
X86_OP_ENTRY3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \
X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRYw(op, op0, s0, ...) \
X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRYr(op, op0, s0, ...) \
X86_OP_ENTRY3(op, None, None, op0, s0, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY1(op, op0, s0, ...) \
X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY0(op, ...) \
X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
#define cpuid(feat) .cpuid = X86_FEAT_##feat,
#define nolea .special = X86_SPECIAL_NoLoadEA,
#define xchg .special = X86_SPECIAL_Locked,
#define lock .special = X86_SPECIAL_HasLock,
#define mmx .special = X86_SPECIAL_MMX,
#define op0_Rd .special = X86_SPECIAL_Op0_Rd,
#define op2_Ry .special = X86_SPECIAL_Op2_Ry,
#define avx_movx .special = X86_SPECIAL_AVXExtMov,
#define sextT0 .special = X86_SPECIAL_SExtT0,
#define zextT0 .special = X86_SPECIAL_ZExtT0,
#define op0_Mw .special = X86_SPECIAL_Op0_Mw,
#define btEvGv .special = X86_SPECIAL_BitTest,
#define vex1 .vex_class = 1,
#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
#define vex2 .vex_class = 2,
#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
#define vex3 .vex_class = 3,
#define vex4 .vex_class = 4,
#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
#define vex5 .vex_class = 5,
#define vex6 .vex_class = 6,
#define vex7 .vex_class = 7,
#define vex8 .vex_class = 8,
#define vex11 .vex_class = 11,
#define vex12 .vex_class = 12,
#define vex13 .vex_class = 13,
#define chk(a) .check = X86_CHECK_##a,
#define chk2(a, b) .check = X86_CHECK_##a | X86_CHECK_##b,
#define chk3(a, b, c) .check = X86_CHECK_##a | X86_CHECK_##b | X86_CHECK_##c,
#define svm(a) .intercept = SVM_EXIT_##a, .has_intercept = true,
#define avx2_256 .vex_special = X86_VEX_AVX2_256,
#define P_00 1
#define P_66 (1 << PREFIX_DATA)
#define P_F3 (1 << PREFIX_REPZ)
#define P_F2 (1 << PREFIX_REPNZ)
#define p_00 .valid_prefix = P_00,
#define p_66 .valid_prefix = P_66,
#define p_f3 .valid_prefix = P_F3,
#define p_f2 .valid_prefix = P_F2,
#define p_00_66 .valid_prefix = P_00 | P_66,
#define p_00_f3 .valid_prefix = P_00 | P_F3,
#define p_66_f2 .valid_prefix = P_66 | P_F2,
#define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3,
#define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2,
#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
#define UNKNOWN_OPCODE ((X86OpEntry) {})
static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
{
if (!s->has_modrm) {
s->modrm = x86_ldub_code(env, s);
s->has_modrm = true;
}
return s->modrm;
}
static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
{
if (s->prefix & PREFIX_REPNZ) {
return &entries[3];
} else if (s->prefix & PREFIX_REPZ) {
return &entries[2];
} else if (s->prefix & PREFIX_DATA) {
return &entries[1];
} else {
return &entries[0];
}
}
static void decode_group8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86GenFunc group8_gen[8] = {
NULL, NULL, NULL, NULL,
gen_BT, gen_BTS, gen_BTR, gen_BTC,
};
int op = (get_modrm(s, env) >> 3) & 7;
entry->gen = group8_gen[op];
if (op == 4) {
/* prevent writeback and LOCK for BT */
entry->op1 = entry->op0;
entry->op0 = X86_TYPE_None;
entry->s0 = X86_SIZE_None;
} else {
entry->special = X86_SPECIAL_HasLock;
}
}
static void decode_group9(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry group9_reg =
X86_OP_ENTRY0(multi0F); /* unconverted */
static const X86OpEntry cmpxchg8b =
X86_OP_ENTRY1(CMPXCHG8B, M,q, lock p_00 cpuid(CX8));
static const X86OpEntry cmpxchg16b =
X86_OP_ENTRY1(CMPXCHG16B, M,dq, lock p_00 cpuid(CX16));
int modrm = get_modrm(s, env);
int op = (modrm >> 3) & 7;
if ((modrm >> 6) == 3) {
*entry = group9_reg;
} else if (op == 1) {
*entry = REX_W(s) ? cmpxchg16b : cmpxchg8b;
}
}
static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry group15_reg[8] = {
[0] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3),
[1] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3),
[2] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0),
[3] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0),
[5] = X86_OP_ENTRY0(LFENCE, cpuid(SSE) p_00),
[6] = X86_OP_ENTRY0(MFENCE, cpuid(SSE2) p_00),
[7] = X86_OP_ENTRY0(SFENCE, cpuid(SSE) p_00),
};
static const X86OpEntry group15_mem[8] = {
[0] = X86_OP_ENTRYw(FXSAVE, M,y, cpuid(FXSR) p_00),
[1] = X86_OP_ENTRYr(FXRSTOR, M,y, cpuid(FXSR) p_00),
[2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5 chk(VEX128) p_00),
[3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5 chk(VEX128) p_00),
[4] = X86_OP_ENTRYw(XSAVE, M,y, cpuid(XSAVE) p_00),
[5] = X86_OP_ENTRYr(XRSTOR, M,y, cpuid(XSAVE) p_00),
[6] = X86_OP_ENTRYw(XSAVEOPT, M,b, cpuid(XSAVEOPT) p_00),
[7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSH) p_00),
};
static const X86OpEntry group15_mem_66[8] = {
[6] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLWB)),
[7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSHOPT)),
};
uint8_t modrm = get_modrm(s, env);
int op = (modrm >> 3) & 7;
if ((modrm >> 6) == 3) {
*entry = group15_reg[op];
} else if (s->prefix & PREFIX_DATA) {
*entry = group15_mem_66[op];
} else {
*entry = group15_mem[op];
}
}
static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86GenFunc group17_gen[8] = {
NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
};
int op = (get_modrm(s, env) >> 3) & 7;
entry->gen = group17_gen[op];
}
static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_group12[8] = {
{},
{},
X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
};
int op = (get_modrm(s, env) >> 3) & 7;
*entry = opcodes_group12[op];
}
static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_group13[8] = {
{},
{},
X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
{},
};
int op = (get_modrm(s, env) >> 3) & 7;
*entry = opcodes_group13[op];
}
static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_group14[8] = {
/* grp14 */
{},
{},
X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
{},
{},
X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
};
int op = (get_modrm(s, env) >> 3) & 7;
*entry = opcodes_group14[op];
}
static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F6F[4] = {
X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */
{},
};
*entry = *decode_by_prefix(s, opcodes_0F6F);
}
static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry pshufw[4] = {
X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx),
X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256),
X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
};
*entry = *decode_by_prefix(s, pshufw);
}
static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
if (!(s->prefix & PREFIX_VEX)) {
entry->gen = gen_EMMS;
} else if (!s->vex_l) {
entry->gen = gen_VZEROUPPER;
entry->vex_class = 8;
} else {
entry->gen = gen_VZEROALL;
entry->vex_class = 8;
}
}
static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F78[4] = {
{},
X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */
{},
X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */
};
*entry = *decode_by_prefix(s, opcodes_0F78);
}
static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
if (s->prefix & PREFIX_REPNZ) {
entry->gen = gen_INSERTQ_r; /* AMD extension */
} else if (s->prefix & PREFIX_DATA) {
entry->gen = gen_EXTRQ_r; /* AMD extension */
} else {
entry->gen = NULL;
};
}
static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F7E[4] = {
X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx),
X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5),
X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */
{},
};
*entry = *decode_by_prefix(s, opcodes_0F7E);
}
static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F7F[4] = {
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */
{},
};
*entry = *decode_by_prefix(s, opcodes_0F7F);
}
static void decode_0FB8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry popcnt =
X86_OP_ENTRYwr(POPCNT, G,v, E,v, cpuid(POPCNT) zextT0);
if (s->prefix & PREFIX_REPZ) {
*entry = popcnt;
} else {
memset(entry, 0, sizeof(*entry));
}
}
static void decode_0FBC(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
/* For BSF, pass 2op as the third operand so that we can use zextT0 */
static const X86OpEntry opcodes_0FBC[4] = {
X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0),
X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0x66 */
X86_OP_ENTRYwr(TZCNT, G,v, E,v, zextT0), /* 0xf3 */
X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0xf2 */
};
if (!(s->cpuid_ext3_features & CPUID_EXT3_ABM)) {
*entry = opcodes_0FBC[0];
} else {
*entry = *decode_by_prefix(s, opcodes_0FBC);
}
}
static void decode_0FBD(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
/* For BSR, pass 2op as the third operand so that we can use zextT0 */
static const X86OpEntry opcodes_0FBD[4] = {
X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0),
X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0x66 */
X86_OP_ENTRYwr(LZCNT, G,v, E,v, zextT0), /* 0xf3 */
X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0xf2 */
};
if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1)) {
*entry = opcodes_0FBD[0];
} else {
*entry = *decode_by_prefix(s, opcodes_0FBD);
}
}
static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry movq[4] = {
{},
X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5),
X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q),
};
*entry = *decode_by_prefix(s, movq);
}
static const X86OpEntry opcodes_0F38_00toEF[240] = {
[0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,xh, vex11 chk(W0) cpuid(F16C) p_66),
[0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66),
[0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66),
/* Listed incorrectly as type 4 */
[0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */
[0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66),
/*
* Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
* as 128-bit only in 2-17.
*/
[0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
/* Same as PMOVSX. */
[0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
[0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
[0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66),
[0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
/* Listed incorrectly as type 4 */
[0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
[0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66),
[0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
[0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
[0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
[0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
[0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
/* Should be exception type 2 but they do not have legacy SSE equivalents? */
[0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
/* Listed incorrectly as type 4 */
[0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_00_66),
[0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */
[0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */
[0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66),
[0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
[0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66),
/* Incorrectly listed as Mx,Hx,Vx in the manual */
[0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
/* VPBROADCASTQ not listed as W0 in table 2-16 */
[0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX2) p_66),
[0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 chk(W0) cpuid(AVX2) p_66),
[0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66),
[0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 chk(W0) cpuid(AVX2) p_66),
[0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 chk(W0) cpuid(AVX2) p_66),
[0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66),
[0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66),
/* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
[0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
[0xc8] = X86_OP_ENTRY2(SHA1NEXTE, V,dq, W,dq, cpuid(SHA_NI)),
[0xc9] = X86_OP_ENTRY2(SHA1MSG1, V,dq, W,dq, cpuid(SHA_NI)),
[0xca] = X86_OP_ENTRY2(SHA1MSG2, V,dq, W,dq, cpuid(SHA_NI)),
[0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)),
[0xcc] = X86_OP_ENTRY2(SHA256MSG1, V,dq, W,dq, cpuid(SHA_NI)),
[0xcd] = X86_OP_ENTRY2(SHA256MSG2, V,dq, W,dq, cpuid(SHA_NI)),
[0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
[0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
[0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
[0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
[0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
/*
* REG selects srcdest2 operand, VEX.vvvv selects src3. VEX class not found
* in manual, assumed to be 13 from the VEX.L0 constraint.
*/
[0xe0] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe1] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe2] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe3] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe4] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe5] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe6] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe7] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe8] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xe9] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xea] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xeb] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xec] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xed] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xee] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
[0xef] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
};
/* five rows for no prefix, 66, F3, F2, 66+F2 */
static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
[0] = {
X86_OP_ENTRYwr(MOVBE, G,y, M,y, cpuid(MOVBE)),
X86_OP_ENTRYwr(MOVBE, G,w, M,w, cpuid(MOVBE)),
{},
X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
},
[1] = {
X86_OP_ENTRYwr(MOVBE, M,y, G,y, cpuid(MOVBE)),
X86_OP_ENTRYwr(MOVBE, M,w, G,w, cpuid(MOVBE)),
{},
X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
},
[2] = {
X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
{},
{},
{},
{},
},
[3] = {
X86_OP_GROUP3(group17, B,y, None,None, E,y, vex13 cpuid(BMI1)),
{},
{},
{},
{},
},
[5] = {
X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
{},
X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
{},
},
[6] = {
{},
X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
{},
},
[7] = {
X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)),
X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
{},
},
};
static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
if (*b < 0xf0) {
*entry = opcodes_0F38_00toEF[*b];
} else {
int row = 0;
if (s->prefix & PREFIX_REPZ) {
/* The REPZ (F3) prefix has priority over 66 */
row = 2;
} else {
row += s->prefix & PREFIX_REPNZ ? 3 : 0;
row += s->prefix & PREFIX_DATA ? 1 : 0;
}
*entry = opcodes_0F38_F0toFF[*b & 15][row];
}
}
static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry
vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66);
int modrm = get_modrm(s, env);
*entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
}
static const X86OpEntry opcodes_0F3A[256] = {
/*
* These are VEX-only, but incorrectly listed in the manual as exception type 4.
* Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
* only.
*/
[0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66),
[0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */
[0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */
[0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66),
[0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66),
[0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
[0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66),
[0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66),
[0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66),
[0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66),
[0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,xh, V,x, I,b, vex11 chk(W0) cpuid(F16C) p_66),
[0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) op2_Ry p_66),
[0x21] = X86_OP_GROUP0(VINSERTPS),
[0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66),
[0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66),
[0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
[0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66),
[0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
[0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
[0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
[0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
[0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
[0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
[0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
[0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
/*
* Not listed as four operand in the manual. Also writes and reads 128-bits
* from the first two operands due to the V operand picking higher entries of
* the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
* For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
* value of vex_special, because the table lists the operand types of VSQRTPx.
*/
[0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66),
[0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66),
[0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
[0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
[0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
[0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
[0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
[0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX) p_66),
[0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
[0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX2) p_66),
/* Listed incorrectly as type 4 */
[0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66),
[0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66 avx2_256),
[0xcc] = X86_OP_ENTRY3(SHA1RNDS4, V,dq, W,dq, I,b, cpuid(SHA_NI)),
[0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66),
[0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
};
static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
*entry = opcodes_0F3A[*b];
}
/*
* There are some mistakes in the operands in the manual, and the load/store/register
* cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
* efficiency of implementation rather than copying what the manual says.
*
* In particular:
*
* 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
* but this is not mentioned in the tables.
*
* 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
* operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
* quadword of the V operand.
*/
static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F10_reg[4] = {
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5),
X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */
};
static const X86OpEntry opcodes_0F10_mem[4] = {
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5),
X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5),
};
if ((get_modrm(s, env) >> 6) == 3) {
*entry = *decode_by_prefix(s, opcodes_0F10_reg);
} else {
*entry = *decode_by_prefix(s, opcodes_0F10_mem);
}
}
static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F11_reg[4] = {
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */
X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5),
X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */
};
static const X86OpEntry opcodes_0F11_mem[4] = {
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */
X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */
X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5),
X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */
};
if ((get_modrm(s, env) >> 6) == 3) {
*entry = *decode_by_prefix(s, opcodes_0F11_reg);
} else {
*entry = *decode_by_prefix(s, opcodes_0F11_mem);
}
}
static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F12_mem[4] = {
/*
* Use dq for operand for compatibility with gen_MOVSD and
* to allow VEX128 only.
*/
X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */
X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */
X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */
};
static const X86OpEntry opcodes_0F12_reg[4] = {
X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7),
X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */
X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)),
};
if ((get_modrm(s, env) >> 6) == 3) {
*entry = *decode_by_prefix(s, opcodes_0F12_reg);
} else {
*entry = *decode_by_prefix(s, opcodes_0F12_mem);
if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
entry->s2 = X86_SIZE_qq;
}
}
}
static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F16_mem[4] = {
/*
* Operand 1 technically only reads the low 64 bits, but uses dq so that
* it is easier to check for op0 == op1 in an endianness-neutral manner.
*/
X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */
X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */
X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
{},
};
static const X86OpEntry opcodes_0F16_reg[4] = {
/* Same as above, operand 1 could be Hq if it wasn't for big-endian. */
X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7),
X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */
X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
{},
};
if ((get_modrm(s, env) >> 6) == 3) {
*entry = *decode_by_prefix(s, opcodes_0F16_reg);
} else {
*entry = *decode_by_prefix(s, opcodes_0F16_mem);
}
}
static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F2A[4] = {
X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
};
*entry = *decode_by_prefix(s, opcodes_0F2A);
}
static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F2B[4] = {
X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */
X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */
/* AMD extensions */
X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
};
*entry = *decode_by_prefix(s, opcodes_0F2B);
}
static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F2C[4] = {
/* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */
X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q),
X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq),
X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3),
X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3),
};
*entry = *decode_by_prefix(s, opcodes_0F2C);
}
static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F2D[4] = {
/* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */
X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q),
X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq),
X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3),
X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3),
};
*entry = *decode_by_prefix(s, opcodes_0F2D);
}
static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
/*
* VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD
* respectively. Scalar values usually are associated with 0xF2 and 0xF3, for
* which X86_VEX_REPScalar exists, but here it has to be decoded by hand.
*/
entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss);
entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI);
}
static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
entry->op1 = X86_TYPE_None;
entry->s1 = X86_SIZE_None;
}
switch (*b) {
case 0x51: entry->gen = gen_VSQRT; break;
case 0x52: entry->gen = gen_VRSQRT; break;
case 0x53: entry->gen = gen_VRCP; break;
}
}
static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F5A[4] = {
X86_OP_ENTRY2(VCVTPS2PD, V,x, W,xh, vex2), /* VCVTPS2PD */
X86_OP_ENTRY2(VCVTPD2PS, V,x, W,x, vex2), /* VCVTPD2PS */
X86_OP_ENTRY3(VCVTSS2SD, V,x, H,x, W,x, vex2_rep3), /* VCVTSS2SD */
X86_OP_ENTRY3(VCVTSD2SS, V,x, H,x, W,x, vex2_rep3), /* VCVTSD2SS */
};
*entry = *decode_by_prefix(s, opcodes_0F5A);
}
static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0F5B[4] = {
X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2),
X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2),
X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2),
{},
};
*entry = *decode_by_prefix(s, opcodes_0F5B);
}
static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_0FE6[4] = {
{},
X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2),
X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5),
X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2),
};
*entry = *decode_by_prefix(s, opcodes_0FE6);
}
/*
* These ignore the mod bits (assume (modrm&0xc0)==0xc0), so group the
* pre-decode tweak here for all MOVs from/to CR and DR.
*
* AMD documentation (24594.pdf) and testing of Intel 386 and 486
* processors all show that the mod bits are assumed to be 1's,
* regardless of actual values.
*/
static void decode_MOV_CR_DR(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
/*
*/
get_modrm(s, env);
s->modrm |= 0xC0;
entry->gen = gen_MOV;
}
static const X86OpEntry opcodes_0F[256] = {
[0x00] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted */
[0x01] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted */
[0x02] = X86_OP_ENTRYwr(LAR, G,v, E,w, chk(prot)),
[0x03] = X86_OP_ENTRYwr(LSL, G,v, E,w, chk(prot)),
[0x05] = X86_OP_ENTRY0(SYSCALL, chk(o64_intel)),
[0x06] = X86_OP_ENTRY0(CLTS, chk(cpl0) svm(WRITE_CR0)),
[0x07] = X86_OP_ENTRY0(SYSRET, chk3(o64_intel, prot, cpl0)),
[0x10] = X86_OP_GROUP0(0F10),
[0x11] = X86_OP_GROUP0(0F11),
[0x12] = X86_OP_GROUP0(0F12),
[0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66),
[0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66),
[0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66),
[0x16] = X86_OP_GROUP0(0F16),
/* Incorrectly listed as Mq,Vq in the manual */
[0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66),
/*
* Incorrectly listed as using "d" operand type in the manual. In reality
* there's no 16-bit version (like y) and it does not use REX.W (like d64).
*/
[0x20] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, C,y_d64, chk(cpl0) svm(READ_CR0)),
[0x21] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, D,y_d64, chk(cpl0) svm(READ_DR0)),
[0x22] = X86_OP_GROUPwr(MOV_CR_DR, C,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_CR0)),
[0x23] = X86_OP_GROUPwr(MOV_CR_DR, D,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_DR0)),
[0x30] = X86_OP_ENTRY0(WRMSR, chk(cpl0)),
[0x31] = X86_OP_ENTRY0(RDTSC),
[0x32] = X86_OP_ENTRY0(RDMSR, chk(cpl0)),
[0x33] = X86_OP_ENTRY0(RDPMC),
[0x34] = X86_OP_ENTRY0(SYSENTER, chk2(i64_amd, prot_or_vm86)),
[0x35] = X86_OP_ENTRY0(SYSEXIT, chk3(i64_amd, prot, cpl0)),
[0x40] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x41] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x42] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x43] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x44] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x45] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x46] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x47] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66),
[0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */
[0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */
[0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */
[0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */
[0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */
[0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */
[0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */
[0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x70] = X86_OP_GROUP0(0F70),
[0x71] = X86_OP_GROUP0(group12),
[0x72] = X86_OP_GROUP0(group13),
[0x73] = X86_OP_GROUP0(group14),
[0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x77] = X86_OP_GROUP0(0F77),
[0x80] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x81] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x82] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x83] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x84] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x85] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x86] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x87] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x90] = X86_OP_ENTRYw(SETcc, E,b),
[0x91] = X86_OP_ENTRYw(SETcc, E,b),
[0x92] = X86_OP_ENTRYw(SETcc, E,b),
[0x93] = X86_OP_ENTRYw(SETcc, E,b),
[0x94] = X86_OP_ENTRYw(SETcc, E,b),
[0x95] = X86_OP_ENTRYw(SETcc, E,b),
[0x96] = X86_OP_ENTRYw(SETcc, E,b),
[0x97] = X86_OP_ENTRYw(SETcc, E,b),
[0xa0] = X86_OP_ENTRYr(PUSH, FS, w),
[0xa1] = X86_OP_ENTRYw(POP, FS, w),
[0xa2] = X86_OP_ENTRY0(CPUID),
[0xa3] = X86_OP_ENTRYrr(BT, E,v, G,v, btEvGv),
[0xa4] = X86_OP_ENTRY4(SHLD, E,v, 2op,v, G,v),
[0xa5] = X86_OP_ENTRY3(SHLD, E,v, 2op,v, G,v),
[0xb0] = X86_OP_ENTRY2(CMPXCHG,E,b, G,b, lock),
[0xb1] = X86_OP_ENTRY2(CMPXCHG,E,v, G,v, lock),
[0xb2] = X86_OP_ENTRY3(LSS, G,v, EM,p, None, None),
[0xb3] = X86_OP_ENTRY2(BTR, E,v, G,v, btEvGv),
[0xb4] = X86_OP_ENTRY3(LFS, G,v, EM,p, None, None),
[0xb5] = X86_OP_ENTRY3(LGS, G,v, EM,p, None, None),
[0xb6] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, zextT0), /* MOVZX */
[0xb7] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, zextT0), /* MOVZX */
[0xc0] = X86_OP_ENTRY2(XADD, E,b, G,b, lock),
[0xc1] = X86_OP_ENTRY2(XADD, E,v, G,v, lock),
[0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0xc3] = X86_OP_ENTRY3(MOV, EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */
[0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66),
[0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66),
[0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66),
[0xc7] = X86_OP_GROUP0(group9),
[0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
[0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd6] = X86_OP_GROUP0(0FD6),
[0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66),
[0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
[0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
[0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe6] = X86_OP_GROUP0(0FE6),
[0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
[0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
[0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
[0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
[0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
[0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
[0x08] = X86_OP_ENTRY0(NOP, svm(INVD)),
[0x09] = X86_OP_ENTRY0(NOP, svm(WBINVD)),
[0x0b] = X86_OP_ENTRY0(UD), /* UD2 */
[0x0d] = X86_OP_ENTRY1(NOP, M,v), /* 3DNow! prefetch */
[0x0e] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */
/*
* 3DNow!'s opcode byte comes *after* modrm and displacements, making it
* more like an Ib operand. Dispatch to the right helper in a single gen_*
* function.
*/
[0x0f] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)),
[0x18] = X86_OP_ENTRY1(NOP, nop,v), /* prefetch/reserved NOP */
[0x19] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */
[0x1a] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted MPX */
[0x1b] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted MPX */
[0x1c] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */
[0x1d] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */
[0x1e] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */
[0x1f] = X86_OP_ENTRY1(NOP, nop,v), /* NOP/reserved NOP */
[0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */
[0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */
[0x2A] = X86_OP_GROUP0(0F2A),
[0x2B] = X86_OP_GROUP0(0F2B),
[0x2C] = X86_OP_GROUP0(0F2C),
[0x2D] = X86_OP_GROUP0(0F2D),
[0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */
[0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */
[0x38] = X86_OP_GROUP0(0F38),
[0x3a] = X86_OP_GROUP0(0F3A),
[0x48] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x49] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4a] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4b] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4c] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4d] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4e] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x4f] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)),
[0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x5a] = X86_OP_GROUP0(0F5A),
[0x5b] = X86_OP_GROUP0(0F5B),
[0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
[0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
[0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
[0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */
[0x6f] = X86_OP_GROUP0(0F6F),
[0x78] = X86_OP_GROUP0(0F78),
[0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)),
[0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
[0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
[0x7e] = X86_OP_GROUP0(0F7E),
[0x7f] = X86_OP_GROUP0(0F7F),
[0x88] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x89] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64),
[0x98] = X86_OP_ENTRYw(SETcc, E,b),
[0x99] = X86_OP_ENTRYw(SETcc, E,b),
[0x9a] = X86_OP_ENTRYw(SETcc, E,b),
[0x9b] = X86_OP_ENTRYw(SETcc, E,b),
[0x9c] = X86_OP_ENTRYw(SETcc, E,b),
[0x9d] = X86_OP_ENTRYw(SETcc, E,b),
[0x9e] = X86_OP_ENTRYw(SETcc, E,b),
[0x9f] = X86_OP_ENTRYw(SETcc, E,b),
[0xa8] = X86_OP_ENTRYr(PUSH, GS, w),
[0xa9] = X86_OP_ENTRYw(POP, GS, w),
[0xaa] = X86_OP_ENTRY0(RSM, chk(smm) svm(RSM)),
[0xab] = X86_OP_ENTRY2(BTS, E,v, G,v, btEvGv),
[0xac] = X86_OP_ENTRY4(SHRD, E,v, 2op,v, G,v),
[0xad] = X86_OP_ENTRY3(SHRD, E,v, 2op,v, G,v),
[0xae] = X86_OP_GROUP0(group15),
/*
* It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3
* to assume sextT0. Multiplication is commutative anyway.
*/
[0xaf] = X86_OP_ENTRY3(IMUL3, G,v, E,v, 2op,v, sextT0),
[0xb8] = X86_OP_GROUP0(0FB8),
/* decoded as modrm, which is visible as a difference between page fault and #UD */
[0xb9] = X86_OP_ENTRYr(UD, nop,v), /* UD1 */
[0xba] = X86_OP_GROUP2(group8, E,v, I,b),
[0xbb] = X86_OP_ENTRY2(BTC, E,v, G,v, btEvGv),
[0xbc] = X86_OP_GROUP0(0FBC),
[0xbd] = X86_OP_GROUP0(0FBD),
[0xbe] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, sextT0), /* MOVSX */
[0xbf] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, sextT0), /* MOVSX */
[0xc8] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xc9] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xca] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xcb] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xcc] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xcd] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xce] = X86_OP_ENTRY1(BSWAP, LoBits,y),
[0xcf] = X86_OP_ENTRY1(BSWAP, LoBits,y),
/* Incorrectly missing from 2-17 */
[0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
[0xff] = X86_OP_ENTRYr(UD, nop,v), /* UD0 */
};
static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*entry = opcodes_0F[*b];
}
static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*b = x86_ldub_code(env, s);
do_decode_0F(s, env, entry, b);
}
static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot));
static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None);
static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0);
if (!CODE64(s)) {
*entry = arpl;
} else if (REX_W(s)) {
*entry = movsxd;
} else {
*entry = mov;
}
}
static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86GenFunc group1_gen[8] = {
gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB,
};
int op = (get_modrm(s, env) >> 3) & 7;
entry->gen = group1_gen[op];
if (op == 7) {
/* prevent writeback for CMP */
entry->op1 = entry->op0;
entry->op0 = X86_TYPE_None;
entry->s0 = X86_SIZE_None;
} else {
entry->special = X86_SPECIAL_HasLock;
}
}
static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
int op = (get_modrm(s, env) >> 3) & 7;
if (op != 0) {
/* could be XOP prefix too */
*entry = UNKNOWN_OPCODE;
} else {
entry->gen = gen_POP;
/* The address must use the value of ESP after the pop. */
s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag);
}
}
static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86GenFunc group2_gen[8] = {
gen_ROL, gen_ROR, gen_RCL, gen_RCR,
gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR,
};
int op = (get_modrm(s, env) >> 3) & 7;
entry->gen = group2_gen[op];
if (op == 7) {
entry->special = X86_SPECIAL_SExtT0;
} else {
entry->special = X86_SPECIAL_ZExtT0;
}
}
static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_grp3[16] = {
/* 0xf6 */
[0x00] = X86_OP_ENTRYrr(AND, E,b, I,b),
[0x02] = X86_OP_ENTRY1(NOT, E,b, lock),
[0x03] = X86_OP_ENTRY1(NEG, E,b, lock),
[0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0),
[0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0),
[0x06] = X86_OP_ENTRYr(DIV, E,b),
[0x07] = X86_OP_ENTRYr(IDIV, E,b),
/* 0xf7 */
[0x08] = X86_OP_ENTRYrr(AND, E,v, I,z),
[0x0a] = X86_OP_ENTRY1(NOT, E,v, lock),
[0x0b] = X86_OP_ENTRY1(NEG, E,v, lock),
[0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0),
[0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0),
[0x0e] = X86_OP_ENTRYr(DIV, E,v),
[0x0f] = X86_OP_ENTRYr(IDIV, E,v),
};
int w = (*b & 1);
int reg = (get_modrm(s, env) >> 3) & 7;
*entry = opcodes_grp3[(w << 3) | reg];
}
static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static const X86OpEntry opcodes_grp4_5[16] = {
/* 0xfe */
[0x00] = X86_OP_ENTRY1(INC, E,b, lock),
[0x01] = X86_OP_ENTRY1(DEC, E,b, lock),
/* 0xff */
[0x08] = X86_OP_ENTRY1(INC, E,v, lock),
[0x09] = X86_OP_ENTRY1(DEC, E,v, lock),
[0x0a] = X86_OP_ENTRYr(CALL_m, E,f64, zextT0),
[0x0b] = X86_OP_ENTRYr(CALLF_m, M,p),
[0x0c] = X86_OP_ENTRYr(JMP_m, E,f64, zextT0),
[0x0d] = X86_OP_ENTRYr(JMPF_m, M,p),
[0x0e] = X86_OP_ENTRYr(PUSH, E,f64),
};
int w = (*b & 1);
int reg = (get_modrm(s, env) >> 3) & 7;
*entry = opcodes_grp4_5[(w << 3) | reg];
}
static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
int op = (get_modrm(s, env) >> 3) & 7;
if (op != 0) {
*entry = UNKNOWN_OPCODE;
} else {
entry->gen = gen_MOV;
}
}
static void decode_90(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
static X86OpEntry pause = X86_OP_ENTRY0(PAUSE, svm(PAUSE));
static X86OpEntry nop = X86_OP_ENTRY0(NOP);
static X86OpEntry xchg_ax = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v);
if (REX_B(s)) {
*entry = xchg_ax;
} else {
*entry = (s->prefix & PREFIX_REPZ) ? pause : nop;
}
}
static const X86OpEntry opcodes_root[256] = {
[0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock),
[0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock),
[0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock),
[0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock),
[0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock), /* AL, Ib */
[0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock), /* rAX, Iz */
[0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)),
[0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)),
[0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock),
[0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock),
[0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock),
[0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock),
[0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock), /* AL, Ib */
[0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock), /* rAX, Iz */
[0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)),
[0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)),
[0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock),
[0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock),
[0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock),
[0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock),
[0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock), /* AL, Ib */
[0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock), /* rAX, Iz */
[0x26] = {},
[0x27] = X86_OP_ENTRY0(DAA, chk(i64)),
[0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock),
[0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock),
[0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock),
[0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock),
[0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock), /* AL, Ib */
[0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock), /* rAX, Iz */
[0x36] = {},
[0x37] = X86_OP_ENTRY0(AAA, chk(i64)),
[0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)),
[0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)),
[0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)),
[0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)),
[0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)),
[0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)),
[0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)),
[0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)),
[0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64),
[0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)),
[0x61] = X86_OP_ENTRY0(POPA, chk(i64)),
[0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)),
[0x63] = X86_OP_GROUP0(63),
[0x64] = {},
[0x65] = {},
[0x66] = {},
[0x67] = {},
[0x70] = X86_OP_ENTRYr(Jcc, J,b),
[0x71] = X86_OP_ENTRYr(Jcc, J,b),
[0x72] = X86_OP_ENTRYr(Jcc, J,b),
[0x73] = X86_OP_ENTRYr(Jcc, J,b),
[0x74] = X86_OP_ENTRYr(Jcc, J,b),
[0x75] = X86_OP_ENTRYr(Jcc, J,b),
[0x76] = X86_OP_ENTRYr(Jcc, J,b),
[0x77] = X86_OP_ENTRYr(Jcc, J,b),
[0x80] = X86_OP_GROUP2(group1, E,b, I,b),
[0x81] = X86_OP_GROUP2(group1, E,v, I,z),
[0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)),
[0x83] = X86_OP_GROUP2(group1, E,v, I,b),
[0x84] = X86_OP_ENTRYrr(AND, E,b, G,b),
[0x85] = X86_OP_ENTRYrr(AND, E,v, G,v),
[0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg),
[0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg),
[0x90] = X86_OP_GROUP0(90),
[0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
[0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */
[0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */
[0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */
[0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */
[0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b),
[0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v),
[0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b),
[0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v),
[0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
[0xC0] = X86_OP_GROUP2(group2, E,b, I,b),
[0xC1] = X86_OP_GROUP2(group2, E,v, I,b),
[0xC2] = X86_OP_ENTRYr(RET, I,w),
[0xC3] = X86_OP_ENTRY0(RET),
[0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)),
[0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)),
[0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */
[0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */
[0xD0] = X86_OP_GROUP1(group2, E,b),
[0xD1] = X86_OP_GROUP1(group2, E,v),
[0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */
[0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */
[0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b),
[0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b),
[0xD6] = X86_OP_ENTRYw(SALC, 0,b),
[0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */
[0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */
[0xE1] = X86_OP_ENTRYr(LOOPE, J,b), /* implicit: CX with aflag size */
[0xE2] = X86_OP_ENTRYr(LOOP, J,b), /* implicit: CX with aflag size */
[0xE3] = X86_OP_ENTRYr(JCXZ, J,b), /* implicit: CX with aflag size */
[0xE4] = X86_OP_ENTRYwr(IN, 0,b, I_unsigned,b), /* AL */
[0xE5] = X86_OP_ENTRYwr(IN, 0,z, I_unsigned,b), /* AX/EAX */
[0xE6] = X86_OP_ENTRYrr(OUT, 0,b, I_unsigned,b), /* AL */
[0xE7] = X86_OP_ENTRYrr(OUT, 0,z, I_unsigned,b), /* AX/EAX */
[0xF1] = X86_OP_ENTRY0(INT1, svm(ICEBP)),
[0xF4] = X86_OP_ENTRY0(HLT, chk(cpl0) svm(HLT)),
[0xF5] = X86_OP_ENTRY0(CMC),
[0xF6] = X86_OP_GROUP1(group3, E,b),
[0xF7] = X86_OP_GROUP1(group3, E,v),
[0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock),
[0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock),
[0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock),
[0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock),
[0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock), /* AL, Ib */
[0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock), /* rAX, Iz */
[0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)),
[0x0F] = X86_OP_GROUP0(0F),
[0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock),
[0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock),
[0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock),
[0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock),
[0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock), /* AL, Ib */
[0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock), /* rAX, Iz */
[0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)),
[0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)),
[0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock),
[0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock),
[0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock),
[0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock),
[0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock), /* AL, Ib */
[0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock), /* rAX, Iz */
[0x2E] = {},
[0x2F] = X86_OP_ENTRY0(DAS, chk(i64)),
[0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b),
[0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v),
[0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b),
[0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v),
[0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b), /* AL, Ib */
[0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z), /* rAX, Iz */
[0x3E] = {},
[0x3F] = X86_OP_ENTRY0(AAS, chk(i64)),
[0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)),
[0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)),
[0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)),
[0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)),
[0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)),
[0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)),
[0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)),
[0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)),
[0x58] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x59] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5A] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5B] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5C] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5D] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5E] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x5F] = X86_OP_ENTRYw(POP, LoBits,d64),
[0x68] = X86_OP_ENTRYr(PUSH, I,z),
[0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0),
[0x6A] = X86_OP_ENTRYr(PUSH, I,b),
[0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0),
[0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */
[0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */
[0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */
[0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */
[0x78] = X86_OP_ENTRYr(Jcc, J,b),
[0x79] = X86_OP_ENTRYr(Jcc, J,b),
[0x7A] = X86_OP_ENTRYr(Jcc, J,b),
[0x7B] = X86_OP_ENTRYr(Jcc, J,b),
[0x7C] = X86_OP_ENTRYr(Jcc, J,b),
[0x7D] = X86_OP_ENTRYr(Jcc, J,b),
[0x7E] = X86_OP_ENTRYr(Jcc, J,b),
[0x7F] = X86_OP_ENTRYr(Jcc, J,b),
[0x88] = X86_OP_ENTRYwr(MOV, E,b, G,b),
[0x89] = X86_OP_ENTRYwr(MOV, E,v, G,v),
[0x8A] = X86_OP_ENTRYwr(MOV, G,b, E,b),
[0x8B] = X86_OP_ENTRYwr(MOV, G,v, E,v),
/* Missing in Table A-2: memory destination is always 16-bit. */
[0x8C] = X86_OP_ENTRYwr(MOV, E,v, S,w, op0_Mw),
[0x8D] = X86_OP_ENTRYwr(LEA, G,v, M,v, nolea),
[0x8E] = X86_OP_ENTRYwr(MOV, S,w, E,w),
[0x8F] = X86_OP_GROUPw(group1A, E,d64),
[0x98] = X86_OP_ENTRY1(CBW, 0,v), /* rAX */
[0x99] = X86_OP_ENTRYwr(CWD, 2,v, 0,v), /* rDX, rAX */
[0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)),
[0x9B] = X86_OP_ENTRY0(WAIT),
[0x9C] = X86_OP_ENTRY0(PUSHF, chk(vm86_iopl) svm(PUSHF)),
[0x9D] = X86_OP_ENTRY0(POPF, chk(vm86_iopl) svm(POPF)),
[0x9E] = X86_OP_ENTRY0(SAHF),
[0x9F] = X86_OP_ENTRY0(LAHF),
[0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b), /* AL, Ib */
[0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z), /* rAX, Iz */
[0xAA] = X86_OP_ENTRYwr(STOS, Y,b, 0,b),
[0xAB] = X86_OP_ENTRYwr(STOS, Y,v, 0,v),
/* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS. */
[0xAC] = X86_OP_ENTRYr(LODS, X,b),
[0xAD] = X86_OP_ENTRYr(LODS, X,v),
[0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b),
[0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v),
[0xB8] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xB9] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBA] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBB] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBC] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBD] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBE] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xBF] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
[0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b),
[0xC9] = X86_OP_ENTRY1(LEAVE, A,d64),
[0xCA] = X86_OP_ENTRYr(RETF, I,w),
[0xCB] = X86_OP_ENTRY0(RETF),
[0xCC] = X86_OP_ENTRY0(INT3),
[0xCD] = X86_OP_ENTRYr(INT, I,b, chk(vm86_iopl)),
[0xCE] = X86_OP_ENTRY0(INTO),
[0xCF] = X86_OP_ENTRY0(IRET, chk(vm86_iopl) svm(IRET)),
/*
* x87 is nolea because it needs the address without segment base,
* in order to store it in fdp.
*/
[0xD8] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xD9] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDA] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDB] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDC] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDD] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDE] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xDF] = X86_OP_ENTRY1(x87, nop,v, nolea),
[0xE8] = X86_OP_ENTRYr(CALL, J,z_f64),
[0xE9] = X86_OP_ENTRYr(JMP, J,z_f64),
[0xEA] = X86_OP_ENTRYrr(JMPF, I_unsigned,p, I_unsigned,w, chk(i64)),
[0xEB] = X86_OP_ENTRYr(JMP, J,b),
[0xEC] = X86_OP_ENTRYwr(IN, 0,b, 2,w), /* AL, DX */
[0xED] = X86_OP_ENTRYwr(IN, 0,z, 2,w), /* AX/EAX, DX */
[0xEE] = X86_OP_ENTRYrr(OUT, 0,b, 2,w), /* DX, AL */
[0xEF] = X86_OP_ENTRYrr(OUT, 0,z, 2,w), /* DX, AX/EAX */
[0xF8] = X86_OP_ENTRY0(CLC),
[0xF9] = X86_OP_ENTRY0(STC),
[0xFA] = X86_OP_ENTRY0(CLI, chk(iopl)),
[0xFB] = X86_OP_ENTRY0(STI, chk(iopl)),
[0xFC] = X86_OP_ENTRY0(CLD),
[0xFD] = X86_OP_ENTRY0(STD),
[0xFE] = X86_OP_GROUP1(group4_5, E,b),
[0xFF] = X86_OP_GROUP1(group4_5, E,v),
};
#undef mmx
#undef vex1
#undef vex2
#undef vex3
#undef vex4
#undef vex4_unal
#undef vex5
#undef vex6
#undef vex7
#undef vex8
#undef vex11
#undef vex12
#undef vex13
/*
* Decode the fixed part of the opcode and place the last
* in b.
*/
static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
*entry = opcodes_root[*b];
}
static int decode_modrm(DisasContext *s, CPUX86State *env,
X86DecodedInsn *decode, X86DecodedOp *op)
{
int modrm = get_modrm(s, env);
if ((modrm >> 6) == 3) {
op->n = (modrm & 7);
if (op->unit != X86_OP_MMX) {
op->n |= REX_B(s);
}
} else {
op->has_ea = true;
op->n = -1;
decode->mem = gen_lea_modrm_0(env, s, modrm,
decode->e.vex_class == 12);
}
return modrm;
}
static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
{
switch (size) {
case X86_SIZE_b: /* byte */
*ot = MO_8;
return true;
case X86_SIZE_d: /* 32-bit */
case X86_SIZE_ss: /* SSE/AVX scalar single precision */
*ot = MO_32;
return true;
case X86_SIZE_p: /* Far pointer, return offset size */
case X86_SIZE_s: /* Descriptor, return offset size */
case X86_SIZE_v: /* 16/32/64-bit, based on operand size */
*ot = s->dflag;
return true;
case X86_SIZE_pi: /* MMX */
case X86_SIZE_q: /* 64-bit */
case X86_SIZE_sd: /* SSE/AVX scalar double precision */
*ot = MO_64;
return true;
case X86_SIZE_w: /* 16-bit */
*ot = MO_16;
return true;
case X86_SIZE_y: /* 32/64-bit, based on operand size */
*ot = s->dflag == MO_16 ? MO_32 : s->dflag;
return true;
case X86_SIZE_y_d64: /* Full (not 16-bit) register access */
*ot = CODE64(s) ? MO_64 : MO_32;
return true;
case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */
*ot = s->dflag == MO_16 ? MO_16 : MO_32;
return true;
case X86_SIZE_z_f64: /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */
*ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32;
return true;
case X86_SIZE_dq: /* SSE/AVX 128-bit */
if (e->special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
*ot = MO_64;
return true;
}
if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
return false;
}
*ot = MO_128;
return true;
case X86_SIZE_qq: /* AVX 256-bit */
if (!s->vex_l) {
return false;
}
*ot = MO_256;
return true;
case X86_SIZE_x: /* 128/256-bit, based on operand size */
if (e->special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
*ot = MO_64;
return true;
}
/* fall through */
case X86_SIZE_ps: /* SSE/AVX packed single precision */
case X86_SIZE_pd: /* SSE/AVX packed double precision */
*ot = s->vex_l ? MO_256 : MO_128;
return true;
case X86_SIZE_xh: /* SSE/AVX packed half register */
*ot = s->vex_l ? MO_128 : MO_64;
return true;
case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */
*ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
return true;
case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */
*ot = CODE64(s) ? MO_64 : s->dflag;
return true;
default:
*ot = -1;
return true;
}
}
static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
X86DecodedOp *op, X86OpType type, int b)
{
int modrm;
switch (type) {
case X86_TYPE_None: /* Implicit or absent */
case X86_TYPE_A: /* Implicit */
case X86_TYPE_F: /* EFLAGS/RFLAGS */
case X86_TYPE_X: /* string source */
case X86_TYPE_Y: /* string destination */
break;
case X86_TYPE_B: /* VEX.vvvv selects a GPR */
op->unit = X86_OP_INT;
op->n = s->vex_v;
break;
case X86_TYPE_C: /* REG in the modrm byte selects a control register */
op->unit = X86_OP_CR;
op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
if (op->n == 0 && (s->prefix & PREFIX_LOCK) &&
(s->cpuid_ext3_features & CPUID_EXT3_CR8LEG)) {
op->n = 8;
s->prefix &= ~PREFIX_LOCK;
}
if (op->n != 0 && op->n != 2 && op->n != 3 && op->n != 4 && op->n != 8) {
return false;
}
if (decode->e.intercept) {
decode->e.intercept += op->n;
}
break;
case X86_TYPE_D: /* REG in the modrm byte selects a debug register */
op->unit = X86_OP_DR;
op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
if (op->n >= 8) {
/*
* illegal opcode. The DR4 and DR5 case is checked in the generated
* code instead, to save on hflags bits.
*/
return false;
}
if (decode->e.intercept) {
decode->e.intercept += op->n;
}
break;
case X86_TYPE_G: /* REG in the modrm byte selects a GPR */
op->unit = X86_OP_INT;
goto get_reg;
case X86_TYPE_S: /* reg selects a segment register */
op->unit = X86_OP_SEG;
goto get_reg;
case X86_TYPE_P:
op->unit = X86_OP_MMX;
goto get_reg;
case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
get_reg:
op->n = ((get_modrm(s, env) >> 3) & 7);
if (op->unit != X86_OP_MMX) {
op->n |= REX_R(s);
}
break;
case X86_TYPE_E: /* ALU modrm operand */
op->unit = X86_OP_INT;
goto get_modrm;
case X86_TYPE_Q: /* MMX modrm operand */
op->unit = X86_OP_MMX;
goto get_modrm;
case X86_TYPE_W: /* XMM/YMM modrm operand */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
goto get_modrm;
case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */
op->unit = X86_OP_MMX;
goto get_modrm_reg;
case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
op->unit = X86_OP_MMX;
} else {
op->unit = X86_OP_SSE;
}
goto get_modrm_reg;
case X86_TYPE_R: /* R/M in the modrm byte selects a register */
op->unit = X86_OP_INT;
get_modrm_reg:
modrm = get_modrm(s, env);
if ((modrm >> 6) != 3) {
return false;
}
goto get_modrm;
case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */
op->unit = X86_OP_SSE;
goto get_modrm_mem;
case X86_TYPE_EM: /* modrm byte selects an ALU memory operand */
op->unit = X86_OP_INT;
/* fall through */
case X86_TYPE_M: /* modrm byte selects a memory operand */
get_modrm_mem:
modrm = get_modrm(s, env);
if ((modrm >> 6) == 3) {
return false;
}
/* fall through */
case X86_TYPE_nop: /* modrm operand decoded but not fetched */
get_modrm:
decode_modrm(s, env, decode, op);
break;
case X86_TYPE_O: /* Absolute address encoded in the instruction */
op->unit = X86_OP_INT;
op->has_ea = true;
op->n = -1;
decode->mem = (AddressParts) {
.def_seg = R_DS,
.base = -1,
.index = -1,
.disp = insn_get_addr(env, s, s->aflag)
};
break;
case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */
if ((s->prefix & PREFIX_VEX)) {
op->unit = X86_OP_SSE;
op->n = s->vex_v;
break;
}
if (op == &decode->op[0]) {
/* shifts place the destination in VEX.vvvv, use modrm */
return decode_op(s, env, decode, op, decode->e.op1, b);
} else {
return decode_op(s, env, decode, op, decode->e.op0, b);
}
case X86_TYPE_I: /* Immediate */
case X86_TYPE_J: /* Relative offset for a jump */
op->unit = X86_OP_IMM;
decode->immediate = op->imm = insn_get_signed(env, s, op->ot);
break;
case X86_TYPE_I_unsigned: /* Immediate */
op->unit = X86_OP_IMM;
decode->immediate = op->imm = insn_get(env, s, op->ot);
break;
case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */
op->n = insn_get(env, s, op->ot) >> 4;
break;
case X86_TYPE_2op:
*op = decode->op[0];
break;
case X86_TYPE_LoBits:
op->n = (b & 7) | REX_B(s);
op->unit = X86_OP_INT;
break;
case X86_TYPE_0 ... X86_TYPE_7:
op->n = type - X86_TYPE_0;
op->unit = X86_OP_INT;
break;
case X86_TYPE_ES ... X86_TYPE_GS:
op->n = type - X86_TYPE_ES;
op->unit = X86_OP_SEG;
break;
}
return true;
}
static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
{
uint16_t sse_prefixes;
if (!e->valid_prefix) {
return true;
}
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
/* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */
s->prefix &= ~PREFIX_DATA;
}
/* Now, either zero or one bit is set in sse_prefixes. */
sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
return e->valid_prefix & (1 << sse_prefixes);
}
static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
X86DecodedInsn *decode)
{
X86OpEntry *e = &decode->e;
decode_func(s, env, e, &decode->b);
while (e->is_decode) {
e->is_decode = false;
e->decode(s, env, e, &decode->b);
}
if (!validate_sse_prefix(s, e)) {
return false;
}
/* First compute size of operands in order to initialize s->rip_offset. */
if (e->op0 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
return false;
}
if (e->op0 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[0].ot;
}
}
if (e->op1 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
return false;
}
if (e->op1 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[1].ot;
}
}
if (e->op2 != X86_TYPE_None) {
if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
return false;
}
if (e->op2 == X86_TYPE_I) {
s->rip_offset += 1 << decode->op[2].ot;
}
}
if (e->op3 != X86_TYPE_None) {
/*
* A couple instructions actually use the extra immediate byte for an Lx
* register operand; those are handled in the gen_* functions as one off.
*/
assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
s->rip_offset += 1;
}
if (e->op0 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
return false;
}
if (e->op1 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
return false;
}
if (e->op2 != X86_TYPE_None &&
!decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
return false;
}
if (e->op3 != X86_TYPE_None) {
decode->immediate = insn_get_signed(env, s, MO_8);
}
return true;
}
static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
{
switch (cpuid) {
case X86_FEAT_None:
return true;
case X86_FEAT_CMOV:
return (s->cpuid_features & CPUID_CMOV);
case X86_FEAT_CLFLUSH:
return (s->cpuid_features & CPUID_CLFLUSH);
case X86_FEAT_CX8:
return (s->cpuid_features & CPUID_CX8);
case X86_FEAT_FXSR:
return (s->cpuid_features & CPUID_FXSR);
case X86_FEAT_CX16:
return (s->cpuid_ext_features & CPUID_EXT_CX16);
case X86_FEAT_F16C:
return (s->cpuid_ext_features & CPUID_EXT_F16C);
case X86_FEAT_FMA:
return (s->cpuid_ext_features & CPUID_EXT_FMA);
case X86_FEAT_MOVBE:
return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
case X86_FEAT_PCLMULQDQ:
return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
case X86_FEAT_POPCNT:
return (s->cpuid_ext_features & CPUID_EXT_POPCNT);
case X86_FEAT_SSE:
return (s->cpuid_features & CPUID_SSE);
case X86_FEAT_SSE2:
return (s->cpuid_features & CPUID_SSE2);
case X86_FEAT_SSE3:
return (s->cpuid_ext_features & CPUID_EXT_SSE3);
case X86_FEAT_SSSE3:
return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
case X86_FEAT_SSE41:
return (s->cpuid_ext_features & CPUID_EXT_SSE41);
case X86_FEAT_SSE42:
return (s->cpuid_ext_features & CPUID_EXT_SSE42);
case X86_FEAT_AES:
if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
return false;
} else if (!(s->prefix & PREFIX_VEX)) {
return true;
} else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
return false;
} else {
return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
}
case X86_FEAT_AVX:
return (s->cpuid_ext_features & CPUID_EXT_AVX);
case X86_FEAT_XSAVE:
return (s->cpuid_ext_features & CPUID_EXT_XSAVE);
case X86_FEAT_3DNOW:
return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
case X86_FEAT_SSE4A:
return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
case X86_FEAT_ADX:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
case X86_FEAT_BMI1:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
case X86_FEAT_BMI2:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
case X86_FEAT_AVX2:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
case X86_FEAT_CLFLUSHOPT:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLFLUSHOPT);
case X86_FEAT_CLWB:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLWB);
case X86_FEAT_FSGSBASE:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_FSGSBASE);
case X86_FEAT_SHA_NI:
return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI);
case X86_FEAT_CMPCCXADD:
return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD);
case X86_FEAT_XSAVEOPT:
return (s->cpuid_xsave_features & CPUID_XSAVE_XSAVEOPT);
}
g_assert_not_reached();
}
static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
{
X86OpEntry *e = &decode->e;
switch (e->vex_special) {
case X86_VEX_REPScalar:
/*
* Instructions which differ between 00/66 and F2/F3 in the
* exception classification and the size of the memory operand.
*/
assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
e->vex_class = e->vex_class < 4 ? 3 : 5;
if (s->vex_l) {
goto illegal;
}
assert(decode->e.s2 == X86_SIZE_x);
if (decode->op[2].has_ea) {
decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
}
}
break;
case X86_VEX_SSEUnaligned:
/* handled in sse_needs_alignment. */
break;
case X86_VEX_AVX2_256:
if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
goto illegal;
}
}
switch (e->vex_class) {
case 0:
if (s->prefix & PREFIX_VEX) {
goto illegal;
}
return true;
case 1:
case 2:
case 3:
case 4:
case 5:
case 7:
if (s->prefix & PREFIX_VEX) {
if (!(s->flags & HF_AVX_EN_MASK)) {
goto illegal;
}
} else if (e->special != X86_SPECIAL_MMX ||
(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
if (!(s->flags & HF_OSFXSR_MASK)) {
goto illegal;
}
}
break;
case 12:
/* Must have a VSIB byte and no address prefix. */
assert(s->has_modrm);
if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
goto illegal;
}
/* Check no overlap between registers. */
if (!decode->op[0].has_ea &&
(decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
goto illegal;
}
assert(!decode->op[1].has_ea);
if (decode->op[1].n == decode->mem.index) {
goto illegal;
}
if (!decode->op[2].has_ea &&
(decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
goto illegal;
}
/* fall through */
case 6:
case 11:
if (!(s->prefix & PREFIX_VEX)) {
goto illegal;
}
if (!(s->flags & HF_AVX_EN_MASK)) {
goto illegal;
}
break;
case 8:
/* Non-VEX case handled in decode_0F77. */
assert(s->prefix & PREFIX_VEX);
if (!(s->flags & HF_AVX_EN_MASK)) {
goto illegal;
}
break;
case 13:
if (!(s->prefix & PREFIX_VEX)) {
goto illegal;
}
if (s->vex_l) {
goto illegal;
}
/* All integer instructions use VEX.vvvv, so exit. */
return true;
}
if (s->vex_v != 0 &&
e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
goto illegal;
}
if (s->flags & HF_TS_MASK) {
goto nm_exception;
}
if (s->flags & HF_EM_MASK) {
goto illegal;
}
if (e->check) {
if (e->check & X86_CHECK_VEX128) {
if (s->vex_l) {
goto illegal;
}
}
if (e->check & X86_CHECK_W0) {
if (s->vex_w) {
goto illegal;
}
}
if (e->check & X86_CHECK_W1) {
if (!s->vex_w) {
goto illegal;
}
}
}
return true;
nm_exception:
gen_NM_exception(s);
return false;
illegal:
gen_illegal_opcode(s);
return false;
}
/*
* Convert one instruction. s->base.is_jmp is set if the translation must
* be stopped.
*/
static void disas_insn(DisasContext *s, CPUState *cpu)
{
CPUX86State *env = cpu_env(cpu);
X86DecodedInsn decode;
X86DecodeFunc decode_func = decode_root;
bool accept_lock = false;
uint8_t cc_live, b;
s->pc = s->base.pc_next;
s->override = -1;
s->popl_esp_hack = 0;
#ifdef TARGET_X86_64
s->rex_r = 0;
s->rex_x = 0;
s->rex_b = 0;
#endif
s->rip_offset = 0; /* for relative ip address */
s->vex_l = 0;
s->vex_v = 0;
s->vex_w = false;
s->has_modrm = false;
s->prefix = 0;
next_byte:
b = x86_ldub_code(env, s);
/* Collect prefixes. */
switch (b) {
case 0xf3:
s->prefix |= PREFIX_REPZ;
s->prefix &= ~PREFIX_REPNZ;
goto next_byte;
case 0xf2:
s->prefix |= PREFIX_REPNZ;
s->prefix &= ~PREFIX_REPZ;
goto next_byte;
case 0xf0:
s->prefix |= PREFIX_LOCK;
goto next_byte;
case 0x2e:
s->override = R_CS;
goto next_byte;
case 0x36:
s->override = R_SS;
goto next_byte;
case 0x3e:
s->override = R_DS;
goto next_byte;
case 0x26:
s->override = R_ES;
goto next_byte;
case 0x64:
s->override = R_FS;
goto next_byte;
case 0x65:
s->override = R_GS;
goto next_byte;
case 0x66:
s->prefix |= PREFIX_DATA;
goto next_byte;
case 0x67:
s->prefix |= PREFIX_ADR;
goto next_byte;
#ifdef TARGET_X86_64
case 0x40 ... 0x4f:
if (CODE64(s)) {
/* REX prefix */
s->prefix |= PREFIX_REX;
s->vex_w = (b >> 3) & 1;
s->rex_r = (b & 0x4) << 1;
s->rex_x = (b & 0x2) << 2;
s->rex_b = (b & 0x1) << 3;
goto next_byte;
}
break;
#endif
case 0xc5: /* 2-byte VEX */
case 0xc4: /* 3-byte VEX */
/*
* VEX prefixes cannot be used except in 32-bit mode.
* Otherwise the instruction is LES or LDS.
*/
if (CODE32(s) && !VM86(s)) {
static const int pp_prefix[4] = {
0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
};
int vex3, vex2 = x86_ldub_code(env, s);
if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
/*
* 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
* otherwise the instruction is LES or LDS.
*/
s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
break;
}
/* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
| PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
goto illegal_op;
}
#ifdef TARGET_X86_64
s->rex_r = (~vex2 >> 4) & 8;
#endif
if (b == 0xc5) {
/* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
vex3 = vex2;
decode_func = decode_0F;
} else {
/* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
vex3 = x86_ldub_code(env, s);
#ifdef TARGET_X86_64
s->rex_x = (~vex2 >> 3) & 8;
s->rex_b = (~vex2 >> 2) & 8;
#endif
s->vex_w = (vex3 >> 7) & 1;
switch (vex2 & 0x1f) {
case 0x01: /* Implied 0f leading opcode bytes. */
decode_func = decode_0F;
break;
case 0x02: /* Implied 0f 38 leading opcode bytes. */
decode_func = decode_0F38;
break;
case 0x03: /* Implied 0f 3a leading opcode bytes. */
decode_func = decode_0F3A;
break;
default: /* Reserved for future use. */
goto unknown_op;
}
}
s->vex_v = (~vex3 >> 3) & 0xf;
s->vex_l = (vex3 >> 2) & 1;
s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
}
break;
default:
break;
}
/* Post-process prefixes. */
if (CODE64(s)) {
/*
* In 64-bit mode, the default data size is 32-bit. Select 64-bit
* data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
* over 0x66 if both are present.
*/
s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
/* In 64-bit mode, 0x67 selects 32-bit addressing. */
s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
} else {
/* In 16/32-bit mode, 0x66 selects the opposite data size. */
if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
s->dflag = MO_32;
} else {
s->dflag = MO_16;
}
/* In 16/32-bit mode, 0x67 selects the opposite addressing. */
if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
s->aflag = MO_32;
} else {
s->aflag = MO_16;
}
}
memset(&decode, 0, sizeof(decode));
decode.cc_op = -1;
decode.b = b;
if (!decode_insn(s, env, decode_func, &decode)) {
goto illegal_op;
}
if (!decode.e.gen) {
goto unknown_op;
}
if (!has_cpuid_feature(s, decode.e.cpuid)) {
goto illegal_op;
}
/* Checks that result in #UD come first. */
if (decode.e.check) {
if (CODE64(s)) {
if (decode.e.check & X86_CHECK_i64) {
goto illegal_op;
}
if ((decode.e.check & X86_CHECK_i64_amd) && env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1) {
goto illegal_op;
}
} else {
if (decode.e.check & X86_CHECK_o64) {
goto illegal_op;
}
if ((decode.e.check & X86_CHECK_o64_intel) && env->cpuid_vendor1 == CPUID_VENDOR_INTEL_1) {
goto illegal_op;
}
}
if (decode.e.check & X86_CHECK_prot_or_vm86) {
if (!PE(s)) {
goto illegal_op;
}
}
if (decode.e.check & X86_CHECK_no_vm86) {
if (VM86(s)) {
goto illegal_op;
}
}
}
switch (decode.e.special) {
case X86_SPECIAL_None:
break;
case X86_SPECIAL_Locked:
if (decode.op[0].has_ea) {
s->prefix |= PREFIX_LOCK;
}
/* fallthrough */
case X86_SPECIAL_HasLock:
case X86_SPECIAL_BitTest:
accept_lock = decode.op[0].has_ea;
break;
case X86_SPECIAL_Op0_Rd:
assert(decode.op[0].unit == X86_OP_INT);
if (!decode.op[0].has_ea) {
decode.op[0].ot = MO_32;
}
break;
case X86_SPECIAL_Op2_Ry:
assert(decode.op[2].unit == X86_OP_INT);
if (!decode.op[2].has_ea) {
decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag;
}
break;
case X86_SPECIAL_AVXExtMov:
if (!decode.op[2].has_ea) {
decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
} else if (s->vex_l) {
decode.op[2].ot++;
}
break;
case X86_SPECIAL_SExtT0:
case X86_SPECIAL_ZExtT0:
/* Handled in gen_load. */
assert(decode.op[1].unit == X86_OP_INT);
break;
case X86_SPECIAL_Op0_Mw:
assert(decode.op[0].unit == X86_OP_INT);
if (decode.op[0].has_ea) {
decode.op[0].ot = MO_16;
}
break;
default:
break;
}
if ((s->prefix & PREFIX_LOCK) && !accept_lock) {
goto illegal_op;
}
if (!validate_vex(s, &decode)) {
return;
}
/*
* Checks that result in #GP or VMEXIT come second. Intercepts are
* generally checked after non-memory exceptions (i.e. after all
* exceptions if there is no memory operand). Exceptions are
* vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!).
*
* XSETBV will check for CPL0 in the gen_* function instead of using chk().
*/
if (decode.e.check & X86_CHECK_cpl0) {
if (CPL(s) != 0) {
goto gp_fault;
}
}
if (decode.e.has_intercept && unlikely(GUEST(s))) {
gen_helper_svm_check_intercept(tcg_env,
tcg_constant_i32(decode.e.intercept));
}
if (decode.e.check) {
if ((decode.e.check & X86_CHECK_smm) && !(s->flags & HF_SMM_MASK)) {
goto illegal_op;
}
if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) {
if (IOPL(s) < 3) {
goto gp_fault;
}
} else if (decode.e.check & X86_CHECK_cpl_iopl) {
if (IOPL(s) < CPL(s)) {
goto gp_fault;
}
}
}
if (decode.e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
gen_helper_enter_mmx(tcg_env);
}
if (decode.e.special != X86_SPECIAL_NoLoadEA &&
(decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea)) {
gen_lea_modrm(s, &decode);
}
if (s->prefix & PREFIX_LOCK) {
assert(decode.op[0].has_ea && !decode.op[2].has_ea);
gen_load(s, &decode, 2, s->T1);
decode.e.gen(s, &decode);
} else {
if (decode.op[0].unit == X86_OP_MMX) {
compute_mmx_offset(&decode.op[0]);
} else if (decode.op[0].unit == X86_OP_SSE) {
compute_xmm_offset(&decode.op[0]);
}
gen_load(s, &decode, 1, s->T0);
gen_load(s, &decode, 2, s->T1);
decode.e.gen(s, &decode);
gen_writeback(s, &decode, 0, s->T0);
}
/*
* Write back flags after last memory access. Some older ALU instructions, as
* well as SSE instructions, write flags in the gen_* function, but that can
* cause incorrect tracking of CC_OP for instructions that write to both memory
* and flags.
*/
if (decode.cc_op != -1) {
if (decode.cc_dst) {
tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst);
}
if (decode.cc_src) {
tcg_gen_mov_tl(cpu_cc_src, decode.cc_src);
}
if (decode.cc_src2) {
tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2);
}
if (decode.cc_op == CC_OP_DYNAMIC) {
tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic);
}
set_cc_op(s, decode.cc_op);
cc_live = cc_op_live(decode.cc_op);
} else {
cc_live = 0;
}
if (decode.cc_op != CC_OP_DYNAMIC) {
assert(!decode.cc_op_dynamic);
assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST));
assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC));
assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2));
}
return;
gp_fault:
gen_exception_gpf(s);
return;
illegal_op:
gen_illegal_opcode(s);
return;
unknown_op:
gen_unknown_opcode(env, s);
}