qemu/hw/sd/sd.c
Jan Luebbe c078298301 hw/sd/sdcard: Fix calculation of size when using eMMC boot partitions
The sd_bootpart_offset() function calculates the *runtime* offset which
changes as the guest switches between accessing the main user data area
and the boot partitions by writing to the EXT_CSD_PART_CONFIG_ACC_MASK
bits, so it shouldn't be used to calculate the main user data area size.

Instead, subtract the boot_part_size directly (twice, as there are two
identical boot partitions defined by the eMMC spec).

Suggested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Jan Luebbe <jlu@pengutronix.de>
Fixes: c8cb19876d ("hw/sd/sdcard: Support boot area in emmc image")
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Cédric Le Goater <clg@redhat.com>
2024-11-04 11:33:13 +01:00

2916 lines
87 KiB
C

/*
* SD Memory Card emulation as defined in the "SD Memory Card Physical
* layer specification, Version 2.00."
*
* eMMC emulation defined in "JEDEC Standard No. 84-A43"
*
* Copyright (c) 2006 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (c) 2007 CodeSourcery
* Copyright (c) 2018 Philippe Mathieu-Daudé <f4bug@amsat.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "hw/irq.h"
#include "hw/registerfields.h"
#include "sysemu/block-backend.h"
#include "hw/sd/sd.h"
#include "hw/sd/sdcard_legacy.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/bitmap.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/guest-random.h"
#include "qemu/module.h"
#include "sdmmc-internal.h"
#include "trace.h"
//#define DEBUG_SD 1
#define SDSC_MAX_CAPACITY (2 * GiB)
#define INVALID_ADDRESS UINT32_MAX
typedef enum {
sd_r0 = 0, /* no response */
sd_r1, /* normal response command */
sd_r2_i, /* CID register */
sd_r2_s, /* CSD register */
sd_r3, /* OCR register */
sd_r6 = 6, /* Published RCA response */
sd_r7, /* Operating voltage */
sd_r1b = -1,
sd_illegal = -2,
} sd_rsp_type_t;
typedef enum {
sd_spi,
sd_bc, /* broadcast -- no response */
sd_bcr, /* broadcast with response */
sd_ac, /* addressed -- no data transfer */
sd_adtc, /* addressed with data transfer */
} sd_cmd_type_t;
enum SDCardModes {
sd_inactive,
sd_card_identification_mode,
sd_data_transfer_mode,
};
enum SDCardStates {
sd_waitirq_state = -2, /* emmc */
sd_inactive_state = -1,
sd_idle_state = 0,
sd_ready_state = 1,
sd_identification_state = 2,
sd_standby_state = 3,
sd_transfer_state = 4,
sd_sendingdata_state = 5,
sd_receivingdata_state = 6,
sd_programming_state = 7,
sd_disconnect_state = 8,
sd_bus_test_state = 9, /* emmc */
sd_sleep_state = 10, /* emmc */
sd_io_state = 15 /* sd */
};
#define SDMMC_CMD_MAX 64
typedef sd_rsp_type_t (*sd_cmd_handler)(SDState *sd, SDRequest req);
typedef struct SDProto {
const char *name;
struct {
const unsigned class;
const sd_cmd_type_t type;
const char *name;
sd_cmd_handler handler;
} cmd[SDMMC_CMD_MAX], acmd[SDMMC_CMD_MAX];
} SDProto;
struct SDState {
DeviceState parent_obj;
/* If true, created by sd_init() for a non-qdevified caller */
/* TODO purge them with fire */
bool me_no_qdev_me_kill_mammoth_with_rocks;
/* SD Memory Card Registers */
uint32_t ocr;
uint8_t scr[8];
uint8_t cid[16];
uint8_t csd[16];
uint16_t rca;
uint32_t card_status;
uint8_t sd_status[64];
union {
uint8_t ext_csd[512];
struct {
uint8_t ext_csd_rw[192]; /* Modes segment */
uint8_t ext_csd_ro[320]; /* Properties segment */
};
};
/* Static properties */
uint8_t spec_version;
uint64_t boot_part_size;
BlockBackend *blk;
uint8_t boot_config;
const SDProto *proto;
/* Runtime changeables */
uint32_t mode; /* current card mode, one of SDCardModes */
int32_t state; /* current card state, one of SDCardStates */
uint32_t vhs;
bool wp_switch;
unsigned long *wp_group_bmap;
int32_t wp_group_bits;
uint64_t size;
uint32_t blk_len;
uint32_t multi_blk_cnt;
uint32_t erase_start;
uint32_t erase_end;
uint8_t pwd[16];
uint32_t pwd_len;
uint8_t function_group[6];
uint8_t current_cmd;
const char *last_cmd_name;
/* True if we will handle the next command as an ACMD. Note that this does
* *not* track the APP_CMD status bit!
*/
bool expecting_acmd;
uint32_t blk_written;
uint64_t data_start;
uint32_t data_offset;
size_t data_size;
uint8_t data[512];
qemu_irq readonly_cb;
qemu_irq inserted_cb;
QEMUTimer *ocr_power_timer;
bool enable;
uint8_t dat_lines;
bool cmd_line;
};
static void sd_realize(DeviceState *dev, Error **errp);
static const SDProto sd_proto_spi;
static const SDProto sd_proto_emmc;
static bool sd_is_spi(SDState *sd)
{
return sd->proto == &sd_proto_spi;
}
static bool sd_is_emmc(SDState *sd)
{
return sd->proto == &sd_proto_emmc;
}
static const char *sd_version_str(enum SDPhySpecificationVersion version)
{
static const char *sdphy_version[] = {
[SD_PHY_SPECv1_10_VERS] = "v1.10",
[SD_PHY_SPECv2_00_VERS] = "v2.00",
[SD_PHY_SPECv3_01_VERS] = "v3.01",
};
if (version >= ARRAY_SIZE(sdphy_version)) {
return "unsupported version";
}
return sdphy_version[version];
}
static const char *sd_mode_name(enum SDCardModes mode)
{
static const char *mode_name[] = {
[sd_inactive] = "inactive",
[sd_card_identification_mode] = "identification",
[sd_data_transfer_mode] = "transfer",
};
assert(mode < ARRAY_SIZE(mode_name));
return mode_name[mode];
}
static const char *sd_state_name(enum SDCardStates state)
{
static const char *state_name[] = {
[sd_idle_state] = "idle",
[sd_ready_state] = "ready",
[sd_identification_state] = "identification",
[sd_standby_state] = "standby",
[sd_transfer_state] = "transfer",
[sd_sendingdata_state] = "sendingdata",
[sd_bus_test_state] = "bus-test",
[sd_receivingdata_state] = "receivingdata",
[sd_programming_state] = "programming",
[sd_disconnect_state] = "disconnect",
[sd_sleep_state] = "sleep",
[sd_io_state] = "i/o"
};
if (state == sd_inactive_state) {
return "inactive";
}
if (state == sd_waitirq_state) {
return "wait-irq";
}
assert(state < ARRAY_SIZE(state_name));
return state_name[state];
}
static const char *sd_response_name(sd_rsp_type_t rsp)
{
static const char *response_name[] = {
[sd_r0] = "RESP#0 (no response)",
[sd_r1] = "RESP#1 (normal cmd)",
[sd_r2_i] = "RESP#2 (CID reg)",
[sd_r2_s] = "RESP#2 (CSD reg)",
[sd_r3] = "RESP#3 (OCR reg)",
[sd_r6] = "RESP#6 (RCA)",
[sd_r7] = "RESP#7 (operating voltage)",
};
if (rsp == sd_illegal) {
return "ILLEGAL RESP";
}
if (rsp == sd_r1b) {
rsp = sd_r1;
}
assert(rsp < ARRAY_SIZE(response_name));
return response_name[rsp];
}
static const char *sd_cmd_name(SDState *sd, uint8_t cmd)
{
static const char *cmd_abbrev[SDMMC_CMD_MAX] = {
[18] = "READ_MULTIPLE_BLOCK",
[25] = "WRITE_MULTIPLE_BLOCK",
};
const SDProto *sdp = sd->proto;
if (sdp->cmd[cmd].handler) {
assert(!cmd_abbrev[cmd]);
return sdp->cmd[cmd].name;
}
return cmd_abbrev[cmd] ? cmd_abbrev[cmd] : "UNKNOWN_CMD";
}
static const char *sd_acmd_name(SDState *sd, uint8_t cmd)
{
const SDProto *sdp = sd->proto;
if (sdp->acmd[cmd].handler) {
return sdp->acmd[cmd].name;
}
return "UNKNOWN_ACMD";
}
static uint8_t sd_get_dat_lines(SDState *sd)
{
return sd->enable ? sd->dat_lines : 0;
}
static bool sd_get_cmd_line(SDState *sd)
{
return sd->enable ? sd->cmd_line : false;
}
static void sd_set_voltage(SDState *sd, uint16_t millivolts)
{
trace_sdcard_set_voltage(millivolts);
switch (millivolts) {
case 3001 ... 3600: /* SD_VOLTAGE_3_3V */
case 2001 ... 3000: /* SD_VOLTAGE_3_0V */
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "SD card voltage not supported: %.3fV",
millivolts / 1000.f);
}
}
static void sd_set_mode(SDState *sd)
{
switch (sd->state) {
case sd_inactive_state:
sd->mode = sd_inactive;
break;
case sd_idle_state:
case sd_ready_state:
case sd_identification_state:
sd->mode = sd_card_identification_mode;
break;
case sd_standby_state:
case sd_transfer_state:
case sd_sendingdata_state:
case sd_receivingdata_state:
case sd_programming_state:
case sd_disconnect_state:
sd->mode = sd_data_transfer_mode;
break;
}
}
static uint8_t sd_crc7(const void *message, size_t width)
{
int i, bit;
uint8_t shift_reg = 0x00;
const uint8_t *msg = (const uint8_t *)message;
for (i = 0; i < width; i ++, msg ++)
for (bit = 7; bit >= 0; bit --) {
shift_reg <<= 1;
if ((shift_reg >> 7) ^ ((*msg >> bit) & 1))
shift_reg ^= 0x89;
}
return shift_reg;
}
/* Operation Conditions register */
#define OCR_POWER_DELAY_NS 500000 /* 0.5ms */
FIELD(OCR, VDD_VOLTAGE_WINDOW, 0, 24)
FIELD(OCR, VDD_VOLTAGE_WIN_LO, 0, 8)
FIELD(OCR, DUAL_VOLTAGE_CARD, 7, 1)
FIELD(OCR, VDD_VOLTAGE_WIN_HI, 8, 16)
FIELD(OCR, ACCEPT_SWITCH_1V8, 24, 1) /* Only UHS-I */
FIELD(OCR, UHS_II_CARD, 29, 1) /* Only UHS-II */
FIELD(OCR, CARD_CAPACITY, 30, 1) /* 0:SDSC, 1:SDHC/SDXC */
FIELD(OCR, CARD_POWER_UP, 31, 1)
#define ACMD41_ENQUIRY_MASK 0x00ffffff
#define ACMD41_R3_MASK (R_OCR_VDD_VOLTAGE_WIN_HI_MASK \
| R_OCR_ACCEPT_SWITCH_1V8_MASK \
| R_OCR_UHS_II_CARD_MASK \
| R_OCR_CARD_CAPACITY_MASK \
| R_OCR_CARD_POWER_UP_MASK)
static void sd_ocr_powerup(void *opaque)
{
SDState *sd = opaque;
trace_sdcard_powerup();
assert(!FIELD_EX32(sd->ocr, OCR, CARD_POWER_UP));
/* card power-up OK */
sd->ocr = FIELD_DP32(sd->ocr, OCR, CARD_POWER_UP, 1);
if (sd->size > SDSC_MAX_CAPACITY) {
sd->ocr = FIELD_DP32(sd->ocr, OCR, CARD_CAPACITY, 1);
}
}
static void sd_set_ocr(SDState *sd)
{
/* All voltages OK */
sd->ocr = R_OCR_VDD_VOLTAGE_WIN_HI_MASK;
if (sd_is_spi(sd)) {
/*
* We don't need to emulate power up sequence in SPI-mode.
* Thus, the card's power up status bit should be set to 1 when reset.
* The card's capacity status bit should also be set if SD card size
* is larger than 2GB for SDHC support.
*/
sd_ocr_powerup(sd);
}
}
/* SD Configuration register */
static void sd_set_scr(SDState *sd)
{
sd->scr[0] = 0 << 4; /* SCR structure version 1.0 */
if (sd->spec_version == SD_PHY_SPECv1_10_VERS) {
sd->scr[0] |= 1; /* Spec Version 1.10 */
} else {
sd->scr[0] |= 2; /* Spec Version 2.00 or Version 3.0X */
}
sd->scr[1] = (2 << 4) /* SDSC Card (Security Version 1.01) */
| 0b0101; /* 1-bit or 4-bit width bus modes */
sd->scr[2] = 0x00; /* Extended Security is not supported. */
if (sd->spec_version >= SD_PHY_SPECv3_01_VERS) {
sd->scr[2] |= 1 << 7; /* Spec Version 3.0X */
}
sd->scr[3] = 0x00;
/* reserved for manufacturer usage */
sd->scr[4] = 0x00;
sd->scr[5] = 0x00;
sd->scr[6] = 0x00;
sd->scr[7] = 0x00;
}
/* Card IDentification register */
#define MID 0xaa
#define OID "XY"
#define PNM "QEMU!"
#define PRV 0x01
#define MDT_YR 2006
#define MDT_MON 2
static void sd_set_cid(SDState *sd)
{
sd->cid[0] = MID; /* Fake card manufacturer ID (MID) */
sd->cid[1] = OID[0]; /* OEM/Application ID (OID) */
sd->cid[2] = OID[1];
sd->cid[3] = PNM[0]; /* Fake product name (PNM) */
sd->cid[4] = PNM[1];
sd->cid[5] = PNM[2];
sd->cid[6] = PNM[3];
sd->cid[7] = PNM[4];
sd->cid[8] = PRV; /* Fake product revision (PRV) */
stl_be_p(&sd->cid[9], 0xdeadbeef); /* Fake serial number (PSN) */
sd->cid[13] = 0x00 | /* Manufacture date (MDT) */
((MDT_YR - 2000) / 10);
sd->cid[14] = ((MDT_YR % 10) << 4) | MDT_MON;
sd->cid[15] = (sd_crc7(sd->cid, 15) << 1) | 1;
}
static void emmc_set_cid(SDState *sd)
{
sd->cid[0] = MID; /* Fake card manufacturer ID (MID) */
sd->cid[1] = 0b01; /* CBX: soldered BGA */
sd->cid[2] = OID[0]; /* OEM/Application ID (OID) */
sd->cid[3] = PNM[0]; /* Fake product name (PNM) */
sd->cid[4] = PNM[1];
sd->cid[5] = PNM[2];
sd->cid[6] = PNM[3];
sd->cid[7] = PNM[4];
sd->cid[8] = PNM[4];
sd->cid[9] = PRV; /* Fake product revision (PRV) */
stl_be_p(&sd->cid[10], 0xdeadbeef); /* Fake serial number (PSN) */
sd->cid[14] = (MDT_MON << 4) | (MDT_YR - 1997); /* Manufacture date (MDT) */
sd->cid[15] = (sd_crc7(sd->cid, 15) << 1) | 1;
}
/* Card-Specific Data register */
#define HWBLOCK_SHIFT 9 /* 512 bytes */
#define SECTOR_SHIFT 5 /* 16 kilobytes */
#define WPGROUP_SHIFT 7 /* 2 megs */
#define CMULT_SHIFT 9 /* 512 times HWBLOCK_SIZE */
#define WPGROUP_SIZE (1 << (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT))
static const uint8_t sd_csd_rw_mask[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xfe,
};
static void emmc_set_ext_csd(SDState *sd, uint64_t size)
{
uint32_t sectcount = size >> HWBLOCK_SHIFT;
memset(sd->ext_csd, 0, sizeof(sd->ext_csd)); /* FIXME only RW at reset */
/* Properties segment (RO) */
sd->ext_csd[EXT_CSD_S_CMD_SET] = 0b1; /* supported command sets */
sd->ext_csd[EXT_CSD_BOOT_INFO] = 0x0; /* Boot information */
/* Boot partition size. 128KB unit */
sd->ext_csd[EXT_CSD_BOOT_MULT] = sd->boot_part_size / (128 * KiB);
sd->ext_csd[EXT_CSD_ACC_SIZE] = 0x1; /* Access size */
sd->ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] = 0x01; /* HC Erase unit size */
sd->ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT] = 0x01; /* HC erase timeout */
sd->ext_csd[EXT_CSD_REL_WR_SEC_C] = 0x1; /* Reliable write sector count */
sd->ext_csd[EXT_CSD_HC_WP_GRP_SIZE] = 0x01; /* HC write protect group size */
sd->ext_csd[EXT_CSD_S_C_VCC] = 0x01; /* Sleep current VCC */
sd->ext_csd[EXT_CSD_S_C_VCCQ] = 0x01; /* Sleep current VCCQ */
sd->ext_csd[EXT_CSD_S_A_TIMEOUT] = 0x01; /* Sleep/Awake timeout */
stl_le_p(&sd->ext_csd[EXT_CSD_SEC_CNT], sectcount); /* Sector count */
sd->ext_csd[210] = 0x46; /* Min write perf for 8bit@52Mhz */
sd->ext_csd[209] = 0x46; /* Min read perf for 8bit@52Mhz */
sd->ext_csd[208] = 0x46; /* Min write perf for 4bit@52Mhz */
sd->ext_csd[207] = 0x46; /* Min read perf for 4bit@52Mhz */
sd->ext_csd[206] = 0x46; /* Min write perf for 4bit@26Mhz */
sd->ext_csd[205] = 0x46; /* Min read perf for 4bit@26Mhz */
sd->ext_csd[EXT_CSD_CARD_TYPE] = 0b11;
sd->ext_csd[EXT_CSD_STRUCTURE] = 2;
sd->ext_csd[EXT_CSD_REV] = 3;
/* Mode segment (RW) */
sd->ext_csd[EXT_CSD_PART_CONFIG] = sd->boot_config;
}
static void emmc_set_csd(SDState *sd, uint64_t size)
{
int hwblock_shift = HWBLOCK_SHIFT;
uint32_t sectsize = (1 << (SECTOR_SHIFT + 1)) - 1;
uint32_t wpsize = (1 << (WPGROUP_SHIFT + 1)) - 1;
sd->csd[0] = (3 << 6) | (4 << 2); /* Spec v4.3 with EXT_CSD */
sd->csd[1] = (1 << 3) | 6; /* Asynchronous data access time: 1ms */
sd->csd[2] = 0x00;
sd->csd[3] = (1 << 3) | 3;; /* Maximum bus clock frequency: 100MHz */
sd->csd[4] = 0x0f;
if (size <= 2 * GiB) {
/* use 1k blocks */
uint32_t csize1k = (size >> (CMULT_SHIFT + 10)) - 1;
sd->csd[5] = 0x5a;
sd->csd[6] = 0x80 | ((csize1k >> 10) & 0xf);
sd->csd[7] = (csize1k >> 2) & 0xff;
} else { /* >= 2GB : size stored in ext CSD, block addressing */
sd->csd[5] = 0x59;
sd->csd[6] = 0x8f;
sd->csd[7] = 0xff;
sd->ocr = FIELD_DP32(sd->ocr, OCR, CARD_CAPACITY, 1);
}
sd->csd[8] = 0xff;
sd->csd[9] = 0xfc | /* Max. write current */
((CMULT_SHIFT - 2) >> 1);
sd->csd[10] = 0x40 | /* Erase sector size */
(((CMULT_SHIFT - 2) << 7) & 0x80) | (sectsize >> 1);
sd->csd[11] = 0x00 | /* Write protect group size */
((sectsize << 7) & 0x80) | wpsize;
sd->csd[12] = 0x90 | /* Write speed factor */
(hwblock_shift >> 2);
sd->csd[13] = 0x20 | /* Max. write data block length */
((hwblock_shift << 6) & 0xc0);
sd->csd[14] = 0x00;
sd->csd[15] = (sd_crc7(sd->csd, 15) << 1) | 1;
emmc_set_ext_csd(sd, size);
}
static void sd_set_csd(SDState *sd, uint64_t size)
{
int hwblock_shift = HWBLOCK_SHIFT;
uint32_t csize;
uint32_t sectsize = (1 << (SECTOR_SHIFT + 1)) - 1;
uint32_t wpsize = (1 << (WPGROUP_SHIFT + 1)) - 1;
/* To indicate 2 GiB card, BLOCK_LEN shall be 1024 bytes */
if (size == SDSC_MAX_CAPACITY) {
hwblock_shift += 1;
}
csize = (size >> (CMULT_SHIFT + hwblock_shift)) - 1;
if (size <= SDSC_MAX_CAPACITY) { /* Standard Capacity SD */
sd->csd[0] = 0x00; /* CSD structure */
sd->csd[1] = 0x26; /* Data read access-time-1 */
sd->csd[2] = 0x00; /* Data read access-time-2 */
sd->csd[3] = 0x32; /* Max. data transfer rate: 25 MHz */
sd->csd[4] = 0x5f; /* Card Command Classes */
sd->csd[5] = 0x50 | /* Max. read data block length */
hwblock_shift;
sd->csd[6] = 0xe0 | /* Partial block for read allowed */
((csize >> 10) & 0x03);
sd->csd[7] = 0x00 | /* Device size */
((csize >> 2) & 0xff);
sd->csd[8] = 0x3f | /* Max. read current */
((csize << 6) & 0xc0);
sd->csd[9] = 0xfc | /* Max. write current */
((CMULT_SHIFT - 2) >> 1);
sd->csd[10] = 0x40 | /* Erase sector size */
(((CMULT_SHIFT - 2) << 7) & 0x80) | (sectsize >> 1);
sd->csd[11] = 0x00 | /* Write protect group size */
((sectsize << 7) & 0x80) | wpsize;
sd->csd[12] = 0x90 | /* Write speed factor */
(hwblock_shift >> 2);
sd->csd[13] = 0x20 | /* Max. write data block length */
((hwblock_shift << 6) & 0xc0);
sd->csd[14] = 0x00; /* File format group */
} else { /* SDHC */
size /= 512 * KiB;
size -= 1;
sd->csd[0] = 0x40;
sd->csd[1] = 0x0e;
sd->csd[2] = 0x00;
sd->csd[3] = 0x32;
sd->csd[4] = 0x5b;
sd->csd[5] = 0x59;
sd->csd[6] = 0x00;
st24_be_p(&sd->csd[7], size);
sd->csd[10] = 0x7f;
sd->csd[11] = 0x80;
sd->csd[12] = 0x0a;
sd->csd[13] = 0x40;
sd->csd[14] = 0x00;
}
sd->csd[15] = (sd_crc7(sd->csd, 15) << 1) | 1;
}
/* Relative Card Address register */
static void sd_set_rca(SDState *sd, uint16_t value)
{
trace_sdcard_set_rca(value);
sd->rca = value;
}
static uint16_t sd_req_get_rca(SDState *s, SDRequest req)
{
switch (s->proto->cmd[req.cmd].type) {
case sd_ac:
case sd_adtc:
return req.arg >> 16;
case sd_spi:
default:
g_assert_not_reached();
}
}
static bool sd_req_rca_same(SDState *s, SDRequest req)
{
return sd_req_get_rca(s, req) == s->rca;
}
/* Card Status register */
FIELD(CSR, AKE_SEQ_ERROR, 3, 1)
FIELD(CSR, APP_CMD, 5, 1)
FIELD(CSR, FX_EVENT, 6, 1)
FIELD(CSR, SWITCH_ERROR, 7, 1)
FIELD(CSR, READY_FOR_DATA, 8, 1)
FIELD(CSR, CURRENT_STATE, 9, 4)
FIELD(CSR, ERASE_RESET, 13, 1)
FIELD(CSR, CARD_ECC_DISABLED, 14, 1)
FIELD(CSR, WP_ERASE_SKIP, 15, 1)
FIELD(CSR, CSD_OVERWRITE, 16, 1)
FIELD(CSR, DEFERRED_RESPONSE, 17, 1)
FIELD(CSR, ERROR, 19, 1)
FIELD(CSR, CC_ERROR, 20, 1)
FIELD(CSR, CARD_ECC_FAILED, 21, 1)
FIELD(CSR, ILLEGAL_COMMAND, 22, 1)
FIELD(CSR, COM_CRC_ERROR, 23, 1)
FIELD(CSR, LOCK_UNLOCK_FAILED, 24, 1)
FIELD(CSR, CARD_IS_LOCKED, 25, 1)
FIELD(CSR, WP_VIOLATION, 26, 1)
FIELD(CSR, ERASE_PARAM, 27, 1)
FIELD(CSR, ERASE_SEQ_ERROR, 28, 1)
FIELD(CSR, BLOCK_LEN_ERROR, 29, 1)
FIELD(CSR, ADDRESS_ERROR, 30, 1)
FIELD(CSR, OUT_OF_RANGE, 31, 1)
/* Card status bits, split by clear condition:
* A : According to the card current state
* B : Always related to the previous command
* C : Cleared by read
*/
#define CARD_STATUS_A (R_CSR_READY_FOR_DATA_MASK \
| R_CSR_CARD_ECC_DISABLED_MASK \
| R_CSR_CARD_IS_LOCKED_MASK)
#define CARD_STATUS_B (R_CSR_CURRENT_STATE_MASK \
| R_CSR_ILLEGAL_COMMAND_MASK \
| R_CSR_COM_CRC_ERROR_MASK)
#define CARD_STATUS_C (R_CSR_AKE_SEQ_ERROR_MASK \
| R_CSR_APP_CMD_MASK \
| R_CSR_ERASE_RESET_MASK \
| R_CSR_WP_ERASE_SKIP_MASK \
| R_CSR_CSD_OVERWRITE_MASK \
| R_CSR_ERROR_MASK \
| R_CSR_CC_ERROR_MASK \
| R_CSR_CARD_ECC_FAILED_MASK \
| R_CSR_LOCK_UNLOCK_FAILED_MASK \
| R_CSR_WP_VIOLATION_MASK \
| R_CSR_ERASE_PARAM_MASK \
| R_CSR_ERASE_SEQ_ERROR_MASK \
| R_CSR_BLOCK_LEN_ERROR_MASK \
| R_CSR_ADDRESS_ERROR_MASK \
| R_CSR_OUT_OF_RANGE_MASK)
static void sd_set_cardstatus(SDState *sd)
{
sd->card_status = READY_FOR_DATA;
}
static void sd_set_sdstatus(SDState *sd)
{
memset(sd->sd_status, 0, 64);
}
static const uint8_t sd_tuning_block_pattern4[64] = {
/*
* See: Physical Layer Simplified Specification Version 3.01,
* Table 4-2.
*/
0xff, 0x0f, 0xff, 0x00, 0x0f, 0xfc, 0xc3, 0xcc,
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde
};
static int sd_req_crc_validate(SDRequest *req)
{
uint8_t buffer[5];
buffer[0] = 0x40 | req->cmd;
stl_be_p(&buffer[1], req->arg);
return 0;
return sd_crc7(buffer, 5) != req->crc; /* TODO */
}
static void sd_response_r1_make(SDState *sd, uint8_t *response)
{
stl_be_p(response, sd->card_status);
/* Clear the "clear on read" status bits */
sd->card_status &= ~CARD_STATUS_C;
}
static void sd_response_r3_make(SDState *sd, uint8_t *response)
{
stl_be_p(response, sd->ocr & ACMD41_R3_MASK);
}
static void sd_response_r6_make(SDState *sd, uint8_t *response)
{
uint16_t status;
status = ((sd->card_status >> 8) & 0xc000) |
((sd->card_status >> 6) & 0x2000) |
(sd->card_status & 0x1fff);
sd->card_status &= ~(CARD_STATUS_C & 0xc81fff);
stw_be_p(response + 0, sd->rca);
stw_be_p(response + 2, status);
}
static void sd_response_r7_make(SDState *sd, uint8_t *response)
{
stl_be_p(response, sd->vhs);
}
static uint32_t sd_blk_len(SDState *sd)
{
if (FIELD_EX32(sd->ocr, OCR, CARD_CAPACITY)) {
return 1 << HWBLOCK_SHIFT;
}
return sd->blk_len;
}
/*
* This requires a disk image that has two boot partitions inserted at the
* beginning of it. The size of the boot partitions is the "boot-size"
* property.
*/
static uint32_t sd_bootpart_offset(SDState *sd)
{
unsigned partition_access;
if (!sd->boot_part_size || !sd_is_emmc(sd)) {
return 0;
}
partition_access = sd->ext_csd[EXT_CSD_PART_CONFIG]
& EXT_CSD_PART_CONFIG_ACC_MASK;
switch (partition_access) {
case EXT_CSD_PART_CONFIG_ACC_DEFAULT:
return sd->boot_part_size * 2;
case EXT_CSD_PART_CONFIG_ACC_BOOT0:
return 0;
case EXT_CSD_PART_CONFIG_ACC_BOOT0 + 1:
return sd->boot_part_size * 1;
default:
g_assert_not_reached();
}
}
static uint64_t sd_req_get_address(SDState *sd, SDRequest req)
{
uint64_t addr;
if (FIELD_EX32(sd->ocr, OCR, CARD_CAPACITY)) {
addr = (uint64_t) req.arg << HWBLOCK_SHIFT;
} else {
addr = req.arg;
}
trace_sdcard_req_addr(req.arg, addr);
return addr;
}
static inline uint64_t sd_addr_to_wpnum(uint64_t addr)
{
return addr >> (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT);
}
static void sd_reset(DeviceState *dev)
{
SDState *sd = SDMMC_COMMON(dev);
SDCardClass *sc = SDMMC_COMMON_GET_CLASS(sd);
uint64_t size;
uint64_t sect;
trace_sdcard_reset();
if (sd->blk) {
blk_get_geometry(sd->blk, &sect);
} else {
sect = 0;
}
size = sect << HWBLOCK_SHIFT;
if (sd_is_emmc(sd)) {
size -= sd->boot_part_size * 2;
}
sect = sd_addr_to_wpnum(size) + 1;
sd->state = sd_idle_state;
/* card registers */
sd->rca = sd_is_emmc(sd) ? 0x0001 : 0x0000;
sd->size = size;
sd_set_ocr(sd);
sd_set_scr(sd);
sc->set_cid(sd);
sc->set_csd(sd, size);
sd_set_cardstatus(sd);
sd_set_sdstatus(sd);
g_free(sd->wp_group_bmap);
sd->wp_switch = sd->blk ? !blk_is_writable(sd->blk) : false;
sd->wp_group_bits = sect;
sd->wp_group_bmap = bitmap_new(sd->wp_group_bits);
memset(sd->function_group, 0, sizeof(sd->function_group));
sd->erase_start = INVALID_ADDRESS;
sd->erase_end = INVALID_ADDRESS;
sd->blk_len = 0x200;
sd->pwd_len = 0;
sd->expecting_acmd = false;
sd->dat_lines = 0xf;
sd->cmd_line = true;
sd->multi_blk_cnt = 0;
}
static bool sd_get_inserted(SDState *sd)
{
return sd->blk && blk_is_inserted(sd->blk);
}
static bool sd_get_readonly(SDState *sd)
{
return sd->wp_switch;
}
static void sd_cardchange(void *opaque, bool load, Error **errp)
{
SDState *sd = opaque;
DeviceState *dev = DEVICE(sd);
SDBus *sdbus;
bool inserted = sd_get_inserted(sd);
bool readonly = sd_get_readonly(sd);
if (inserted) {
trace_sdcard_inserted(readonly);
sd_reset(dev);
} else {
trace_sdcard_ejected();
}
if (sd->me_no_qdev_me_kill_mammoth_with_rocks) {
qemu_set_irq(sd->inserted_cb, inserted);
if (inserted) {
qemu_set_irq(sd->readonly_cb, readonly);
}
} else {
sdbus = SD_BUS(qdev_get_parent_bus(dev));
sdbus_set_inserted(sdbus, inserted);
if (inserted) {
sdbus_set_readonly(sdbus, readonly);
}
}
}
static const BlockDevOps sd_block_ops = {
.change_media_cb = sd_cardchange,
};
static bool sd_ocr_vmstate_needed(void *opaque)
{
SDState *sd = opaque;
/* Include the OCR state (and timer) if it is not yet powered up */
return !FIELD_EX32(sd->ocr, OCR, CARD_POWER_UP);
}
static const VMStateDescription sd_ocr_vmstate = {
.name = "sd-card/ocr-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = sd_ocr_vmstate_needed,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ocr, SDState),
VMSTATE_TIMER_PTR(ocr_power_timer, SDState),
VMSTATE_END_OF_LIST()
},
};
static bool vmstate_needed_for_emmc(void *opaque)
{
SDState *sd = opaque;
return sd_is_emmc(sd);
}
static const VMStateDescription emmc_extcsd_vmstate = {
.name = "sd-card/ext_csd_modes-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = vmstate_needed_for_emmc,
.fields = (const VMStateField[]) {
VMSTATE_UINT8_ARRAY(ext_csd_rw, SDState, 192),
VMSTATE_END_OF_LIST()
},
};
static int sd_vmstate_pre_load(void *opaque)
{
SDState *sd = opaque;
/* If the OCR state is not included (prior versions, or not
* needed), then the OCR must be set as powered up. If the OCR state
* is included, this will be replaced by the state restore.
*/
sd_ocr_powerup(sd);
return 0;
}
static const VMStateDescription sd_vmstate = {
.name = "sd-card",
.version_id = 2,
.minimum_version_id = 2,
.pre_load = sd_vmstate_pre_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(mode, SDState),
VMSTATE_INT32(state, SDState),
VMSTATE_UINT8_ARRAY(cid, SDState, 16),
VMSTATE_UINT8_ARRAY(csd, SDState, 16),
VMSTATE_UINT16(rca, SDState),
VMSTATE_UINT32(card_status, SDState),
VMSTATE_PARTIAL_BUFFER(sd_status, SDState, 1),
VMSTATE_UINT32(vhs, SDState),
VMSTATE_BITMAP(wp_group_bmap, SDState, 0, wp_group_bits),
VMSTATE_UINT32(blk_len, SDState),
VMSTATE_UINT32(multi_blk_cnt, SDState),
VMSTATE_UINT32(erase_start, SDState),
VMSTATE_UINT32(erase_end, SDState),
VMSTATE_UINT8_ARRAY(pwd, SDState, 16),
VMSTATE_UINT32(pwd_len, SDState),
VMSTATE_UINT8_ARRAY(function_group, SDState, 6),
VMSTATE_UINT8(current_cmd, SDState),
VMSTATE_BOOL(expecting_acmd, SDState),
VMSTATE_UINT32(blk_written, SDState),
VMSTATE_UINT64(data_start, SDState),
VMSTATE_UINT32(data_offset, SDState),
VMSTATE_UINT8_ARRAY(data, SDState, 512),
VMSTATE_UNUSED_V(1, 512),
VMSTATE_BOOL(enable, SDState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * const []) {
&sd_ocr_vmstate,
&emmc_extcsd_vmstate,
NULL
},
};
/* Legacy initialization function for use by non-qdevified callers */
SDState *sd_init(BlockBackend *blk, bool is_spi)
{
Object *obj;
DeviceState *dev;
SDState *sd;
Error *err = NULL;
obj = object_new(is_spi ? TYPE_SD_CARD_SPI : TYPE_SD_CARD);
dev = DEVICE(obj);
if (!qdev_prop_set_drive_err(dev, "drive", blk, &err)) {
error_reportf_err(err, "sd_init failed: ");
return NULL;
}
/*
* Realizing the device properly would put it into the QOM
* composition tree even though it is not plugged into an
* appropriate bus. That's a no-no. Hide the device from
* QOM/qdev, and call its qdev realize callback directly.
*/
object_ref(obj);
object_unparent(obj);
sd_realize(dev, &err);
if (err) {
error_reportf_err(err, "sd_init failed: ");
return NULL;
}
sd = SD_CARD(dev);
sd->me_no_qdev_me_kill_mammoth_with_rocks = true;
return sd;
}
void sd_set_cb(SDState *sd, qemu_irq readonly, qemu_irq insert)
{
sd->readonly_cb = readonly;
sd->inserted_cb = insert;
qemu_set_irq(readonly, sd->blk ? !blk_is_writable(sd->blk) : 0);
qemu_set_irq(insert, sd->blk ? blk_is_inserted(sd->blk) : 0);
}
static void sd_blk_read(SDState *sd, uint64_t addr, uint32_t len)
{
trace_sdcard_read_block(addr, len);
addr += sd_bootpart_offset(sd);
if (!sd->blk || blk_pread(sd->blk, addr, len, sd->data, 0) < 0) {
fprintf(stderr, "sd_blk_read: read error on host side\n");
}
}
static void sd_blk_write(SDState *sd, uint64_t addr, uint32_t len)
{
trace_sdcard_write_block(addr, len);
addr += sd_bootpart_offset(sd);
if (!sd->blk || blk_pwrite(sd->blk, addr, len, sd->data, 0) < 0) {
fprintf(stderr, "sd_blk_write: write error on host side\n");
}
}
static void sd_erase(SDState *sd)
{
uint64_t erase_start = sd->erase_start;
uint64_t erase_end = sd->erase_end;
bool sdsc = true;
uint64_t wpnum;
uint64_t erase_addr;
int erase_len = 1 << HWBLOCK_SHIFT;
trace_sdcard_erase(sd->erase_start, sd->erase_end);
if (sd->erase_start == INVALID_ADDRESS
|| sd->erase_end == INVALID_ADDRESS) {
sd->card_status |= ERASE_SEQ_ERROR;
sd->erase_start = INVALID_ADDRESS;
sd->erase_end = INVALID_ADDRESS;
return;
}
if (FIELD_EX32(sd->ocr, OCR, CARD_CAPACITY)) {
/* High capacity memory card: erase units are 512 byte blocks */
erase_start <<= HWBLOCK_SHIFT;
erase_end <<= HWBLOCK_SHIFT;
sdsc = false;
}
if (erase_start > sd->size || erase_end > sd->size) {
sd->card_status |= OUT_OF_RANGE;
sd->erase_start = INVALID_ADDRESS;
sd->erase_end = INVALID_ADDRESS;
return;
}
sd->erase_start = INVALID_ADDRESS;
sd->erase_end = INVALID_ADDRESS;
sd->csd[14] |= 0x40;
memset(sd->data, 0xff, erase_len);
for (erase_addr = erase_start; erase_addr <= erase_end;
erase_addr += erase_len) {
if (sdsc) {
/* Only SDSC cards support write protect groups */
wpnum = sd_addr_to_wpnum(erase_addr);
assert(wpnum < sd->wp_group_bits);
if (test_bit(wpnum, sd->wp_group_bmap)) {
sd->card_status |= WP_ERASE_SKIP;
continue;
}
}
sd_blk_write(sd, erase_addr, erase_len);
}
}
static uint32_t sd_wpbits(SDState *sd, uint64_t addr)
{
uint32_t i, wpnum;
uint32_t ret = 0;
wpnum = sd_addr_to_wpnum(addr);
for (i = 0; i < 32; i++, wpnum++, addr += WPGROUP_SIZE) {
if (addr >= sd->size) {
/*
* If the addresses of the last groups are outside the valid range,
* then the corresponding write protection bits shall be set to 0.
*/
continue;
}
assert(wpnum < sd->wp_group_bits);
if (test_bit(wpnum, sd->wp_group_bmap)) {
ret |= (1 << i);
}
}
return ret;
}
enum ExtCsdAccessMode {
EXT_CSD_ACCESS_MODE_COMMAND_SET = 0,
EXT_CSD_ACCESS_MODE_SET_BITS = 1,
EXT_CSD_ACCESS_MODE_CLEAR_BITS = 2,
EXT_CSD_ACCESS_MODE_WRITE_BYTE = 3
};
static void emmc_function_switch(SDState *sd, uint32_t arg)
{
uint8_t access = extract32(arg, 24, 2);
uint8_t index = extract32(arg, 16, 8);
uint8_t value = extract32(arg, 8, 8);
uint8_t b = sd->ext_csd[index];
trace_sdcard_switch(access, index, value, extract32(arg, 0, 2));
if (index >= 192) {
qemu_log_mask(LOG_GUEST_ERROR, "MMC switching illegal offset\n");
sd->card_status |= R_CSR_SWITCH_ERROR_MASK;
return;
}
switch (access) {
case EXT_CSD_ACCESS_MODE_COMMAND_SET:
qemu_log_mask(LOG_UNIMP, "MMC Command set switching not supported\n");
return;
case EXT_CSD_ACCESS_MODE_SET_BITS:
b |= value;
break;
case EXT_CSD_ACCESS_MODE_CLEAR_BITS:
b &= ~value;
break;
case EXT_CSD_ACCESS_MODE_WRITE_BYTE:
b = value;
break;
}
trace_sdcard_ext_csd_update(index, sd->ext_csd[index], b);
sd->ext_csd[index] = b;
}
static void sd_function_switch(SDState *sd, uint32_t arg)
{
int i, mode, new_func;
mode = !!(arg & 0x80000000);
sd->data[0] = 0x00; /* Maximum current consumption */
sd->data[1] = 0x01;
sd->data[2] = 0x80; /* Supported group 6 functions */
sd->data[3] = 0x01;
sd->data[4] = 0x80; /* Supported group 5 functions */
sd->data[5] = 0x01;
sd->data[6] = 0x80; /* Supported group 4 functions */
sd->data[7] = 0x01;
sd->data[8] = 0x80; /* Supported group 3 functions */
sd->data[9] = 0x01;
sd->data[10] = 0x80; /* Supported group 2 functions */
sd->data[11] = 0x43;
sd->data[12] = 0x80; /* Supported group 1 functions */
sd->data[13] = 0x03;
memset(&sd->data[14], 0, 3);
for (i = 0; i < 6; i ++) {
new_func = (arg >> (i * 4)) & 0x0f;
if (mode && new_func != 0x0f)
sd->function_group[i] = new_func;
sd->data[16 - (i >> 1)] |= new_func << ((i % 2) * 4);
}
memset(&sd->data[17], 0, 47);
}
static inline bool sd_wp_addr(SDState *sd, uint64_t addr)
{
return test_bit(sd_addr_to_wpnum(addr), sd->wp_group_bmap);
}
static void sd_lock_command(SDState *sd)
{
int erase, lock, clr_pwd, set_pwd, pwd_len;
erase = !!(sd->data[0] & 0x08);
lock = sd->data[0] & 0x04;
clr_pwd = sd->data[0] & 0x02;
set_pwd = sd->data[0] & 0x01;
if (sd->blk_len > 1)
pwd_len = sd->data[1];
else
pwd_len = 0;
if (lock) {
trace_sdcard_lock();
} else {
trace_sdcard_unlock();
}
if (erase) {
if (!(sd->card_status & CARD_IS_LOCKED) || sd->blk_len > 1 ||
set_pwd || clr_pwd || lock || sd->wp_switch ||
(sd->csd[14] & 0x20)) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
bitmap_zero(sd->wp_group_bmap, sd->wp_group_bits);
sd->csd[14] &= ~0x10;
sd->card_status &= ~CARD_IS_LOCKED;
sd->pwd_len = 0;
/* Erasing the entire card here! */
fprintf(stderr, "SD: Card force-erased by CMD42\n");
return;
}
if (sd->blk_len < 2 + pwd_len ||
pwd_len <= sd->pwd_len ||
pwd_len > sd->pwd_len + 16) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
if (sd->pwd_len && memcmp(sd->pwd, sd->data + 2, sd->pwd_len)) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
pwd_len -= sd->pwd_len;
if ((pwd_len && !set_pwd) ||
(clr_pwd && (set_pwd || lock)) ||
(lock && !sd->pwd_len && !set_pwd) ||
(!set_pwd && !clr_pwd &&
(((sd->card_status & CARD_IS_LOCKED) && lock) ||
(!(sd->card_status & CARD_IS_LOCKED) && !lock)))) {
sd->card_status |= LOCK_UNLOCK_FAILED;
return;
}
if (set_pwd) {
memcpy(sd->pwd, sd->data + 2 + sd->pwd_len, pwd_len);
sd->pwd_len = pwd_len;
}
if (clr_pwd) {
sd->pwd_len = 0;
}
if (lock)
sd->card_status |= CARD_IS_LOCKED;
else
sd->card_status &= ~CARD_IS_LOCKED;
}
static bool address_in_range(SDState *sd, const char *desc,
uint64_t addr, uint32_t length)
{
if (addr + length > sd->size) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s offset %"PRIu64" > card %"PRIu64" [%%%u]\n",
desc, addr, sd->size, length);
sd->card_status |= ADDRESS_ERROR;
return false;
}
return true;
}
static sd_rsp_type_t sd_invalid_state_for_cmd(SDState *sd, SDRequest req)
{
qemu_log_mask(LOG_GUEST_ERROR, "%s: CMD%i in a wrong state: %s (spec %s)\n",
sd->proto->name, req.cmd, sd_state_name(sd->state),
sd_version_str(sd->spec_version));
return sd_illegal;
}
static sd_rsp_type_t sd_invalid_mode_for_cmd(SDState *sd, SDRequest req)
{
qemu_log_mask(LOG_GUEST_ERROR, "%s: CMD%i in a wrong mode: %s (spec %s)\n",
sd->proto->name, req.cmd, sd_mode_name(sd->mode),
sd_version_str(sd->spec_version));
return sd_illegal;
}
static sd_rsp_type_t sd_cmd_illegal(SDState *sd, SDRequest req)
{
qemu_log_mask(LOG_GUEST_ERROR, "%s: Unknown CMD%i for spec %s\n",
sd->proto->name, req.cmd,
sd_version_str(sd->spec_version));
return sd_illegal;
}
/* Commands that are recognised but not yet implemented. */
static sd_rsp_type_t sd_cmd_unimplemented(SDState *sd, SDRequest req)
{
qemu_log_mask(LOG_UNIMP, "%s: CMD%i not implemented\n",
sd->proto->name, req.cmd);
return sd_illegal;
}
static sd_rsp_type_t sd_cmd_optional(SDState *sd, SDRequest req)
{
qemu_log_mask(LOG_UNIMP, "%s: Optional CMD%i not implemented\n",
sd->proto->name, req.cmd);
return sd_illegal;
}
/* Configure fields for following sd_generic_write_byte() calls */
static sd_rsp_type_t sd_cmd_to_receivingdata(SDState *sd, SDRequest req,
uint64_t start, size_t size)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->state = sd_receivingdata_state;
sd->data_start = start;
sd->data_offset = 0;
/* sd->data[] used as receive buffer */
sd->data_size = size ?: sizeof(sd->data);
return sd_r1;
}
/* Configure fields for following sd_generic_read_byte() calls */
static sd_rsp_type_t sd_cmd_to_sendingdata(SDState *sd, SDRequest req,
uint64_t start,
const void *data, size_t size)
{
if (sd->state != sd_transfer_state) {
sd_invalid_state_for_cmd(sd, req);
}
sd->state = sd_sendingdata_state;
sd->data_start = start;
sd->data_offset = 0;
if (data) {
assert(size > 0 && size <= sizeof(sd->data));
memcpy(sd->data, data, size);
}
if (size) {
sd->data_size = size;
}
return sd_r1;
}
/* CMD0 */
static sd_rsp_type_t sd_cmd_GO_IDLE_STATE(SDState *sd, SDRequest req)
{
if (sd->state == sd_sleep_state) {
switch (req.arg) {
case 0x00000000:
case 0xf0f0f0f0:
break;
default:
return sd_r0;
}
}
if (sd->state != sd_inactive_state) {
sd->state = sd_idle_state;
sd_reset(DEVICE(sd));
}
return sd_is_spi(sd) ? sd_r1 : sd_r0;
}
/* CMD1 */
static sd_rsp_type_t spi_cmd_SEND_OP_COND(SDState *sd, SDRequest req)
{
sd->state = sd_transfer_state;
return sd_r1;
}
/* CMD2 */
static sd_rsp_type_t sd_cmd_ALL_SEND_CID(SDState *sd, SDRequest req)
{
switch (sd->state) {
case sd_ready_state:
sd->state = sd_identification_state;
return sd_r2_i;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
/* CMD3 */
static sd_rsp_type_t sd_cmd_SEND_RELATIVE_ADDR(SDState *sd, SDRequest req)
{
uint16_t random_rca;
switch (sd->state) {
case sd_identification_state:
case sd_standby_state:
sd->state = sd_standby_state;
qemu_guest_getrandom_nofail(&random_rca, sizeof(random_rca));
sd_set_rca(sd, random_rca);
return sd_r6;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
static sd_rsp_type_t emmc_cmd_SET_RELATIVE_ADDR(SDState *sd, SDRequest req)
{
switch (sd->state) {
case sd_identification_state:
case sd_standby_state:
sd->state = sd_standby_state;
sd_set_rca(sd, req.arg >> 16);
return sd_r1;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
/* CMD5 */
static sd_rsp_type_t emmc_cmd_sleep_awake(SDState *sd, SDRequest req)
{
bool do_sleep = extract32(req.arg, 15, 1);
switch (sd->state) {
case sd_sleep_state:
if (!do_sleep) {
/* Awake */
sd->state = sd_standby_state;
}
return sd_r1b;
case sd_standby_state:
if (do_sleep) {
sd->state = sd_sleep_state;
}
return sd_r1b;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
/* CMD6 */
static sd_rsp_type_t sd_cmd_SWITCH_FUNCTION(SDState *sd, SDRequest req)
{
if (sd->mode != sd_data_transfer_mode) {
return sd_invalid_mode_for_cmd(sd, req);
}
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd_function_switch(sd, req.arg);
return sd_cmd_to_sendingdata(sd, req, 0, NULL, 64);
}
static sd_rsp_type_t emmc_cmd_SWITCH(SDState *sd, SDRequest req)
{
switch (sd->state) {
case sd_transfer_state:
sd->state = sd_programming_state;
emmc_function_switch(sd, req.arg);
sd->state = sd_transfer_state;
return sd_r1b;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
/* CMD7 */
static sd_rsp_type_t sd_cmd_DE_SELECT_CARD(SDState *sd, SDRequest req)
{
bool same_rca = sd_req_rca_same(sd, req);
switch (sd->state) {
case sd_standby_state:
if (!same_rca) {
return sd_r0;
}
sd->state = sd_transfer_state;
return sd_r1b;
case sd_transfer_state:
case sd_sendingdata_state:
if (same_rca) {
break;
}
sd->state = sd_standby_state;
return sd_r1b;
case sd_disconnect_state:
if (!same_rca) {
return sd_r0;
}
sd->state = sd_programming_state;
return sd_r1b;
case sd_programming_state:
if (same_rca) {
break;
}
sd->state = sd_disconnect_state;
return sd_r1b;
default:
break;
}
return sd_invalid_state_for_cmd(sd, req);
}
/* CMD8 */
static sd_rsp_type_t sd_cmd_SEND_IF_COND(SDState *sd, SDRequest req)
{
if (sd->spec_version < SD_PHY_SPECv2_00_VERS) {
return sd_cmd_illegal(sd, req);
}
if (sd->state != sd_idle_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->vhs = 0;
/* No response if not exactly one VHS bit is set. */
if (!(req.arg >> 8) || (req.arg >> (ctz32(req.arg & ~0xff) + 1))) {
return sd_is_spi(sd) ? sd_r7 : sd_r0;
}
/* Accept. */
sd->vhs = req.arg;
return sd_r7;
}
/* CMD8 */
static sd_rsp_type_t emmc_cmd_SEND_EXT_CSD(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_cmd_to_sendingdata(sd, req, sd_req_get_address(sd, req),
sd->ext_csd, sizeof(sd->ext_csd));
}
/* CMD9 */
static sd_rsp_type_t spi_cmd_SEND_CSD(SDState *sd, SDRequest req)
{
if (sd->state != sd_standby_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_cmd_to_sendingdata(sd, req, sd_req_get_address(sd, req),
sd->csd, 16);
}
static sd_rsp_type_t sd_cmd_SEND_CSD(SDState *sd, SDRequest req)
{
if (sd->state != sd_standby_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_req_rca_same(sd, req) ? sd_r2_s : sd_r0;
}
/* CMD10 */
static sd_rsp_type_t spi_cmd_SEND_CID(SDState *sd, SDRequest req)
{
if (sd->state != sd_standby_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_cmd_to_sendingdata(sd, req, sd_req_get_address(sd, req),
sd->cid, 16);
}
static sd_rsp_type_t sd_cmd_SEND_CID(SDState *sd, SDRequest req)
{
if (sd->state != sd_standby_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_req_rca_same(sd, req) ? sd_r2_i : sd_r0;
}
/* CMD12 */
static sd_rsp_type_t sd_cmd_STOP_TRANSMISSION(SDState *sd, SDRequest req)
{
switch (sd->state) {
case sd_sendingdata_state:
sd->state = sd_transfer_state;
return sd_r1b;
case sd_receivingdata_state:
sd->state = sd_programming_state;
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1;
default:
return sd_invalid_state_for_cmd(sd, req);
}
}
/* CMD13 */
static sd_rsp_type_t sd_cmd_SEND_STATUS(SDState *sd, SDRequest req)
{
if (sd->mode != sd_data_transfer_mode) {
return sd_invalid_mode_for_cmd(sd, req);
}
switch (sd->state) {
case sd_standby_state:
case sd_transfer_state:
case sd_sendingdata_state:
case sd_receivingdata_state:
case sd_programming_state:
case sd_disconnect_state:
break;
default:
return sd_invalid_state_for_cmd(sd, req);
}
if (sd_is_spi(sd)) {
return sd_r2_s;
}
return sd_req_rca_same(sd, req) ? sd_r1 : sd_r0;
}
/* CMD15 */
static sd_rsp_type_t sd_cmd_GO_INACTIVE_STATE(SDState *sd, SDRequest req)
{
if (sd->mode != sd_data_transfer_mode) {
return sd_invalid_mode_for_cmd(sd, req);
}
switch (sd->state) {
case sd_standby_state:
case sd_transfer_state:
case sd_sendingdata_state:
case sd_receivingdata_state:
case sd_programming_state:
case sd_disconnect_state:
break;
default:
return sd_invalid_state_for_cmd(sd, req);
}
if (sd_req_rca_same(sd, req)) {
sd->state = sd_inactive_state;
}
return sd_r0;
}
/* CMD16 */
static sd_rsp_type_t sd_cmd_SET_BLOCKLEN(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
if (req.arg > (1 << HWBLOCK_SHIFT)) {
sd->card_status |= BLOCK_LEN_ERROR;
} else {
trace_sdcard_set_blocklen(req.arg);
sd->blk_len = req.arg;
}
return sd_r1;
}
/* CMD17 */
static sd_rsp_type_t sd_cmd_READ_SINGLE_BLOCK(SDState *sd, SDRequest req)
{
uint64_t addr;
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
addr = sd_req_get_address(sd, req);
if (!address_in_range(sd, "READ_SINGLE_BLOCK", addr, sd->blk_len)) {
return sd_r1;
}
sd_blk_read(sd, addr, sd->blk_len);
return sd_cmd_to_sendingdata(sd, req, addr, NULL, sd->blk_len);
}
/* CMD19 */
static sd_rsp_type_t sd_cmd_SEND_TUNING_BLOCK(SDState *sd, SDRequest req)
{
if (sd->spec_version < SD_PHY_SPECv3_01_VERS) {
return sd_cmd_illegal(sd, req);
}
return sd_cmd_to_sendingdata(sd, req, 0,
sd_tuning_block_pattern4,
sizeof(sd_tuning_block_pattern4));
}
/* CMD23 */
static sd_rsp_type_t sd_cmd_SET_BLOCK_COUNT(SDState *sd, SDRequest req)
{
if (sd->spec_version < SD_PHY_SPECv3_01_VERS) {
return sd_cmd_illegal(sd, req);
}
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->multi_blk_cnt = req.arg;
if (sd_is_emmc(sd)) {
sd->multi_blk_cnt &= 0xffff;
}
trace_sdcard_set_block_count(sd->multi_blk_cnt);
return sd_r1;
}
/* CMD24 */
static sd_rsp_type_t sd_cmd_WRITE_SINGLE_BLOCK(SDState *sd, SDRequest req)
{
uint64_t addr;
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
addr = sd_req_get_address(sd, req);
if (!address_in_range(sd, "WRITE_SINGLE_BLOCK", addr, sd->blk_len)) {
return sd_r1;
}
if (sd->size <= SDSC_MAX_CAPACITY) {
if (sd_wp_addr(sd, addr)) {
sd->card_status |= WP_VIOLATION;
}
}
if (sd->csd[14] & 0x30) {
sd->card_status |= WP_VIOLATION;
}
sd->blk_written = 0;
return sd_cmd_to_receivingdata(sd, req, addr, sd->blk_len);
}
/* CMD26 */
static sd_rsp_type_t emmc_cmd_PROGRAM_CID(SDState *sd, SDRequest req)
{
return sd_cmd_to_receivingdata(sd, req, 0, sizeof(sd->cid));
}
/* CMD27 */
static sd_rsp_type_t sd_cmd_PROGRAM_CSD(SDState *sd, SDRequest req)
{
return sd_cmd_to_receivingdata(sd, req, 0, sizeof(sd->csd));
}
static sd_rsp_type_t sd_cmd_SET_CLR_WRITE_PROT(SDState *sd, SDRequest req,
bool is_write)
{
uint64_t addr;
if (sd->size > SDSC_MAX_CAPACITY) {
return sd_illegal;
}
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
addr = sd_req_get_address(sd, req);
if (!address_in_range(sd, is_write ? "SET_WRITE_PROT" : "CLR_WRITE_PROT",
addr, 1)) {
return sd_r1b;
}
sd->state = sd_programming_state;
if (is_write) {
set_bit(sd_addr_to_wpnum(addr), sd->wp_group_bmap);
} else {
clear_bit(sd_addr_to_wpnum(addr), sd->wp_group_bmap);
}
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1;
}
/* CMD28 */
static sd_rsp_type_t sd_cmd_SET_WRITE_PROT(SDState *sd, SDRequest req)
{
return sd_cmd_SET_CLR_WRITE_PROT(sd, req, true);
}
/* CMD29 */
static sd_rsp_type_t sd_cmd_CLR_WRITE_PROT(SDState *sd, SDRequest req)
{
return sd_cmd_SET_CLR_WRITE_PROT(sd, req, false);
}
/* CMD30 */
static sd_rsp_type_t sd_cmd_SEND_WRITE_PROT(SDState *sd, SDRequest req)
{
uint64_t addr;
uint32_t data;
if (sd->size > SDSC_MAX_CAPACITY) {
return sd_illegal;
}
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
addr = sd_req_get_address(sd, req);
if (!address_in_range(sd, "SEND_WRITE_PROT", addr, sd->blk_len)) {
return sd_r1;
}
data = sd_wpbits(sd, req.arg);
return sd_cmd_to_sendingdata(sd, req, addr, &data, sizeof(data));
}
/* CMD32 */
static sd_rsp_type_t sd_cmd_ERASE_WR_BLK_START(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->erase_start = req.arg;
return sd_r1;
}
/* CMD33 */
static sd_rsp_type_t sd_cmd_ERASE_WR_BLK_END(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->erase_end = req.arg;
return sd_r1;
}
/* CMD38 */
static sd_rsp_type_t sd_cmd_ERASE(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
if (sd->csd[14] & 0x30) {
sd->card_status |= WP_VIOLATION;
return sd_r1b;
}
sd->state = sd_programming_state;
sd_erase(sd);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
return sd_r1b;
}
/* CMD42 */
static sd_rsp_type_t sd_cmd_LOCK_UNLOCK(SDState *sd, SDRequest req)
{
return sd_cmd_to_receivingdata(sd, req, 0, 0);
}
/* CMD55 */
static sd_rsp_type_t sd_cmd_APP_CMD(SDState *sd, SDRequest req)
{
switch (sd->state) {
case sd_ready_state:
case sd_identification_state:
case sd_inactive_state:
case sd_sleep_state:
return sd_invalid_state_for_cmd(sd, req);
case sd_idle_state:
if (!sd_is_spi(sd) && sd_req_get_rca(sd, req) != 0x0000) {
qemu_log_mask(LOG_GUEST_ERROR,
"SD: illegal RCA 0x%04x for APP_CMD\n", req.cmd);
}
/* fall-through */
default:
break;
}
if (!sd_is_spi(sd) && !sd_req_rca_same(sd, req)) {
return sd_r0;
}
sd->expecting_acmd = true;
sd->card_status |= APP_CMD;
return sd_r1;
}
/* CMD56 */
static sd_rsp_type_t sd_cmd_GEN_CMD(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
/* Vendor specific command: our model is RAZ/WI */
if (req.arg & 1) {
memset(sd->data, 0, sizeof(sd->data));
return sd_cmd_to_sendingdata(sd, req, 0, NULL, 0);
} else {
return sd_cmd_to_receivingdata(sd, req, 0, 0);
}
}
/* CMD58 */
static sd_rsp_type_t spi_cmd_READ_OCR(SDState *sd, SDRequest req)
{
return sd_r3;
}
/* CMD59 */
static sd_rsp_type_t spi_cmd_CRC_ON_OFF(SDState *sd, SDRequest req)
{
return sd_r1;
}
/* ACMD6 */
static sd_rsp_type_t sd_acmd_SET_BUS_WIDTH(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
sd->sd_status[0] &= 0x3f;
sd->sd_status[0] |= (req.arg & 0x03) << 6;
return sd_r1;
}
/* ACMD13 */
static sd_rsp_type_t sd_acmd_SD_STATUS(SDState *sd, SDRequest req)
{
return sd_cmd_to_sendingdata(sd, req, 0,
sd->sd_status, sizeof(sd->sd_status));
}
/* ACMD22 */
static sd_rsp_type_t sd_acmd_SEND_NUM_WR_BLOCKS(SDState *sd, SDRequest req)
{
return sd_cmd_to_sendingdata(sd, req, 0,
&sd->blk_written, sizeof(sd->blk_written));
}
/* ACMD23 */
static sd_rsp_type_t sd_acmd_SET_WR_BLK_ERASE_COUNT(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
return sd_r1;
}
/* ACMD41 */
static sd_rsp_type_t sd_cmd_SEND_OP_COND(SDState *sd, SDRequest req)
{
if (sd->state != sd_idle_state) {
return sd_invalid_state_for_cmd(sd, req);
}
/*
* If it's the first ACMD41 since reset, we need to decide
* whether to power up. If this is not an enquiry ACMD41,
* we immediately report power on and proceed below to the
* ready state, but if it is, we set a timer to model a
* delay for power up. This works around a bug in EDK2
* UEFI, which sends an initial enquiry ACMD41, but
* assumes that the card is in ready state as soon as it
* sees the power up bit set.
*/
if (!FIELD_EX32(sd->ocr, OCR, CARD_POWER_UP)) {
if ((req.arg & ACMD41_ENQUIRY_MASK) != 0) {
timer_del(sd->ocr_power_timer);
sd_ocr_powerup(sd);
} else {
trace_sdcard_inquiry_cmd41();
if (!timer_pending(sd->ocr_power_timer)) {
timer_mod_ns(sd->ocr_power_timer,
(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
+ OCR_POWER_DELAY_NS));
}
}
}
if (FIELD_EX32(sd->ocr & req.arg, OCR, VDD_VOLTAGE_WINDOW)) {
/*
* We accept any voltage. 10000 V is nothing.
*
* Once we're powered up, we advance straight to ready state
* unless it's an enquiry ACMD41 (bits 23:0 == 0).
*/
sd->state = sd_ready_state;
}
return sd_r3;
}
/* ACMD42 */
static sd_rsp_type_t sd_acmd_SET_CLR_CARD_DETECT(SDState *sd, SDRequest req)
{
if (sd->state != sd_transfer_state) {
return sd_invalid_state_for_cmd(sd, req);
}
/* Bringing in the 50KOhm pull-up resistor... Done. */
return sd_r1;
}
/* ACMD51 */
static sd_rsp_type_t sd_acmd_SEND_SCR(SDState *sd, SDRequest req)
{
return sd_cmd_to_sendingdata(sd, req, 0, sd->scr, sizeof(sd->scr));
}
static sd_rsp_type_t sd_normal_command(SDState *sd, SDRequest req)
{
uint64_t addr;
sd->last_cmd_name = sd_cmd_name(sd, req.cmd);
/* CMD55 precedes an ACMD, so we are not interested in tracing it.
* However there is no ACMD55, so we want to trace this particular case.
*/
if (req.cmd != 55 || sd->expecting_acmd) {
trace_sdcard_normal_command(sd->proto->name,
sd->last_cmd_name, req.cmd,
req.arg, sd_state_name(sd->state));
}
/* Not interpreting this as an app command */
sd->card_status &= ~APP_CMD;
/* CMD23 (set block count) must be immediately followed by CMD18 or CMD25
* if not, its effects are cancelled */
if (sd->multi_blk_cnt != 0 && !(req.cmd == 18 || req.cmd == 25)) {
sd->multi_blk_cnt = 0;
}
if (sd->proto->cmd[req.cmd].class == 6 && FIELD_EX32(sd->ocr, OCR,
CARD_CAPACITY)) {
/* Only Standard Capacity cards support class 6 commands */
return sd_illegal;
}
if (sd->proto->cmd[req.cmd].handler) {
return sd->proto->cmd[req.cmd].handler(sd, req);
}
switch (req.cmd) {
/* Block read commands (Class 2) */
case 18: /* CMD18: READ_MULTIPLE_BLOCK */
addr = sd_req_get_address(sd, req);
switch (sd->state) {
case sd_transfer_state:
if (!address_in_range(sd, "READ_BLOCK", addr, sd->blk_len)) {
return sd_r1;
}
sd->state = sd_sendingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
return sd_r1;
default:
break;
}
break;
/* Block write commands (Class 4) */
case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */
addr = sd_req_get_address(sd, req);
switch (sd->state) {
case sd_transfer_state:
if (!address_in_range(sd, "WRITE_BLOCK", addr, sd->blk_len)) {
return sd_r1;
}
sd->state = sd_receivingdata_state;
sd->data_start = addr;
sd->data_offset = 0;
sd->blk_written = 0;
if (sd->size <= SDSC_MAX_CAPACITY) {
if (sd_wp_addr(sd, sd->data_start)) {
sd->card_status |= WP_VIOLATION;
}
}
if (sd->csd[14] & 0x30) {
sd->card_status |= WP_VIOLATION;
}
return sd_r1;
default:
break;
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "SD: Unknown CMD%i\n", req.cmd);
return sd_illegal;
}
return sd_invalid_state_for_cmd(sd, req);
}
static sd_rsp_type_t sd_app_command(SDState *sd,
SDRequest req)
{
sd->last_cmd_name = sd_acmd_name(sd, req.cmd);
trace_sdcard_app_command(sd->proto->name, sd->last_cmd_name,
req.cmd, req.arg, sd_state_name(sd->state));
sd->card_status |= APP_CMD;
if (sd->proto->acmd[req.cmd].handler) {
return sd->proto->acmd[req.cmd].handler(sd, req);
}
switch (req.cmd) {
case 18: /* Reserved for SD security applications */
case 25:
case 26:
case 38:
case 43 ... 49:
/* Refer to the "SD Specifications Part3 Security Specification" for
* information about the SD Security Features.
*/
qemu_log_mask(LOG_UNIMP, "SD: CMD%i Security not implemented\n",
req.cmd);
return sd_illegal;
default:
/* Fall back to standard commands. */
return sd_normal_command(sd, req);
}
qemu_log_mask(LOG_GUEST_ERROR, "SD: ACMD%i in a wrong state\n", req.cmd);
return sd_illegal;
}
static bool cmd_valid_while_locked(SDState *sd, unsigned cmd)
{
unsigned cmd_class;
/* Valid commands in locked state:
* basic class (0)
* lock card class (7)
* CMD16
* implicitly, the ACMD prefix CMD55
* ACMD41 and ACMD42
* Anything else provokes an "illegal command" response.
*/
if (sd->expecting_acmd) {
return cmd == 41 || cmd == 42;
}
if (cmd == 16 || cmd == 55) {
return true;
}
if (!sd->proto->cmd[cmd].handler) {
return false;
}
cmd_class = sd->proto->cmd[cmd].class;
return cmd_class == 0 || cmd_class == 7;
}
int sd_do_command(SDState *sd, SDRequest *req,
uint8_t *response) {
int last_state;
sd_rsp_type_t rtype;
int rsplen;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable) {
return 0;
}
if (sd->state == sd_inactive_state) {
rtype = sd_illegal;
goto send_response;
}
if (sd_req_crc_validate(req)) {
sd->card_status |= COM_CRC_ERROR;
rtype = sd_illegal;
goto send_response;
}
if (req->cmd >= SDMMC_CMD_MAX) {
qemu_log_mask(LOG_GUEST_ERROR, "SD: incorrect command 0x%02x\n",
req->cmd);
req->cmd &= 0x3f;
}
if (sd->state == sd_sleep_state && req->cmd) {
qemu_log_mask(LOG_GUEST_ERROR, "SD: Card is sleeping\n");
rtype = sd_r0;
goto send_response;
}
if (sd->card_status & CARD_IS_LOCKED) {
if (!cmd_valid_while_locked(sd, req->cmd)) {
sd->card_status |= ILLEGAL_COMMAND;
sd->expecting_acmd = false;
qemu_log_mask(LOG_GUEST_ERROR, "SD: Card is locked\n");
rtype = sd_illegal;
goto send_response;
}
}
last_state = sd->state;
sd_set_mode(sd);
if (sd->expecting_acmd) {
sd->expecting_acmd = false;
rtype = sd_app_command(sd, *req);
} else {
rtype = sd_normal_command(sd, *req);
}
if (rtype == sd_illegal) {
sd->card_status |= ILLEGAL_COMMAND;
} else {
/* Valid command, we can update the 'state before command' bits.
* (Do this now so they appear in r1 responses.)
*/
sd->card_status = FIELD_DP32(sd->card_status, CSR,
CURRENT_STATE, last_state);
}
send_response:
switch (rtype) {
case sd_r1:
case sd_r1b:
sd_response_r1_make(sd, response);
rsplen = 4;
break;
case sd_r2_i:
memcpy(response, sd->cid, sizeof(sd->cid));
rsplen = 16;
break;
case sd_r2_s:
memcpy(response, sd->csd, sizeof(sd->csd));
rsplen = 16;
break;
case sd_r3:
sd_response_r3_make(sd, response);
rsplen = 4;
break;
case sd_r6:
sd_response_r6_make(sd, response);
rsplen = 4;
break;
case sd_r7:
sd_response_r7_make(sd, response);
rsplen = 4;
break;
case sd_r0:
/*
* Invalid state transition, reset implementation
* fields to avoid OOB abuse.
*/
sd->data_start = 0;
sd->data_offset = 0;
/* fall-through */
case sd_illegal:
rsplen = 0;
break;
default:
g_assert_not_reached();
}
trace_sdcard_response(sd_response_name(rtype), rsplen);
if (rtype != sd_illegal) {
/* Clear the "clear on valid command" status bits now we've
* sent any response
*/
sd->card_status &= ~CARD_STATUS_B;
}
#ifdef DEBUG_SD
qemu_hexdump(stderr, "Response", response, rsplen);
#endif
sd->current_cmd = rtype == sd_illegal ? 0 : req->cmd;
return rsplen;
}
/* Return true if buffer is consumed. Configured by sd_cmd_to_receivingdata() */
static bool sd_generic_write_byte(SDState *sd, uint8_t value)
{
sd->data[sd->data_offset] = value;
if (++sd->data_offset >= sd->data_size) {
sd->state = sd_transfer_state;
return true;
}
return false;
}
/* Return true when buffer is consumed. Configured by sd_cmd_to_sendingdata() */
static bool sd_generic_read_byte(SDState *sd, uint8_t *value)
{
*value = sd->data[sd->data_offset];
if (++sd->data_offset >= sd->data_size) {
sd->state = sd_transfer_state;
return true;
}
return false;
}
void sd_write_byte(SDState *sd, uint8_t value)
{
int i;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable)
return;
if (sd->state != sd_receivingdata_state) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: not in Receiving-Data state\n", __func__);
return;
}
if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION))
return;
trace_sdcard_write_data(sd->proto->name,
sd->last_cmd_name,
sd->current_cmd, sd->data_offset, value);
switch (sd->current_cmd) {
case 24: /* CMD24: WRITE_SINGLE_BLOCK */
if (sd_generic_write_byte(sd, value)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
sd_blk_write(sd, sd->data_start, sd->data_offset);
sd->blk_written ++;
sd->csd[14] |= 0x40;
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */
if (sd->data_offset == 0) {
/* Start of the block - let's check the address is valid */
if (!address_in_range(sd, "WRITE_MULTIPLE_BLOCK",
sd->data_start, sd->blk_len)) {
break;
}
if (sd->size <= SDSC_MAX_CAPACITY) {
if (sd_wp_addr(sd, sd->data_start)) {
sd->card_status |= WP_VIOLATION;
break;
}
}
}
sd->data[sd->data_offset++] = value;
if (sd->data_offset >= sd->blk_len) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
sd_blk_write(sd, sd->data_start, sd->data_offset);
sd->blk_written++;
sd->data_start += sd->blk_len;
sd->data_offset = 0;
sd->csd[14] |= 0x40;
/* Bzzzzzzztt .... Operation complete. */
if (sd->multi_blk_cnt != 0) {
if (--sd->multi_blk_cnt == 0) {
/* Stop! */
sd->state = sd_transfer_state;
break;
}
}
sd->state = sd_receivingdata_state;
}
break;
case 26: /* CMD26: PROGRAM_CID */
if (sd_generic_write_byte(sd, value)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
for (i = 0; i < sizeof(sd->cid); i ++)
if ((sd->cid[i] | 0x00) != sd->data[i])
sd->card_status |= CID_CSD_OVERWRITE;
if (!(sd->card_status & CID_CSD_OVERWRITE))
for (i = 0; i < sizeof(sd->cid); i ++) {
sd->cid[i] |= 0x00;
sd->cid[i] &= sd->data[i];
}
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 27: /* CMD27: PROGRAM_CSD */
if (sd_generic_write_byte(sd, value)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
for (i = 0; i < sizeof(sd->csd); i ++)
if ((sd->csd[i] | sd_csd_rw_mask[i]) !=
(sd->data[i] | sd_csd_rw_mask[i]))
sd->card_status |= CID_CSD_OVERWRITE;
/* Copy flag (OTP) & Permanent write protect */
if (sd->csd[14] & ~sd->data[14] & 0x60)
sd->card_status |= CID_CSD_OVERWRITE;
if (!(sd->card_status & CID_CSD_OVERWRITE))
for (i = 0; i < sizeof(sd->csd); i ++) {
sd->csd[i] |= sd_csd_rw_mask[i];
sd->csd[i] &= sd->data[i];
}
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 42: /* CMD42: LOCK_UNLOCK */
if (sd_generic_write_byte(sd, value)) {
/* TODO: Check CRC before committing */
sd->state = sd_programming_state;
sd_lock_command(sd);
/* Bzzzzzzztt .... Operation complete. */
sd->state = sd_transfer_state;
}
break;
case 56: /* CMD56: GEN_CMD */
sd_generic_write_byte(sd, value);
break;
default:
g_assert_not_reached();
}
}
uint8_t sd_read_byte(SDState *sd)
{
/* TODO: Append CRCs */
const uint8_t dummy_byte = 0x00;
uint8_t ret;
uint32_t io_len;
if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable)
return dummy_byte;
if (sd->state != sd_sendingdata_state) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: not in Sending-Data state\n", __func__);
return dummy_byte;
}
if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION)) {
return dummy_byte;
}
io_len = sd_blk_len(sd);
trace_sdcard_read_data(sd->proto->name,
sd->last_cmd_name, sd->current_cmd,
sd->data_offset, sd->data_size, io_len);
switch (sd->current_cmd) {
case 6: /* CMD6: SWITCH_FUNCTION */
case 8: /* CMD8: SEND_EXT_CSD */
case 9: /* CMD9: SEND_CSD */
case 10: /* CMD10: SEND_CID */
case 13: /* ACMD13: SD_STATUS */
case 17: /* CMD17: READ_SINGLE_BLOCK */
case 19: /* CMD19: SEND_TUNING_BLOCK (SD) */
case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */
case 30: /* CMD30: SEND_WRITE_PROT */
case 51: /* ACMD51: SEND_SCR */
case 56: /* CMD56: GEN_CMD */
sd_generic_read_byte(sd, &ret);
break;
case 18: /* CMD18: READ_MULTIPLE_BLOCK */
if (sd->data_offset == 0) {
if (!address_in_range(sd, "READ_MULTIPLE_BLOCK",
sd->data_start, io_len)) {
return dummy_byte;
}
sd_blk_read(sd, sd->data_start, io_len);
}
ret = sd->data[sd->data_offset ++];
if (sd->data_offset >= io_len) {
sd->data_start += io_len;
sd->data_offset = 0;
if (sd->multi_blk_cnt != 0) {
if (--sd->multi_blk_cnt == 0) {
/* Stop! */
sd->state = sd_transfer_state;
break;
}
}
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: DAT read illegal for command %s\n",
__func__, sd->last_cmd_name);
return dummy_byte;
}
return ret;
}
static bool sd_receive_ready(SDState *sd)
{
return sd->state == sd_receivingdata_state;
}
static bool sd_data_ready(SDState *sd)
{
return sd->state == sd_sendingdata_state;
}
void sd_enable(SDState *sd, bool enable)
{
sd->enable = enable;
}
static const SDProto sd_proto_spi = {
.name = "SPI",
.cmd = {
[0] = {0, sd_spi, "GO_IDLE_STATE", sd_cmd_GO_IDLE_STATE},
[1] = {0, sd_spi, "SEND_OP_COND", spi_cmd_SEND_OP_COND},
[5] = {9, sd_spi, "IO_SEND_OP_COND", sd_cmd_optional},
[6] = {10, sd_spi, "SWITCH_FUNCTION", sd_cmd_SWITCH_FUNCTION},
[8] = {0, sd_spi, "SEND_IF_COND", sd_cmd_SEND_IF_COND},
[9] = {0, sd_spi, "SEND_CSD", spi_cmd_SEND_CSD},
[10] = {0, sd_spi, "SEND_CID", spi_cmd_SEND_CID},
[12] = {0, sd_spi, "STOP_TRANSMISSION", sd_cmd_STOP_TRANSMISSION},
[13] = {0, sd_spi, "SEND_STATUS", sd_cmd_SEND_STATUS},
[16] = {2, sd_spi, "SET_BLOCKLEN", sd_cmd_SET_BLOCKLEN},
[17] = {2, sd_spi, "READ_SINGLE_BLOCK", sd_cmd_READ_SINGLE_BLOCK},
[24] = {4, sd_spi, "WRITE_SINGLE_BLOCK", sd_cmd_WRITE_SINGLE_BLOCK},
[27] = {4, sd_spi, "PROGRAM_CSD", sd_cmd_PROGRAM_CSD},
[28] = {6, sd_spi, "SET_WRITE_PROT", sd_cmd_SET_WRITE_PROT},
[29] = {6, sd_spi, "CLR_WRITE_PROT", sd_cmd_CLR_WRITE_PROT},
[30] = {6, sd_spi, "SEND_WRITE_PROT", sd_cmd_SEND_WRITE_PROT},
[32] = {5, sd_spi, "ERASE_WR_BLK_START", sd_cmd_ERASE_WR_BLK_START},
[33] = {5, sd_spi, "ERASE_WR_BLK_END", sd_cmd_ERASE_WR_BLK_END},
[34] = {10, sd_spi, "READ_SEC_CMD", sd_cmd_optional},
[35] = {10, sd_spi, "WRITE_SEC_CMD", sd_cmd_optional},
[36] = {10, sd_spi, "SEND_PSI", sd_cmd_optional},
[37] = {10, sd_spi, "CONTROL_ASSD_SYSTEM", sd_cmd_optional},
[38] = {5, sd_spi, "ERASE", sd_cmd_ERASE},
[42] = {7, sd_spi, "LOCK_UNLOCK", sd_cmd_LOCK_UNLOCK},
[50] = {10, sd_spi, "DIRECT_SECURE_READ", sd_cmd_optional},
[52] = {9, sd_spi, "IO_RW_DIRECT", sd_cmd_optional},
[53] = {9, sd_spi, "IO_RW_EXTENDED", sd_cmd_optional},
[55] = {8, sd_spi, "APP_CMD", sd_cmd_APP_CMD},
[56] = {8, sd_spi, "GEN_CMD", sd_cmd_GEN_CMD},
[57] = {10, sd_spi, "DIRECT_SECURE_WRITE", sd_cmd_optional},
[58] = {0, sd_spi, "READ_OCR", spi_cmd_READ_OCR},
[59] = {0, sd_spi, "CRC_ON_OFF", spi_cmd_CRC_ON_OFF},
},
.acmd = {
[13] = {8, sd_spi, "SD_STATUS", sd_acmd_SD_STATUS},
[22] = {8, sd_spi, "SEND_NUM_WR_BLOCKS", sd_acmd_SEND_NUM_WR_BLOCKS},
[23] = {8, sd_spi, "SET_WR_BLK_ERASE_COUNT", sd_acmd_SET_WR_BLK_ERASE_COUNT},
[41] = {8, sd_spi, "SEND_OP_COND", spi_cmd_SEND_OP_COND},
[42] = {8, sd_spi, "SET_CLR_CARD_DETECT", sd_acmd_SET_CLR_CARD_DETECT},
[51] = {8, sd_spi, "SEND_SCR", sd_acmd_SEND_SCR},
},
};
static const SDProto sd_proto_sd = {
.name = "SD",
.cmd = {
[0] = {0, sd_bc, "GO_IDLE_STATE", sd_cmd_GO_IDLE_STATE},
[2] = {0, sd_bcr, "ALL_SEND_CID", sd_cmd_ALL_SEND_CID},
[3] = {0, sd_bcr, "SEND_RELATIVE_ADDR", sd_cmd_SEND_RELATIVE_ADDR},
[4] = {0, sd_bc, "SEND_DSR", sd_cmd_unimplemented},
[5] = {9, sd_bc, "IO_SEND_OP_COND", sd_cmd_optional},
[6] = {10, sd_adtc, "SWITCH_FUNCTION", sd_cmd_SWITCH_FUNCTION},
[7] = {0, sd_ac, "(DE)SELECT_CARD", sd_cmd_DE_SELECT_CARD},
[8] = {0, sd_bcr, "SEND_IF_COND", sd_cmd_SEND_IF_COND},
[9] = {0, sd_ac, "SEND_CSD", sd_cmd_SEND_CSD},
[10] = {0, sd_ac, "SEND_CID", sd_cmd_SEND_CID},
[11] = {0, sd_ac, "VOLTAGE_SWITCH", sd_cmd_optional},
[12] = {0, sd_ac, "STOP_TRANSMISSION", sd_cmd_STOP_TRANSMISSION},
[13] = {0, sd_ac, "SEND_STATUS", sd_cmd_SEND_STATUS},
[15] = {0, sd_ac, "GO_INACTIVE_STATE", sd_cmd_GO_INACTIVE_STATE},
[16] = {2, sd_ac, "SET_BLOCKLEN", sd_cmd_SET_BLOCKLEN},
[17] = {2, sd_adtc, "READ_SINGLE_BLOCK", sd_cmd_READ_SINGLE_BLOCK},
[19] = {2, sd_adtc, "SEND_TUNING_BLOCK", sd_cmd_SEND_TUNING_BLOCK},
[20] = {2, sd_ac, "SPEED_CLASS_CONTROL", sd_cmd_optional},
[23] = {2, sd_ac, "SET_BLOCK_COUNT", sd_cmd_SET_BLOCK_COUNT},
[24] = {4, sd_adtc, "WRITE_SINGLE_BLOCK", sd_cmd_WRITE_SINGLE_BLOCK},
[27] = {4, sd_adtc, "PROGRAM_CSD", sd_cmd_PROGRAM_CSD},
[28] = {6, sd_ac, "SET_WRITE_PROT", sd_cmd_SET_WRITE_PROT},
[29] = {6, sd_ac, "CLR_WRITE_PROT", sd_cmd_CLR_WRITE_PROT},
[30] = {6, sd_adtc, "SEND_WRITE_PROT", sd_cmd_SEND_WRITE_PROT},
[32] = {5, sd_ac, "ERASE_WR_BLK_START", sd_cmd_ERASE_WR_BLK_START},
[33] = {5, sd_ac, "ERASE_WR_BLK_END", sd_cmd_ERASE_WR_BLK_END},
[34] = {10, sd_adtc, "READ_SEC_CMD", sd_cmd_optional},
[35] = {10, sd_adtc, "WRITE_SEC_CMD", sd_cmd_optional},
[36] = {10, sd_adtc, "SEND_PSI", sd_cmd_optional},
[37] = {10, sd_ac, "CONTROL_ASSD_SYSTEM", sd_cmd_optional},
[38] = {5, sd_ac, "ERASE", sd_cmd_ERASE},
[42] = {7, sd_adtc, "LOCK_UNLOCK", sd_cmd_LOCK_UNLOCK},
[43] = {1, sd_ac, "Q_MANAGEMENT", sd_cmd_optional},
[44] = {1, sd_ac, "Q_TASK_INFO_A", sd_cmd_optional},
[45] = {1, sd_ac, "Q_TASK_INFO_B", sd_cmd_optional},
[46] = {1, sd_adtc, "Q_RD_TASK", sd_cmd_optional},
[47] = {1, sd_adtc, "Q_WR_TASK", sd_cmd_optional},
[48] = {1, sd_adtc, "READ_EXTR_SINGLE", sd_cmd_optional},
[49] = {1, sd_adtc, "WRITE_EXTR_SINGLE", sd_cmd_optional},
[50] = {10, sd_adtc, "DIRECT_SECURE_READ", sd_cmd_optional},
[52] = {9, sd_bc, "IO_RW_DIRECT", sd_cmd_optional},
[53] = {9, sd_bc, "IO_RW_EXTENDED", sd_cmd_optional},
[55] = {8, sd_ac, "APP_CMD", sd_cmd_APP_CMD},
[56] = {8, sd_adtc, "GEN_CMD", sd_cmd_GEN_CMD},
[57] = {10, sd_adtc, "DIRECT_SECURE_WRITE", sd_cmd_optional},
[58] = {11, sd_adtc, "READ_EXTR_MULTI", sd_cmd_optional},
[59] = {11, sd_adtc, "WRITE_EXTR_MULTI", sd_cmd_optional},
},
.acmd = {
[6] = {8, sd_ac, "SET_BUS_WIDTH", sd_acmd_SET_BUS_WIDTH},
[13] = {8, sd_adtc, "SD_STATUS", sd_acmd_SD_STATUS},
[22] = {8, sd_adtc, "SEND_NUM_WR_BLOCKS", sd_acmd_SEND_NUM_WR_BLOCKS},
[23] = {8, sd_ac, "SET_WR_BLK_ERASE_COUNT", sd_acmd_SET_WR_BLK_ERASE_COUNT},
[41] = {8, sd_bcr, "SEND_OP_COND", sd_cmd_SEND_OP_COND},
[42] = {8, sd_ac, "SET_CLR_CARD_DETECT", sd_acmd_SET_CLR_CARD_DETECT},
[51] = {8, sd_adtc, "SEND_SCR", sd_acmd_SEND_SCR},
},
};
static const SDProto sd_proto_emmc = {
/* Only v4.3 is supported */
.name = "eMMC",
.cmd = {
[0] = {0, sd_bc, "GO_IDLE_STATE", sd_cmd_GO_IDLE_STATE},
[1] = {0, sd_bcr, "SEND_OP_COND", sd_cmd_SEND_OP_COND},
[2] = {0, sd_bcr, "ALL_SEND_CID", sd_cmd_ALL_SEND_CID},
[3] = {0, sd_ac, "SET_RELATIVE_ADDR", emmc_cmd_SET_RELATIVE_ADDR},
[4] = {0, sd_bc, "SEND_DSR", sd_cmd_unimplemented},
[5] = {0, sd_ac, "SLEEP/AWAKE", emmc_cmd_sleep_awake},
[6] = {10, sd_adtc, "SWITCH", emmc_cmd_SWITCH},
[7] = {0, sd_ac, "(DE)SELECT_CARD", sd_cmd_DE_SELECT_CARD},
[8] = {0, sd_adtc, "SEND_EXT_CSD", emmc_cmd_SEND_EXT_CSD},
[9] = {0, sd_ac, "SEND_CSD", sd_cmd_SEND_CSD},
[10] = {0, sd_ac, "SEND_CID", sd_cmd_SEND_CID},
[11] = {1, sd_adtc, "READ_DAT_UNTIL_STOP", sd_cmd_unimplemented},
[12] = {0, sd_ac, "STOP_TRANSMISSION", sd_cmd_STOP_TRANSMISSION},
[13] = {0, sd_ac, "SEND_STATUS", sd_cmd_SEND_STATUS},
[14] = {0, sd_adtc, "BUSTEST_R", sd_cmd_unimplemented},
[15] = {0, sd_ac, "GO_INACTIVE_STATE", sd_cmd_GO_INACTIVE_STATE},
[16] = {2, sd_ac, "SET_BLOCKLEN", sd_cmd_SET_BLOCKLEN},
[17] = {2, sd_adtc, "READ_SINGLE_BLOCK", sd_cmd_READ_SINGLE_BLOCK},
[19] = {0, sd_adtc, "BUSTEST_W", sd_cmd_unimplemented},
[20] = {3, sd_adtc, "WRITE_DAT_UNTIL_STOP", sd_cmd_unimplemented},
[23] = {2, sd_ac, "SET_BLOCK_COUNT", sd_cmd_SET_BLOCK_COUNT},
[24] = {4, sd_adtc, "WRITE_SINGLE_BLOCK", sd_cmd_WRITE_SINGLE_BLOCK},
[26] = {4, sd_adtc, "PROGRAM_CID", emmc_cmd_PROGRAM_CID},
[27] = {4, sd_adtc, "PROGRAM_CSD", sd_cmd_PROGRAM_CSD},
[28] = {6, sd_ac, "SET_WRITE_PROT", sd_cmd_SET_WRITE_PROT},
[29] = {6, sd_ac, "CLR_WRITE_PROT", sd_cmd_CLR_WRITE_PROT},
[30] = {6, sd_adtc, "SEND_WRITE_PROT", sd_cmd_SEND_WRITE_PROT},
[31] = {6, sd_adtc, "SEND_WRITE_PROT_TYPE", sd_cmd_unimplemented},
[35] = {5, sd_ac, "ERASE_WR_BLK_START", sd_cmd_ERASE_WR_BLK_START},
[36] = {5, sd_ac, "ERASE_WR_BLK_END", sd_cmd_ERASE_WR_BLK_END},
[38] = {5, sd_ac, "ERASE", sd_cmd_ERASE},
[39] = {9, sd_ac, "FAST_IO", sd_cmd_unimplemented},
[40] = {9, sd_bcr, "GO_IRQ_STATE", sd_cmd_unimplemented},
[42] = {7, sd_adtc, "LOCK_UNLOCK", sd_cmd_LOCK_UNLOCK},
[49] = {0, sd_adtc, "SET_TIME", sd_cmd_unimplemented},
[55] = {8, sd_ac, "APP_CMD", sd_cmd_APP_CMD},
[56] = {8, sd_adtc, "GEN_CMD", sd_cmd_GEN_CMD},
},
};
static void sd_instance_init(Object *obj)
{
SDState *sd = SDMMC_COMMON(obj);
SDCardClass *sc = SDMMC_COMMON_GET_CLASS(sd);
sd->proto = sc->proto;
sd->last_cmd_name = "UNSET";
sd->enable = true;
sd->ocr_power_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sd_ocr_powerup, sd);
}
static void sd_instance_finalize(Object *obj)
{
SDState *sd = SDMMC_COMMON(obj);
timer_free(sd->ocr_power_timer);
}
static void sd_realize(DeviceState *dev, Error **errp)
{
SDState *sd = SDMMC_COMMON(dev);
int ret;
switch (sd->spec_version) {
case SD_PHY_SPECv1_10_VERS
... SD_PHY_SPECv3_01_VERS:
break;
default:
error_setg(errp, "Invalid SD card Spec version: %u", sd->spec_version);
return;
}
if (sd->blk) {
int64_t blk_size;
if (!blk_supports_write_perm(sd->blk)) {
error_setg(errp, "Cannot use read-only drive as SD card");
return;
}
blk_size = blk_getlength(sd->blk);
if (blk_size > 0 && !is_power_of_2(blk_size)) {
int64_t blk_size_aligned = pow2ceil(blk_size);
char *blk_size_str;
blk_size_str = size_to_str(blk_size);
error_setg(errp, "Invalid SD card size: %s", blk_size_str);
g_free(blk_size_str);
blk_size_str = size_to_str(blk_size_aligned);
error_append_hint(errp,
"SD card size has to be a power of 2, e.g. %s.\n"
"You can resize disk images with"
" 'qemu-img resize <imagefile> <new-size>'\n"
"(note that this will lose data if you make the"
" image smaller than it currently is).\n",
blk_size_str);
g_free(blk_size_str);
return;
}
ret = blk_set_perm(sd->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
blk_set_dev_ops(sd->blk, &sd_block_ops, sd);
}
}
static void emmc_realize(DeviceState *dev, Error **errp)
{
SDState *sd = SDMMC_COMMON(dev);
sd->spec_version = SD_PHY_SPECv3_01_VERS; /* Actually v4.3 */
sd_realize(dev, errp);
}
static Property sdmmc_common_properties[] = {
DEFINE_PROP_DRIVE("drive", SDState, blk),
DEFINE_PROP_END_OF_LIST()
};
static Property sd_properties[] = {
DEFINE_PROP_UINT8("spec_version", SDState,
spec_version, SD_PHY_SPECv3_01_VERS),
DEFINE_PROP_END_OF_LIST()
};
static Property emmc_properties[] = {
DEFINE_PROP_UINT64("boot-partition-size", SDState, boot_part_size, 0),
DEFINE_PROP_UINT8("boot-config", SDState, boot_config, 0x0),
DEFINE_PROP_END_OF_LIST()
};
static void sdmmc_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDCardClass *sc = SDMMC_COMMON_CLASS(klass);
device_class_set_props(dc, sdmmc_common_properties);
dc->vmsd = &sd_vmstate;
device_class_set_legacy_reset(dc, sd_reset);
dc->bus_type = TYPE_SD_BUS;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
sc->set_voltage = sd_set_voltage;
sc->get_dat_lines = sd_get_dat_lines;
sc->get_cmd_line = sd_get_cmd_line;
sc->do_command = sd_do_command;
sc->write_byte = sd_write_byte;
sc->read_byte = sd_read_byte;
sc->receive_ready = sd_receive_ready;
sc->data_ready = sd_data_ready;
sc->enable = sd_enable;
sc->get_inserted = sd_get_inserted;
sc->get_readonly = sd_get_readonly;
}
static void sd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDCardClass *sc = SDMMC_COMMON_CLASS(klass);
dc->realize = sd_realize;
device_class_set_props(dc, sd_properties);
sc->set_cid = sd_set_cid;
sc->set_csd = sd_set_csd;
sc->proto = &sd_proto_sd;
}
/*
* We do not model the chip select pin, so allow the board to select
* whether card should be in SSI or MMC/SD mode. It is also up to the
* board to ensure that ssi transfers only occur when the chip select
* is asserted.
*/
static void sd_spi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDCardClass *sc = SDMMC_COMMON_CLASS(klass);
dc->desc = "SD SPI";
sc->proto = &sd_proto_spi;
}
static void emmc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SDCardClass *sc = SDMMC_COMMON_CLASS(klass);
dc->desc = "eMMC";
dc->realize = emmc_realize;
device_class_set_props(dc, emmc_properties);
/* Reason: Soldered on board */
dc->user_creatable = false;
sc->proto = &sd_proto_emmc;
sc->set_cid = emmc_set_cid;
sc->set_csd = emmc_set_csd;
}
static const TypeInfo sd_types[] = {
{
.name = TYPE_SDMMC_COMMON,
.parent = TYPE_DEVICE,
.abstract = true,
.instance_size = sizeof(SDState),
.class_size = sizeof(SDCardClass),
.class_init = sdmmc_common_class_init,
.instance_init = sd_instance_init,
.instance_finalize = sd_instance_finalize,
},
{
.name = TYPE_SD_CARD,
.parent = TYPE_SDMMC_COMMON,
.class_init = sd_class_init,
},
{
.name = TYPE_SD_CARD_SPI,
.parent = TYPE_SD_CARD,
.class_init = sd_spi_class_init,
},
{
.name = TYPE_EMMC,
.parent = TYPE_SDMMC_COMMON,
.class_init = emmc_class_init,
},
};
DEFINE_TYPES(sd_types)