qemu/hw/ipmi/ipmi_bmc_sim.c
Richard Henderson 09c6ac6d8f hw/ipmi: Constify VMState
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231221031652.119827-37-richard.henderson@linaro.org>
2023-12-29 11:17:30 +11:00

2233 lines
67 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* IPMI BMC emulation
*
* Copyright (c) 2015 Corey Minyard, MontaVista Software, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "sysemu/sysemu.h"
#include "qemu/timer.h"
#include "hw/ipmi/ipmi.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/vmstate.h"
#define IPMI_NETFN_CHASSIS 0x00
#define IPMI_CMD_GET_CHASSIS_CAPABILITIES 0x00
#define IPMI_CMD_GET_CHASSIS_STATUS 0x01
#define IPMI_CMD_CHASSIS_CONTROL 0x02
#define IPMI_CMD_GET_SYS_RESTART_CAUSE 0x09
#define IPMI_NETFN_SENSOR_EVENT 0x04
#define IPMI_CMD_PLATFORM_EVENT_MSG 0x02
#define IPMI_CMD_SET_SENSOR_EVT_ENABLE 0x28
#define IPMI_CMD_GET_SENSOR_EVT_ENABLE 0x29
#define IPMI_CMD_REARM_SENSOR_EVTS 0x2a
#define IPMI_CMD_GET_SENSOR_EVT_STATUS 0x2b
#define IPMI_CMD_GET_SENSOR_READING 0x2d
#define IPMI_CMD_SET_SENSOR_TYPE 0x2e
#define IPMI_CMD_GET_SENSOR_TYPE 0x2f
#define IPMI_CMD_SET_SENSOR_READING 0x30
/* #define IPMI_NETFN_APP 0x06 In ipmi.h */
#define IPMI_CMD_GET_DEVICE_ID 0x01
#define IPMI_CMD_COLD_RESET 0x02
#define IPMI_CMD_WARM_RESET 0x03
#define IPMI_CMD_SET_ACPI_POWER_STATE 0x06
#define IPMI_CMD_GET_ACPI_POWER_STATE 0x07
#define IPMI_CMD_GET_DEVICE_GUID 0x08
#define IPMI_CMD_RESET_WATCHDOG_TIMER 0x22
#define IPMI_CMD_SET_WATCHDOG_TIMER 0x24
#define IPMI_CMD_GET_WATCHDOG_TIMER 0x25
#define IPMI_CMD_SET_BMC_GLOBAL_ENABLES 0x2e
#define IPMI_CMD_GET_BMC_GLOBAL_ENABLES 0x2f
#define IPMI_CMD_CLR_MSG_FLAGS 0x30
#define IPMI_CMD_GET_MSG_FLAGS 0x31
#define IPMI_CMD_GET_MSG 0x33
#define IPMI_CMD_SEND_MSG 0x34
#define IPMI_CMD_READ_EVT_MSG_BUF 0x35
#define IPMI_NETFN_STORAGE 0x0a
#define IPMI_CMD_GET_SDR_REP_INFO 0x20
#define IPMI_CMD_GET_SDR_REP_ALLOC_INFO 0x21
#define IPMI_CMD_RESERVE_SDR_REP 0x22
#define IPMI_CMD_GET_SDR 0x23
#define IPMI_CMD_ADD_SDR 0x24
#define IPMI_CMD_PARTIAL_ADD_SDR 0x25
#define IPMI_CMD_DELETE_SDR 0x26
#define IPMI_CMD_CLEAR_SDR_REP 0x27
#define IPMI_CMD_GET_SDR_REP_TIME 0x28
#define IPMI_CMD_SET_SDR_REP_TIME 0x29
#define IPMI_CMD_ENTER_SDR_REP_UPD_MODE 0x2A
#define IPMI_CMD_EXIT_SDR_REP_UPD_MODE 0x2B
#define IPMI_CMD_RUN_INIT_AGENT 0x2C
#define IPMI_CMD_GET_FRU_AREA_INFO 0x10
#define IPMI_CMD_READ_FRU_DATA 0x11
#define IPMI_CMD_WRITE_FRU_DATA 0x12
#define IPMI_CMD_GET_SEL_INFO 0x40
#define IPMI_CMD_GET_SEL_ALLOC_INFO 0x41
#define IPMI_CMD_RESERVE_SEL 0x42
#define IPMI_CMD_GET_SEL_ENTRY 0x43
#define IPMI_CMD_ADD_SEL_ENTRY 0x44
#define IPMI_CMD_PARTIAL_ADD_SEL_ENTRY 0x45
#define IPMI_CMD_DELETE_SEL_ENTRY 0x46
#define IPMI_CMD_CLEAR_SEL 0x47
#define IPMI_CMD_GET_SEL_TIME 0x48
#define IPMI_CMD_SET_SEL_TIME 0x49
/* Same as a timespec struct. */
struct ipmi_time {
long tv_sec;
long tv_nsec;
};
#define MAX_SEL_SIZE 128
typedef struct IPMISel {
uint8_t sel[MAX_SEL_SIZE][16];
unsigned int next_free;
long time_offset;
uint16_t reservation;
uint8_t last_addition[4];
uint8_t last_clear[4];
uint8_t overflow;
} IPMISel;
#define MAX_SDR_SIZE 16384
typedef struct IPMISdr {
uint8_t sdr[MAX_SDR_SIZE];
unsigned int next_free;
uint16_t next_rec_id;
uint16_t reservation;
uint8_t last_addition[4];
uint8_t last_clear[4];
uint8_t overflow;
} IPMISdr;
typedef struct IPMIFru {
char *filename;
unsigned int nentries;
uint16_t areasize;
uint8_t *data;
} IPMIFru;
typedef struct IPMISensor {
uint8_t status;
uint8_t reading;
uint16_t states_suppt;
uint16_t assert_suppt;
uint16_t deassert_suppt;
uint16_t states;
uint16_t assert_states;
uint16_t deassert_states;
uint16_t assert_enable;
uint16_t deassert_enable;
uint8_t sensor_type;
uint8_t evt_reading_type_code;
} IPMISensor;
#define IPMI_SENSOR_GET_PRESENT(s) ((s)->status & 0x01)
#define IPMI_SENSOR_SET_PRESENT(s, v) ((s)->status = (s->status & ~0x01) | \
!!(v))
#define IPMI_SENSOR_GET_SCAN_ON(s) ((s)->status & 0x40)
#define IPMI_SENSOR_SET_SCAN_ON(s, v) ((s)->status = (s->status & ~0x40) | \
((!!(v)) << 6))
#define IPMI_SENSOR_GET_EVENTS_ON(s) ((s)->status & 0x80)
#define IPMI_SENSOR_SET_EVENTS_ON(s, v) ((s)->status = (s->status & ~0x80) | \
((!!(v)) << 7))
#define IPMI_SENSOR_GET_RET_STATUS(s) ((s)->status & 0xc0)
#define IPMI_SENSOR_SET_RET_STATUS(s, v) ((s)->status = (s->status & ~0xc0) | \
(v & 0xc0))
#define IPMI_SENSOR_IS_DISCRETE(s) ((s)->evt_reading_type_code != 1)
#define MAX_SENSORS 20
#define IPMI_WATCHDOG_SENSOR 0
#define MAX_NETFNS 64
typedef struct IPMIRcvBufEntry {
QTAILQ_ENTRY(IPMIRcvBufEntry) entry;
uint8_t len;
uint8_t buf[MAX_IPMI_MSG_SIZE];
} IPMIRcvBufEntry;
struct IPMIBmcSim {
IPMIBmc parent;
QEMUTimer *timer;
uint8_t bmc_global_enables;
uint8_t msg_flags;
bool watchdog_initialized;
uint8_t watchdog_use;
uint8_t watchdog_action;
uint8_t watchdog_pretimeout; /* In seconds */
uint8_t watchdog_expired;
uint16_t watchdog_timeout; /* in 100's of milliseconds */
bool watchdog_running;
bool watchdog_preaction_ran;
int64_t watchdog_expiry;
uint8_t device_id;
uint8_t ipmi_version;
uint8_t device_rev;
uint8_t fwrev1;
uint8_t fwrev2;
uint32_t mfg_id;
uint16_t product_id;
uint8_t restart_cause;
uint8_t acpi_power_state[2];
QemuUUID uuid;
IPMISel sel;
IPMISdr sdr;
IPMIFru fru;
IPMISensor sensors[MAX_SENSORS];
char *sdr_filename;
/* Odd netfns are for responses, so we only need the even ones. */
const IPMINetfn *netfns[MAX_NETFNS / 2];
/* We allow one event in the buffer */
uint8_t evtbuf[16];
QTAILQ_HEAD(, IPMIRcvBufEntry) rcvbufs;
};
#define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK (1 << 3)
#define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL (1 << 1)
#define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE (1 << 0)
#define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(s) \
(IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK & (s)->msg_flags)
#define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(s) \
(IPMI_BMC_MSG_FLAG_EVT_BUF_FULL & (s)->msg_flags)
#define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(s) \
(IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE & (s)->msg_flags)
#define IPMI_BMC_RCV_MSG_QUEUE_INT_BIT 0
#define IPMI_BMC_EVBUF_FULL_INT_BIT 1
#define IPMI_BMC_EVENT_MSG_BUF_BIT 2
#define IPMI_BMC_EVENT_LOG_BIT 3
#define IPMI_BMC_MSG_INTS_ON(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_RCV_MSG_QUEUE_INT_BIT))
#define IPMI_BMC_EVBUF_FULL_INT_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVBUF_FULL_INT_BIT))
#define IPMI_BMC_EVENT_LOG_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVENT_LOG_BIT))
#define IPMI_BMC_EVENT_MSG_BUF_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVENT_MSG_BUF_BIT))
#define IPMI_BMC_WATCHDOG_USE_MASK 0xc7
#define IPMI_BMC_WATCHDOG_ACTION_MASK 0x77
#define IPMI_BMC_WATCHDOG_GET_USE(s) ((s)->watchdog_use & 0x7)
#define IPMI_BMC_WATCHDOG_GET_DONT_LOG(s) (((s)->watchdog_use >> 7) & 0x1)
#define IPMI_BMC_WATCHDOG_GET_DONT_STOP(s) (((s)->watchdog_use >> 6) & 0x1)
#define IPMI_BMC_WATCHDOG_GET_PRE_ACTION(s) (((s)->watchdog_action >> 4) & 0x7)
#define IPMI_BMC_WATCHDOG_PRE_NONE 0
#define IPMI_BMC_WATCHDOG_PRE_SMI 1
#define IPMI_BMC_WATCHDOG_PRE_NMI 2
#define IPMI_BMC_WATCHDOG_PRE_MSG_INT 3
#define IPMI_BMC_WATCHDOG_GET_ACTION(s) ((s)->watchdog_action & 0x7)
#define IPMI_BMC_WATCHDOG_ACTION_NONE 0
#define IPMI_BMC_WATCHDOG_ACTION_RESET 1
#define IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN 2
#define IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE 3
#define RSP_BUFFER_INITIALIZER { }
static inline void rsp_buffer_pushmore(RspBuffer *rsp, uint8_t *bytes,
unsigned int n)
{
if (rsp->len + n >= sizeof(rsp->buffer)) {
rsp_buffer_set_error(rsp, IPMI_CC_REQUEST_DATA_TRUNCATED);
return;
}
memcpy(&rsp->buffer[rsp->len], bytes, n);
rsp->len += n;
}
static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs);
static void ipmi_gettime(struct ipmi_time *time)
{
int64_t stime;
stime = qemu_clock_get_ns(QEMU_CLOCK_HOST);
time->tv_sec = stime / 1000000000LL;
time->tv_nsec = stime % 1000000000LL;
}
static int64_t ipmi_getmonotime(void)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
}
static void ipmi_timeout(void *opaque)
{
IPMIBmcSim *ibs = opaque;
ipmi_sim_handle_timeout(ibs);
}
static void set_timestamp(IPMIBmcSim *ibs, uint8_t *ts)
{
unsigned int val;
struct ipmi_time now;
ipmi_gettime(&now);
val = now.tv_sec + ibs->sel.time_offset;
ts[0] = val & 0xff;
ts[1] = (val >> 8) & 0xff;
ts[2] = (val >> 16) & 0xff;
ts[3] = (val >> 24) & 0xff;
}
static void sdr_inc_reservation(IPMISdr *sdr)
{
sdr->reservation++;
if (sdr->reservation == 0) {
sdr->reservation = 1;
}
}
static int sdr_add_entry(IPMIBmcSim *ibs,
const struct ipmi_sdr_header *sdrh_entry,
unsigned int len, uint16_t *recid)
{
struct ipmi_sdr_header *sdrh =
(struct ipmi_sdr_header *) &ibs->sdr.sdr[ibs->sdr.next_free];
if ((len < IPMI_SDR_HEADER_SIZE) || (len > 255)) {
return 1;
}
if (ipmi_sdr_length(sdrh_entry) != len) {
return 1;
}
if (ibs->sdr.next_free + len > MAX_SDR_SIZE) {
ibs->sdr.overflow = 1;
return 1;
}
memcpy(sdrh, sdrh_entry, len);
sdrh->rec_id[0] = ibs->sdr.next_rec_id & 0xff;
sdrh->rec_id[1] = (ibs->sdr.next_rec_id >> 8) & 0xff;
sdrh->sdr_version = 0x51; /* Conform to IPMI 1.5 spec */
if (recid) {
*recid = ibs->sdr.next_rec_id;
}
ibs->sdr.next_rec_id++;
set_timestamp(ibs, ibs->sdr.last_addition);
ibs->sdr.next_free += len;
sdr_inc_reservation(&ibs->sdr);
return 0;
}
static int sdr_find_entry(IPMISdr *sdr, uint16_t recid,
unsigned int *retpos, uint16_t *nextrec)
{
unsigned int pos = *retpos;
while (pos < sdr->next_free) {
struct ipmi_sdr_header *sdrh =
(struct ipmi_sdr_header *) &sdr->sdr[pos];
uint16_t trec = ipmi_sdr_recid(sdrh);
unsigned int nextpos = pos + ipmi_sdr_length(sdrh);
if (trec == recid) {
if (nextrec) {
if (nextpos >= sdr->next_free) {
*nextrec = 0xffff;
} else {
*nextrec = (sdr->sdr[nextpos] |
(sdr->sdr[nextpos + 1] << 8));
}
}
*retpos = pos;
return 0;
}
pos = nextpos;
}
return 1;
}
int ipmi_bmc_sdr_find(IPMIBmc *b, uint16_t recid,
const struct ipmi_sdr_compact **sdr, uint16_t *nextrec)
{
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
unsigned int pos;
pos = 0;
if (sdr_find_entry(&ibs->sdr, recid, &pos, nextrec)) {
return -1;
}
*sdr = (const struct ipmi_sdr_compact *) &ibs->sdr.sdr[pos];
return 0;
}
static void sel_inc_reservation(IPMISel *sel)
{
sel->reservation++;
if (sel->reservation == 0) {
sel->reservation = 1;
}
}
/* Returns 1 if the SEL is full and can't hold the event. */
static int sel_add_event(IPMIBmcSim *ibs, uint8_t *event)
{
uint8_t ts[4];
event[0] = 0xff;
event[1] = 0xff;
set_timestamp(ibs, ts);
if (event[2] < 0xe0) { /* Don't set timestamps for type 0xe0-0xff. */
memcpy(event + 3, ts, 4);
}
if (ibs->sel.next_free == MAX_SEL_SIZE) {
ibs->sel.overflow = 1;
return 1;
}
event[0] = ibs->sel.next_free & 0xff;
event[1] = (ibs->sel.next_free >> 8) & 0xff;
memcpy(ibs->sel.last_addition, ts, 4);
memcpy(ibs->sel.sel[ibs->sel.next_free], event, 16);
ibs->sel.next_free++;
sel_inc_reservation(&ibs->sel);
return 0;
}
static int attn_set(IPMIBmcSim *ibs)
{
return IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs)
|| IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs)
|| IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(ibs);
}
static int attn_irq_enabled(IPMIBmcSim *ibs)
{
return (IPMI_BMC_MSG_INTS_ON(ibs) &&
(IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs) ||
IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(ibs)))
|| (IPMI_BMC_EVBUF_FULL_INT_ENABLED(ibs) &&
IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs));
}
void ipmi_bmc_gen_event(IPMIBmc *b, uint8_t *evt, bool log)
{
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
if (!IPMI_BMC_EVENT_MSG_BUF_ENABLED(ibs)) {
return;
}
if (log && IPMI_BMC_EVENT_LOG_ENABLED(ibs)) {
sel_add_event(ibs, evt);
}
if (ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL) {
goto out;
}
memcpy(ibs->evtbuf, evt, 16);
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_EVT_BUF_FULL;
k->set_atn(s, 1, attn_irq_enabled(ibs));
out:
return;
}
static void gen_event(IPMIBmcSim *ibs, unsigned int sens_num, uint8_t deassert,
uint8_t evd1, uint8_t evd2, uint8_t evd3)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
uint8_t evt[16];
IPMISensor *sens = ibs->sensors + sens_num;
if (!IPMI_BMC_EVENT_MSG_BUF_ENABLED(ibs)) {
return;
}
if (!IPMI_SENSOR_GET_EVENTS_ON(sens)) {
return;
}
evt[2] = 0x2; /* System event record */
evt[7] = ibs->parent.slave_addr;
evt[8] = 0;
evt[9] = 0x04; /* Format version */
evt[10] = sens->sensor_type;
evt[11] = sens_num;
evt[12] = sens->evt_reading_type_code | (!!deassert << 7);
evt[13] = evd1;
evt[14] = evd2;
evt[15] = evd3;
if (IPMI_BMC_EVENT_LOG_ENABLED(ibs)) {
sel_add_event(ibs, evt);
}
if (ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL) {
return;
}
memcpy(ibs->evtbuf, evt, 16);
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_EVT_BUF_FULL;
k->set_atn(s, 1, attn_irq_enabled(ibs));
}
static void sensor_set_discrete_bit(IPMIBmcSim *ibs, unsigned int sensor,
unsigned int bit, unsigned int val,
uint8_t evd1, uint8_t evd2, uint8_t evd3)
{
IPMISensor *sens;
uint16_t mask;
if (sensor >= MAX_SENSORS) {
return;
}
if (bit >= 16) {
return;
}
mask = (1 << bit);
sens = ibs->sensors + sensor;
if (val) {
sens->states |= mask & sens->states_suppt;
if (sens->assert_states & mask) {
return; /* Already asserted */
}
sens->assert_states |= mask & sens->assert_suppt;
if (sens->assert_enable & mask & sens->assert_states) {
/* Send an event on assert */
gen_event(ibs, sensor, 0, evd1, evd2, evd3);
}
} else {
sens->states &= ~(mask & sens->states_suppt);
if (sens->deassert_states & mask) {
return; /* Already deasserted */
}
sens->deassert_states |= mask & sens->deassert_suppt;
if (sens->deassert_enable & mask & sens->deassert_states) {
/* Send an event on deassert */
gen_event(ibs, sensor, 1, evd1, evd2, evd3);
}
}
}
static void ipmi_init_sensors_from_sdrs(IPMIBmcSim *s)
{
unsigned int i, pos;
IPMISensor *sens;
for (i = 0; i < MAX_SENSORS; i++) {
memset(s->sensors + i, 0, sizeof(*sens));
}
pos = 0;
for (i = 0; !sdr_find_entry(&s->sdr, i, &pos, NULL); i++) {
struct ipmi_sdr_compact *sdr =
(struct ipmi_sdr_compact *) &s->sdr.sdr[pos];
unsigned int len = sdr->header.rec_length;
if (len < 20) {
continue;
}
if (sdr->header.rec_type != IPMI_SDR_COMPACT_TYPE) {
continue; /* Not a sensor SDR we set from */
}
if (sdr->sensor_owner_number >= MAX_SENSORS) {
continue;
}
sens = s->sensors + sdr->sensor_owner_number;
IPMI_SENSOR_SET_PRESENT(sens, 1);
IPMI_SENSOR_SET_SCAN_ON(sens, (sdr->sensor_init >> 6) & 1);
IPMI_SENSOR_SET_EVENTS_ON(sens, (sdr->sensor_init >> 5) & 1);
sens->assert_suppt = sdr->assert_mask[0] | (sdr->assert_mask[1] << 8);
sens->deassert_suppt =
sdr->deassert_mask[0] | (sdr->deassert_mask[1] << 8);
sens->states_suppt =
sdr->discrete_mask[0] | (sdr->discrete_mask[1] << 8);
sens->sensor_type = sdr->sensor_type;
sens->evt_reading_type_code = sdr->reading_type & 0x7f;
/* Enable all the events that are supported. */
sens->assert_enable = sens->assert_suppt;
sens->deassert_enable = sens->deassert_suppt;
}
}
int ipmi_sim_register_netfn(IPMIBmcSim *s, unsigned int netfn,
const IPMINetfn *netfnd)
{
if ((netfn & 1) || (netfn >= MAX_NETFNS) || (s->netfns[netfn / 2])) {
return -1;
}
s->netfns[netfn / 2] = netfnd;
return 0;
}
static const IPMICmdHandler *ipmi_get_handler(IPMIBmcSim *ibs,
unsigned int netfn,
unsigned int cmd)
{
const IPMICmdHandler *hdl;
if (netfn & 1 || netfn >= MAX_NETFNS || !ibs->netfns[netfn / 2]) {
return NULL;
}
if (cmd >= ibs->netfns[netfn / 2]->cmd_nums) {
return NULL;
}
hdl = &ibs->netfns[netfn / 2]->cmd_handlers[cmd];
if (!hdl->cmd_handler) {
return NULL;
}
return hdl;
}
static void next_timeout(IPMIBmcSim *ibs)
{
int64_t next;
if (ibs->watchdog_running) {
next = ibs->watchdog_expiry;
} else {
/* Wait a minute */
next = ipmi_getmonotime() + 60 * 1000000000LL;
}
timer_mod_ns(ibs->timer, next);
}
static void ipmi_sim_handle_command(IPMIBmc *b,
uint8_t *cmd, unsigned int cmd_len,
unsigned int max_cmd_len,
uint8_t msg_id)
{
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
const IPMICmdHandler *hdl;
RspBuffer rsp = RSP_BUFFER_INITIALIZER;
/* Set up the response, set the low bit of NETFN. */
/* Note that max_rsp_len must be at least 3 */
if (sizeof(rsp.buffer) < 3) {
rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_TRUNCATED);
goto out;
}
rsp_buffer_push(&rsp, cmd[0] | 0x04);
rsp_buffer_push(&rsp, cmd[1]);
rsp_buffer_push(&rsp, 0); /* Assume success */
/* If it's too short or it was truncated, return an error. */
if (cmd_len < 2) {
rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID);
goto out;
}
if (cmd_len > max_cmd_len) {
rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_TRUNCATED);
goto out;
}
if ((cmd[0] & 0x03) != 0) {
/* Only have stuff on LUN 0 */
rsp_buffer_set_error(&rsp, IPMI_CC_COMMAND_INVALID_FOR_LUN);
goto out;
}
hdl = ipmi_get_handler(ibs, cmd[0] >> 2, cmd[1]);
if (!hdl) {
rsp_buffer_set_error(&rsp, IPMI_CC_INVALID_CMD);
goto out;
}
if (cmd_len < hdl->cmd_len_min) {
rsp_buffer_set_error(&rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID);
goto out;
}
hdl->cmd_handler(ibs, cmd, cmd_len, &rsp);
out:
k->handle_rsp(s, msg_id, rsp.buffer, rsp.len);
next_timeout(ibs);
}
static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
if (!ibs->watchdog_running) {
goto out;
}
if (!ibs->watchdog_preaction_ran) {
switch (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs)) {
case IPMI_BMC_WATCHDOG_PRE_NMI:
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK;
k->do_hw_op(s, IPMI_SEND_NMI, 0);
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1,
0xc8, (2 << 4) | 0xf, 0xff);
break;
case IPMI_BMC_WATCHDOG_PRE_MSG_INT:
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK;
k->set_atn(s, 1, attn_irq_enabled(ibs));
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1,
0xc8, (3 << 4) | 0xf, 0xff);
break;
default:
goto do_full_expiry;
}
ibs->watchdog_preaction_ran = 1;
/* Issued the pretimeout, do the rest of the timeout now. */
ibs->watchdog_expiry = ipmi_getmonotime();
ibs->watchdog_expiry += ibs->watchdog_pretimeout * 1000000000LL;
goto out;
}
do_full_expiry:
ibs->watchdog_running = 0; /* Stop the watchdog on a timeout */
ibs->watchdog_expired |= (1 << IPMI_BMC_WATCHDOG_GET_USE(ibs));
switch (IPMI_BMC_WATCHDOG_GET_ACTION(ibs)) {
case IPMI_BMC_WATCHDOG_ACTION_NONE:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 0, 1,
0xc0, ibs->watchdog_use & 0xf, 0xff);
break;
case IPMI_BMC_WATCHDOG_ACTION_RESET:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 1, 1,
0xc1, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_RESET_CHASSIS, 0);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1,
0xc2, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1,
0xc3, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0);
break;
}
out:
next_timeout(ibs);
}
static void chassis_capabilities(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, 0);
rsp_buffer_push(rsp, ibs->parent.slave_addr);
rsp_buffer_push(rsp, ibs->parent.slave_addr);
rsp_buffer_push(rsp, ibs->parent.slave_addr);
rsp_buffer_push(rsp, ibs->parent.slave_addr);
}
static void chassis_status(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, 0x61); /* Unknown power restore, power is on */
rsp_buffer_push(rsp, 0);
rsp_buffer_push(rsp, 0);
rsp_buffer_push(rsp, 0);
}
static void chassis_control(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
switch (cmd[2] & 0xf) {
case 0: /* power down */
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0));
break;
case 1: /* power up */
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERON_CHASSIS, 0));
break;
case 2: /* power cycle */
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0));
break;
case 3: /* hard reset */
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_RESET_CHASSIS, 0));
break;
case 4: /* pulse diagnostic interrupt */
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_PULSE_DIAG_IRQ, 0));
break;
case 5: /* soft shutdown via ACPI by overtemp emulation */
rsp_buffer_set_error(rsp, k->do_hw_op(s,
IPMI_SHUTDOWN_VIA_ACPI_OVERTEMP, 0));
break;
default:
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
}
static void chassis_get_sys_restart_cause(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->restart_cause & 0xf); /* Restart Cause */
rsp_buffer_push(rsp, 0); /* Channel 0 */
}
static void get_device_id(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->device_id);
rsp_buffer_push(rsp, ibs->device_rev & 0xf);
rsp_buffer_push(rsp, ibs->fwrev1 & 0x7f);
rsp_buffer_push(rsp, ibs->fwrev2);
rsp_buffer_push(rsp, ibs->ipmi_version);
rsp_buffer_push(rsp, 0x07); /* sensor, SDR, and SEL. */
rsp_buffer_push(rsp, ibs->mfg_id & 0xff);
rsp_buffer_push(rsp, (ibs->mfg_id >> 8) & 0xff);
rsp_buffer_push(rsp, (ibs->mfg_id >> 16) & 0xff);
rsp_buffer_push(rsp, ibs->product_id & 0xff);
rsp_buffer_push(rsp, (ibs->product_id >> 8) & 0xff);
}
static void set_global_enables(IPMIBmcSim *ibs, uint8_t val)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
bool irqs_on;
ibs->bmc_global_enables = val;
irqs_on = val & (IPMI_BMC_EVBUF_FULL_INT_BIT |
IPMI_BMC_RCV_MSG_QUEUE_INT_BIT);
k->set_irq_enable(s, irqs_on);
}
static void cold_reset(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
/* Disable all interrupts */
set_global_enables(ibs, 1 << IPMI_BMC_EVENT_LOG_BIT);
if (k->reset) {
k->reset(s, true);
}
}
static void warm_reset(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
if (k->reset) {
k->reset(s, false);
}
}
static void set_acpi_power_state(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
ibs->acpi_power_state[0] = cmd[2];
ibs->acpi_power_state[1] = cmd[3];
}
static void get_acpi_power_state(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->acpi_power_state[0]);
rsp_buffer_push(rsp, ibs->acpi_power_state[1]);
}
static void get_device_guid(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
unsigned int i;
/* An uninitialized uuid is all zeros, use that to know if it is set. */
for (i = 0; i < 16; i++) {
if (ibs->uuid.data[i]) {
goto uuid_set;
}
}
/* No uuid is set, return an error. */
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_CMD);
return;
uuid_set:
for (i = 0; i < 16; i++) {
rsp_buffer_push(rsp, ibs->uuid.data[i]);
}
}
static void set_bmc_global_enables(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
set_global_enables(ibs, cmd[2]);
}
static void get_bmc_global_enables(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->bmc_global_enables);
}
static void clr_msg_flags(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
ibs->msg_flags &= ~cmd[2];
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
static void get_msg_flags(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->msg_flags);
}
static void read_evt_msg_buf(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
unsigned int i;
if (!(ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL)) {
rsp_buffer_set_error(rsp, 0x80);
return;
}
for (i = 0; i < 16; i++) {
rsp_buffer_push(rsp, ibs->evtbuf[i]);
}
ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_EVT_BUF_FULL;
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
static void get_msg(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIRcvBufEntry *msg;
if (QTAILQ_EMPTY(&ibs->rcvbufs)) {
rsp_buffer_set_error(rsp, 0x80); /* Queue empty */
goto out;
}
rsp_buffer_push(rsp, 0); /* Channel 0 */
msg = QTAILQ_FIRST(&ibs->rcvbufs);
rsp_buffer_pushmore(rsp, msg->buf, msg->len);
QTAILQ_REMOVE(&ibs->rcvbufs, msg, entry);
g_free(msg);
if (QTAILQ_EMPTY(&ibs->rcvbufs)) {
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE;
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
out:
return;
}
static unsigned char
ipmb_checksum(unsigned char *data, int size, unsigned char csum)
{
for (; size > 0; size--, data++) {
csum += *data;
}
return -csum;
}
static void send_msg(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
IPMIRcvBufEntry *msg;
uint8_t *buf;
uint8_t netfn, rqLun, rsLun, rqSeq;
if (cmd[2] != 0) {
/* We only handle channel 0 with no options */
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (cmd_len < 10) {
rsp_buffer_set_error(rsp, IPMI_CC_REQUEST_DATA_LENGTH_INVALID);
return;
}
if (cmd[3] != 0x40) {
/* We only emulate a MC at address 0x40. */
rsp_buffer_set_error(rsp, 0x83); /* NAK on write */
return;
}
cmd += 3; /* Skip the header. */
cmd_len -= 3;
/*
* At this point we "send" the message successfully. Any error will
* be returned in the response.
*/
if (ipmb_checksum(cmd, cmd_len, 0) != 0 ||
cmd[3] != 0x20) { /* Improper response address */
return; /* No response */
}
netfn = cmd[1] >> 2;
rqLun = cmd[4] & 0x3;
rsLun = cmd[1] & 0x3;
rqSeq = cmd[4] >> 2;
if (rqLun != 2) {
/* We only support LUN 2 coming back to us. */
return;
}
msg = g_malloc(sizeof(*msg));
msg->buf[0] = ((netfn | 1) << 2) | rqLun; /* NetFN, and make a response */
msg->buf[1] = ipmb_checksum(msg->buf, 1, 0);
msg->buf[2] = cmd[0]; /* rsSA */
msg->buf[3] = (rqSeq << 2) | rsLun;
msg->buf[4] = cmd[5]; /* Cmd */
msg->buf[5] = 0; /* Completion Code */
msg->len = 6;
if ((cmd[1] >> 2) != IPMI_NETFN_APP || cmd[5] != IPMI_CMD_GET_DEVICE_ID) {
/* Not a command we handle. */
msg->buf[5] = IPMI_CC_INVALID_CMD;
goto end_msg;
}
buf = msg->buf + msg->len; /* After the CC */
buf[0] = 0;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
buf[4] = 0x51;
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
buf[8] = 0;
buf[9] = 0;
buf[10] = 0;
msg->len += 11;
end_msg:
msg->buf[msg->len] = ipmb_checksum(msg->buf, msg->len, 0);
msg->len++;
QTAILQ_INSERT_TAIL(&ibs->rcvbufs, msg, entry);
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE;
k->set_atn(s, 1, attn_irq_enabled(ibs));
}
static void do_watchdog_reset(IPMIBmcSim *ibs)
{
if (IPMI_BMC_WATCHDOG_GET_ACTION(ibs) ==
IPMI_BMC_WATCHDOG_ACTION_NONE) {
ibs->watchdog_running = 0;
return;
}
ibs->watchdog_preaction_ran = 0;
/* Timeout is in tenths of a second, offset is in seconds */
ibs->watchdog_expiry = ipmi_getmonotime();
ibs->watchdog_expiry += ibs->watchdog_timeout * 100000000LL;
if (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs) != IPMI_BMC_WATCHDOG_PRE_NONE) {
ibs->watchdog_expiry -= ibs->watchdog_pretimeout * 1000000000LL;
}
ibs->watchdog_running = 1;
}
static void reset_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
if (!ibs->watchdog_initialized) {
rsp_buffer_set_error(rsp, 0x80);
return;
}
do_watchdog_reset(ibs);
}
static void set_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
unsigned int val;
val = cmd[2] & 0x7; /* Validate use */
if (val == 0 || val > 5) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
val = cmd[3] & 0x7; /* Validate action */
switch (val) {
case IPMI_BMC_WATCHDOG_ACTION_NONE:
break;
case IPMI_BMC_WATCHDOG_ACTION_RESET:
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_RESET_CHASSIS, 1));
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN:
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 1));
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE:
rsp_buffer_set_error(rsp, k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 1));
break;
default:
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
}
if (rsp->buffer[2]) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
val = (cmd[3] >> 4) & 0x7; /* Validate preaction */
switch (val) {
case IPMI_BMC_WATCHDOG_PRE_MSG_INT:
case IPMI_BMC_WATCHDOG_PRE_NONE:
break;
case IPMI_BMC_WATCHDOG_PRE_NMI:
if (k->do_hw_op(s, IPMI_SEND_NMI, 1)) {
/* NMI not supported. */
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
break;
default:
/* We don't support PRE_SMI */
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
ibs->watchdog_initialized = 1;
ibs->watchdog_use = cmd[2] & IPMI_BMC_WATCHDOG_USE_MASK;
ibs->watchdog_action = cmd[3] & IPMI_BMC_WATCHDOG_ACTION_MASK;
ibs->watchdog_pretimeout = cmd[4];
ibs->watchdog_expired &= ~cmd[5];
ibs->watchdog_timeout = cmd[6] | (((uint16_t) cmd[7]) << 8);
if (ibs->watchdog_running & IPMI_BMC_WATCHDOG_GET_DONT_STOP(ibs)) {
do_watchdog_reset(ibs);
} else {
ibs->watchdog_running = 0;
}
}
static void get_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->watchdog_use);
rsp_buffer_push(rsp, ibs->watchdog_action);
rsp_buffer_push(rsp, ibs->watchdog_pretimeout);
rsp_buffer_push(rsp, ibs->watchdog_expired);
rsp_buffer_push(rsp, ibs->watchdog_timeout & 0xff);
rsp_buffer_push(rsp, (ibs->watchdog_timeout >> 8) & 0xff);
if (ibs->watchdog_running) {
long timeout;
timeout = ((ibs->watchdog_expiry - ipmi_getmonotime() + 50000000)
/ 100000000);
rsp_buffer_push(rsp, timeout & 0xff);
rsp_buffer_push(rsp, (timeout >> 8) & 0xff);
} else {
rsp_buffer_push(rsp, 0);
rsp_buffer_push(rsp, 0);
}
}
static void get_sdr_rep_info(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
unsigned int i;
rsp_buffer_push(rsp, 0x51); /* Conform to IPMI 1.5 spec */
rsp_buffer_push(rsp, ibs->sdr.next_rec_id & 0xff);
rsp_buffer_push(rsp, (ibs->sdr.next_rec_id >> 8) & 0xff);
rsp_buffer_push(rsp, (MAX_SDR_SIZE - ibs->sdr.next_free) & 0xff);
rsp_buffer_push(rsp, ((MAX_SDR_SIZE - ibs->sdr.next_free) >> 8) & 0xff);
for (i = 0; i < 4; i++) {
rsp_buffer_push(rsp, ibs->sdr.last_addition[i]);
}
for (i = 0; i < 4; i++) {
rsp_buffer_push(rsp, ibs->sdr.last_clear[i]);
}
/* Only modal support, reserve supported */
rsp_buffer_push(rsp, (ibs->sdr.overflow << 7) | 0x22);
}
static void reserve_sdr_rep(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->sdr.reservation & 0xff);
rsp_buffer_push(rsp, (ibs->sdr.reservation >> 8) & 0xff);
}
static void get_sdr(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
unsigned int pos;
uint16_t nextrec;
struct ipmi_sdr_header *sdrh;
if (cmd[6]) {
if ((cmd[2] | (cmd[3] << 8)) != ibs->sdr.reservation) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION);
return;
}
}
pos = 0;
if (sdr_find_entry(&ibs->sdr, cmd[4] | (cmd[5] << 8),
&pos, &nextrec)) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sdrh = (struct ipmi_sdr_header *) &ibs->sdr.sdr[pos];
if (cmd[6] > ipmi_sdr_length(sdrh)) {
rsp_buffer_set_error(rsp, IPMI_CC_PARM_OUT_OF_RANGE);
return;
}
rsp_buffer_push(rsp, nextrec & 0xff);
rsp_buffer_push(rsp, (nextrec >> 8) & 0xff);
if (cmd[7] == 0xff) {
cmd[7] = ipmi_sdr_length(sdrh) - cmd[6];
}
if ((cmd[7] + rsp->len) > sizeof(rsp->buffer)) {
rsp_buffer_set_error(rsp, IPMI_CC_CANNOT_RETURN_REQ_NUM_BYTES);
return;
}
rsp_buffer_pushmore(rsp, ibs->sdr.sdr + pos + cmd[6], cmd[7]);
}
static void add_sdr(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint16_t recid;
struct ipmi_sdr_header *sdrh = (struct ipmi_sdr_header *) cmd + 2;
if (sdr_add_entry(ibs, sdrh, cmd_len - 2, &recid)) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
rsp_buffer_push(rsp, recid & 0xff);
rsp_buffer_push(rsp, (recid >> 8) & 0xff);
}
static void clear_sdr_rep(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
if ((cmd[2] | (cmd[3] << 8)) != ibs->sdr.reservation) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION);
return;
}
if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (cmd[7] == 0xaa) {
ibs->sdr.next_free = 0;
ibs->sdr.overflow = 0;
set_timestamp(ibs, ibs->sdr.last_clear);
rsp_buffer_push(rsp, 1); /* Erasure complete */
sdr_inc_reservation(&ibs->sdr);
} else if (cmd[7] == 0) {
rsp_buffer_push(rsp, 1); /* Erasure complete */
} else {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
}
static void get_sel_info(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
unsigned int i, val;
rsp_buffer_push(rsp, 0x51); /* Conform to IPMI 1.5 */
rsp_buffer_push(rsp, ibs->sel.next_free & 0xff);
rsp_buffer_push(rsp, (ibs->sel.next_free >> 8) & 0xff);
val = (MAX_SEL_SIZE - ibs->sel.next_free) * 16;
rsp_buffer_push(rsp, val & 0xff);
rsp_buffer_push(rsp, (val >> 8) & 0xff);
for (i = 0; i < 4; i++) {
rsp_buffer_push(rsp, ibs->sel.last_addition[i]);
}
for (i = 0; i < 4; i++) {
rsp_buffer_push(rsp, ibs->sel.last_clear[i]);
}
/* Only support Reserve SEL */
rsp_buffer_push(rsp, (ibs->sel.overflow << 7) | 0x02);
}
static void get_fru_area_info(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint8_t fruid;
uint16_t fru_entry_size;
fruid = cmd[2];
if (fruid >= ibs->fru.nentries) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
fru_entry_size = ibs->fru.areasize;
rsp_buffer_push(rsp, fru_entry_size & 0xff);
rsp_buffer_push(rsp, fru_entry_size >> 8 & 0xff);
rsp_buffer_push(rsp, 0x0);
}
static void read_fru_data(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint8_t fruid;
uint16_t offset;
int i;
uint8_t *fru_entry;
unsigned int count;
fruid = cmd[2];
offset = (cmd[3] | cmd[4] << 8);
if (fruid >= ibs->fru.nentries) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (offset >= ibs->fru.areasize - 1) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
fru_entry = &ibs->fru.data[fruid * ibs->fru.areasize];
count = MIN(cmd[5], ibs->fru.areasize - offset);
rsp_buffer_push(rsp, count & 0xff);
for (i = 0; i < count; i++) {
rsp_buffer_push(rsp, fru_entry[offset + i]);
}
}
static void write_fru_data(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint8_t fruid;
uint16_t offset;
uint8_t *fru_entry;
unsigned int count;
fruid = cmd[2];
offset = (cmd[3] | cmd[4] << 8);
if (fruid >= ibs->fru.nentries) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (offset >= ibs->fru.areasize - 1) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
fru_entry = &ibs->fru.data[fruid * ibs->fru.areasize];
count = MIN(cmd_len - 5, ibs->fru.areasize - offset);
memcpy(fru_entry + offset, cmd + 5, count);
rsp_buffer_push(rsp, count & 0xff);
}
static void reserve_sel(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
rsp_buffer_push(rsp, ibs->sel.reservation & 0xff);
rsp_buffer_push(rsp, (ibs->sel.reservation >> 8) & 0xff);
}
static void get_sel_entry(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
unsigned int val;
if (cmd[6]) {
if ((cmd[2] | (cmd[3] << 8)) != ibs->sel.reservation) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION);
return;
}
}
if (ibs->sel.next_free == 0) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
if (cmd[6] > 15) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (cmd[7] == 0xff) {
cmd[7] = 16;
} else if ((cmd[7] + cmd[6]) > 16) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
} else {
cmd[7] += cmd[6];
}
val = cmd[4] | (cmd[5] << 8);
if (val == 0xffff) {
val = ibs->sel.next_free - 1;
} else if (val >= ibs->sel.next_free) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
if ((val + 1) == ibs->sel.next_free) {
rsp_buffer_push(rsp, 0xff);
rsp_buffer_push(rsp, 0xff);
} else {
rsp_buffer_push(rsp, (val + 1) & 0xff);
rsp_buffer_push(rsp, ((val + 1) >> 8) & 0xff);
}
for (; cmd[6] < cmd[7]; cmd[6]++) {
rsp_buffer_push(rsp, ibs->sel.sel[val][cmd[6]]);
}
}
static void add_sel_entry(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
if (sel_add_event(ibs, cmd + 2)) {
rsp_buffer_set_error(rsp, IPMI_CC_OUT_OF_SPACE);
return;
}
/* sel_add_event fills in the record number. */
rsp_buffer_push(rsp, cmd[2]);
rsp_buffer_push(rsp, cmd[3]);
}
static void clear_sel(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
if ((cmd[2] | (cmd[3] << 8)) != ibs->sel.reservation) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_RESERVATION);
return;
}
if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
if (cmd[7] == 0xaa) {
ibs->sel.next_free = 0;
ibs->sel.overflow = 0;
set_timestamp(ibs, ibs->sdr.last_clear);
rsp_buffer_push(rsp, 1); /* Erasure complete */
sel_inc_reservation(&ibs->sel);
} else if (cmd[7] == 0) {
rsp_buffer_push(rsp, 1); /* Erasure complete */
} else {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
}
static void get_sel_time(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint32_t val;
struct ipmi_time now;
ipmi_gettime(&now);
val = now.tv_sec + ibs->sel.time_offset;
rsp_buffer_push(rsp, val & 0xff);
rsp_buffer_push(rsp, (val >> 8) & 0xff);
rsp_buffer_push(rsp, (val >> 16) & 0xff);
rsp_buffer_push(rsp, (val >> 24) & 0xff);
}
static void set_sel_time(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint32_t val;
struct ipmi_time now;
val = cmd[2] | (cmd[3] << 8) | (cmd[4] << 16) | (cmd[5] << 24);
ipmi_gettime(&now);
ibs->sel.time_offset = now.tv_sec - ((long) val);
}
static void platform_event_msg(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
uint8_t event[16];
event[2] = 2; /* System event record */
event[7] = cmd[2]; /* Generator ID */
event[8] = 0;
event[9] = cmd[3]; /* EvMRev */
event[10] = cmd[4]; /* Sensor type */
event[11] = cmd[5]; /* Sensor number */
event[12] = cmd[6]; /* Event dir / Event type */
event[13] = cmd[7]; /* Event data 1 */
event[14] = cmd[8]; /* Event data 2 */
event[15] = cmd[9]; /* Event data 3 */
if (sel_add_event(ibs, event)) {
rsp_buffer_set_error(rsp, IPMI_CC_OUT_OF_SPACE);
}
}
static void set_sensor_evt_enable(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
switch ((cmd[3] >> 4) & 0x3) {
case 0: /* Do not change */
break;
case 1: /* Enable bits */
if (cmd_len > 4) {
sens->assert_enable |= cmd[4];
}
if (cmd_len > 5) {
sens->assert_enable |= cmd[5] << 8;
}
if (cmd_len > 6) {
sens->deassert_enable |= cmd[6];
}
if (cmd_len > 7) {
sens->deassert_enable |= cmd[7] << 8;
}
break;
case 2: /* Disable bits */
if (cmd_len > 4) {
sens->assert_enable &= ~cmd[4];
}
if (cmd_len > 5) {
sens->assert_enable &= ~(cmd[5] << 8);
}
if (cmd_len > 6) {
sens->deassert_enable &= ~cmd[6];
}
if (cmd_len > 7) {
sens->deassert_enable &= ~(cmd[7] << 8);
}
break;
case 3:
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
IPMI_SENSOR_SET_RET_STATUS(sens, cmd[3]);
}
static void get_sensor_evt_enable(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens));
rsp_buffer_push(rsp, sens->assert_enable & 0xff);
rsp_buffer_push(rsp, (sens->assert_enable >> 8) & 0xff);
rsp_buffer_push(rsp, sens->deassert_enable & 0xff);
rsp_buffer_push(rsp, (sens->deassert_enable >> 8) & 0xff);
}
static void rearm_sensor_evts(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
if ((cmd[3] & 0x80) == 0) {
/* Just clear everything */
sens->states = 0;
return;
}
}
static void get_sensor_evt_status(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
rsp_buffer_push(rsp, sens->reading);
rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens));
rsp_buffer_push(rsp, sens->assert_states & 0xff);
rsp_buffer_push(rsp, (sens->assert_states >> 8) & 0xff);
rsp_buffer_push(rsp, sens->deassert_states & 0xff);
rsp_buffer_push(rsp, (sens->deassert_states >> 8) & 0xff);
}
static void get_sensor_reading(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
rsp_buffer_push(rsp, sens->reading);
rsp_buffer_push(rsp, IPMI_SENSOR_GET_RET_STATUS(sens));
rsp_buffer_push(rsp, sens->states & 0xff);
if (IPMI_SENSOR_IS_DISCRETE(sens)) {
rsp_buffer_push(rsp, (sens->states >> 8) & 0xff);
}
}
static void set_sensor_type(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
sens->sensor_type = cmd[3];
sens->evt_reading_type_code = cmd[4] & 0x7f;
}
static void get_sensor_type(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
rsp_buffer_push(rsp, sens->sensor_type);
rsp_buffer_push(rsp, sens->evt_reading_type_code);
}
/*
* bytes parameter
* 1 sensor number
* 2 operation (see below for bits meaning)
* 3 sensor reading
* 4:5 assertion states (optional)
* 6:7 deassertion states (optional)
* 8:10 event data 1,2,3 (optional)
*/
static void set_sensor_reading(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
RspBuffer *rsp)
{
IPMISensor *sens;
uint8_t evd1 = 0;
uint8_t evd2 = 0;
uint8_t evd3 = 0;
uint8_t new_reading = 0;
uint16_t new_assert_states = 0;
uint16_t new_deassert_states = 0;
bool change_reading = false;
bool change_assert = false;
bool change_deassert = false;
enum {
SENSOR_GEN_EVENT_NONE,
SENSOR_GEN_EVENT_DATA,
SENSOR_GEN_EVENT_BMC,
} do_gen_event = SENSOR_GEN_EVENT_NONE;
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp_buffer_set_error(rsp, IPMI_CC_REQ_ENTRY_NOT_PRESENT);
return;
}
sens = ibs->sensors + cmd[2];
/* [1:0] Sensor Reading operation */
switch ((cmd[3]) & 0x3) {
case 0: /* Do not change */
break;
case 1: /* write given value to sensor reading byte */
new_reading = cmd[4];
if (sens->reading != new_reading) {
change_reading = true;
}
break;
case 2:
case 3:
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
/* [3:2] Deassertion bits operation */
switch ((cmd[3] >> 2) & 0x3) {
case 0: /* Do not change */
break;
case 1: /* write given value */
if (cmd_len > 7) {
new_deassert_states = cmd[7];
change_deassert = true;
}
if (cmd_len > 8) {
new_deassert_states |= (cmd[8] << 8);
}
break;
case 2: /* mask on */
if (cmd_len > 7) {
new_deassert_states = (sens->deassert_states | cmd[7]);
change_deassert = true;
}
if (cmd_len > 8) {
new_deassert_states |= (sens->deassert_states | (cmd[8] << 8));
}
break;
case 3: /* mask off */
if (cmd_len > 7) {
new_deassert_states = (sens->deassert_states & cmd[7]);
change_deassert = true;
}
if (cmd_len > 8) {
new_deassert_states |= (sens->deassert_states & (cmd[8] << 8));
}
break;
}
if (change_deassert && (new_deassert_states == sens->deassert_states)) {
change_deassert = false;
}
/* [5:4] Assertion bits operation */
switch ((cmd[3] >> 4) & 0x3) {
case 0: /* Do not change */
break;
case 1: /* write given value */
if (cmd_len > 5) {
new_assert_states = cmd[5];
change_assert = true;
}
if (cmd_len > 6) {
new_assert_states |= (cmd[6] << 8);
}
break;
case 2: /* mask on */
if (cmd_len > 5) {
new_assert_states = (sens->assert_states | cmd[5]);
change_assert = true;
}
if (cmd_len > 6) {
new_assert_states |= (sens->assert_states | (cmd[6] << 8));
}
break;
case 3: /* mask off */
if (cmd_len > 5) {
new_assert_states = (sens->assert_states & cmd[5]);
change_assert = true;
}
if (cmd_len > 6) {
new_assert_states |= (sens->assert_states & (cmd[6] << 8));
}
break;
}
if (change_assert && (new_assert_states == sens->assert_states)) {
change_assert = false;
}
if (cmd_len > 9) {
evd1 = cmd[9];
}
if (cmd_len > 10) {
evd2 = cmd[10];
}
if (cmd_len > 11) {
evd3 = cmd[11];
}
/* [7:6] Event Data Bytes operation */
switch ((cmd[3] >> 6) & 0x3) {
case 0: /*
* Dont use Event Data bytes from this command. BMC will
* generate it's own Event Data bytes based on its sensor
* implementation.
*/
evd1 = evd2 = evd3 = 0x0;
do_gen_event = SENSOR_GEN_EVENT_BMC;
break;
case 1: /*
* Write given values to event data bytes including bits
* [3:0] Event Data 1.
*/
do_gen_event = SENSOR_GEN_EVENT_DATA;
break;
case 2: /*
* Write given values to event data bytes excluding bits
* [3:0] Event Data 1.
*/
evd1 &= 0xf0;
do_gen_event = SENSOR_GEN_EVENT_DATA;
break;
case 3:
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
/*
* Event Data Bytes operation and parameter are inconsistent. The
* Specs are not clear on that topic but generating an error seems
* correct.
*/
if (do_gen_event == SENSOR_GEN_EVENT_DATA && cmd_len < 10) {
rsp_buffer_set_error(rsp, IPMI_CC_INVALID_DATA_FIELD);
return;
}
/* commit values */
if (change_reading) {
sens->reading = new_reading;
}
if (change_assert) {
sens->assert_states = new_assert_states;
}
if (change_deassert) {
sens->deassert_states = new_deassert_states;
}
/* TODO: handle threshold sensor */
if (!IPMI_SENSOR_IS_DISCRETE(sens)) {
return;
}
switch (do_gen_event) {
case SENSOR_GEN_EVENT_DATA: {
unsigned int bit = evd1 & 0xf;
uint16_t mask = (1 << bit);
if (sens->assert_states & mask & sens->assert_enable) {
gen_event(ibs, cmd[2], 0, evd1, evd2, evd3);
}
if (sens->deassert_states & mask & sens->deassert_enable) {
gen_event(ibs, cmd[2], 1, evd1, evd2, evd3);
}
break;
}
case SENSOR_GEN_EVENT_BMC:
/*
* TODO: generate event and event data bytes depending on the
* sensor
*/
break;
case SENSOR_GEN_EVENT_NONE:
break;
}
}
static const IPMICmdHandler chassis_cmds[] = {
[IPMI_CMD_GET_CHASSIS_CAPABILITIES] = { chassis_capabilities },
[IPMI_CMD_GET_CHASSIS_STATUS] = { chassis_status },
[IPMI_CMD_CHASSIS_CONTROL] = { chassis_control, 3 },
[IPMI_CMD_GET_SYS_RESTART_CAUSE] = { chassis_get_sys_restart_cause }
};
static const IPMINetfn chassis_netfn = {
.cmd_nums = ARRAY_SIZE(chassis_cmds),
.cmd_handlers = chassis_cmds
};
static const IPMICmdHandler sensor_event_cmds[] = {
[IPMI_CMD_PLATFORM_EVENT_MSG] = { platform_event_msg, 10 },
[IPMI_CMD_SET_SENSOR_EVT_ENABLE] = { set_sensor_evt_enable, 4 },
[IPMI_CMD_GET_SENSOR_EVT_ENABLE] = { get_sensor_evt_enable, 3 },
[IPMI_CMD_REARM_SENSOR_EVTS] = { rearm_sensor_evts, 4 },
[IPMI_CMD_GET_SENSOR_EVT_STATUS] = { get_sensor_evt_status, 3 },
[IPMI_CMD_GET_SENSOR_READING] = { get_sensor_reading, 3 },
[IPMI_CMD_SET_SENSOR_TYPE] = { set_sensor_type, 5 },
[IPMI_CMD_GET_SENSOR_TYPE] = { get_sensor_type, 3 },
[IPMI_CMD_SET_SENSOR_READING] = { set_sensor_reading, 5 },
};
static const IPMINetfn sensor_event_netfn = {
.cmd_nums = ARRAY_SIZE(sensor_event_cmds),
.cmd_handlers = sensor_event_cmds
};
static const IPMICmdHandler app_cmds[] = {
[IPMI_CMD_GET_DEVICE_ID] = { get_device_id },
[IPMI_CMD_COLD_RESET] = { cold_reset },
[IPMI_CMD_WARM_RESET] = { warm_reset },
[IPMI_CMD_SET_ACPI_POWER_STATE] = { set_acpi_power_state, 4 },
[IPMI_CMD_GET_ACPI_POWER_STATE] = { get_acpi_power_state },
[IPMI_CMD_GET_DEVICE_GUID] = { get_device_guid },
[IPMI_CMD_SET_BMC_GLOBAL_ENABLES] = { set_bmc_global_enables, 3 },
[IPMI_CMD_GET_BMC_GLOBAL_ENABLES] = { get_bmc_global_enables },
[IPMI_CMD_CLR_MSG_FLAGS] = { clr_msg_flags, 3 },
[IPMI_CMD_GET_MSG_FLAGS] = { get_msg_flags },
[IPMI_CMD_GET_MSG] = { get_msg },
[IPMI_CMD_SEND_MSG] = { send_msg, 3 },
[IPMI_CMD_READ_EVT_MSG_BUF] = { read_evt_msg_buf },
[IPMI_CMD_RESET_WATCHDOG_TIMER] = { reset_watchdog_timer },
[IPMI_CMD_SET_WATCHDOG_TIMER] = { set_watchdog_timer, 8 },
[IPMI_CMD_GET_WATCHDOG_TIMER] = { get_watchdog_timer },
};
static const IPMINetfn app_netfn = {
.cmd_nums = ARRAY_SIZE(app_cmds),
.cmd_handlers = app_cmds
};
static const IPMICmdHandler storage_cmds[] = {
[IPMI_CMD_GET_FRU_AREA_INFO] = { get_fru_area_info, 3 },
[IPMI_CMD_READ_FRU_DATA] = { read_fru_data, 5 },
[IPMI_CMD_WRITE_FRU_DATA] = { write_fru_data, 5 },
[IPMI_CMD_GET_SDR_REP_INFO] = { get_sdr_rep_info },
[IPMI_CMD_RESERVE_SDR_REP] = { reserve_sdr_rep },
[IPMI_CMD_GET_SDR] = { get_sdr, 8 },
[IPMI_CMD_ADD_SDR] = { add_sdr },
[IPMI_CMD_CLEAR_SDR_REP] = { clear_sdr_rep, 8 },
[IPMI_CMD_GET_SEL_INFO] = { get_sel_info },
[IPMI_CMD_RESERVE_SEL] = { reserve_sel },
[IPMI_CMD_GET_SEL_ENTRY] = { get_sel_entry, 8 },
[IPMI_CMD_ADD_SEL_ENTRY] = { add_sel_entry, 18 },
[IPMI_CMD_CLEAR_SEL] = { clear_sel, 8 },
[IPMI_CMD_GET_SEL_TIME] = { get_sel_time },
[IPMI_CMD_SET_SEL_TIME] = { set_sel_time, 6 },
};
static const IPMINetfn storage_netfn = {
.cmd_nums = ARRAY_SIZE(storage_cmds),
.cmd_handlers = storage_cmds
};
static void register_cmds(IPMIBmcSim *s)
{
ipmi_sim_register_netfn(s, IPMI_NETFN_CHASSIS, &chassis_netfn);
ipmi_sim_register_netfn(s, IPMI_NETFN_SENSOR_EVENT, &sensor_event_netfn);
ipmi_sim_register_netfn(s, IPMI_NETFN_APP, &app_netfn);
ipmi_sim_register_netfn(s, IPMI_NETFN_STORAGE, &storage_netfn);
}
static uint8_t init_sdrs[] = {
/* Watchdog device */
0x00, 0x00, 0x51, 0x02, 35, 0x20, 0x00, 0x00,
0x23, 0x01, 0x63, 0x00, 0x23, 0x6f, 0x0f, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc8,
'W', 'a', 't', 'c', 'h', 'd', 'o', 'g',
};
static void ipmi_sdr_init(IPMIBmcSim *ibs)
{
unsigned int i;
int len;
size_t sdrs_size;
uint8_t *sdrs;
sdrs_size = sizeof(init_sdrs);
sdrs = init_sdrs;
if (ibs->sdr_filename &&
!g_file_get_contents(ibs->sdr_filename, (gchar **) &sdrs, &sdrs_size,
NULL)) {
error_report("failed to load sdr file '%s'", ibs->sdr_filename);
sdrs_size = sizeof(init_sdrs);
sdrs = init_sdrs;
}
for (i = 0; i < sdrs_size; i += len) {
struct ipmi_sdr_header *sdrh;
if (i + IPMI_SDR_HEADER_SIZE > sdrs_size) {
error_report("Problem with recid 0x%4.4x", i);
break;
}
sdrh = (struct ipmi_sdr_header *) &sdrs[i];
len = ipmi_sdr_length(sdrh);
if (i + len > sdrs_size) {
error_report("Problem with recid 0x%4.4x", i);
break;
}
sdr_add_entry(ibs, sdrh, len, NULL);
}
if (sdrs != init_sdrs) {
g_free(sdrs);
}
}
static const VMStateDescription vmstate_ipmi_sim = {
.name = TYPE_IPMI_BMC_SIMULATOR,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(bmc_global_enables, IPMIBmcSim),
VMSTATE_UINT8(msg_flags, IPMIBmcSim),
VMSTATE_BOOL(watchdog_initialized, IPMIBmcSim),
VMSTATE_UINT8(watchdog_use, IPMIBmcSim),
VMSTATE_UINT8(watchdog_action, IPMIBmcSim),
VMSTATE_UINT8(watchdog_pretimeout, IPMIBmcSim),
VMSTATE_UINT8(watchdog_expired, IPMIBmcSim),
VMSTATE_UINT16(watchdog_timeout, IPMIBmcSim),
VMSTATE_BOOL(watchdog_running, IPMIBmcSim),
VMSTATE_BOOL(watchdog_preaction_ran, IPMIBmcSim),
VMSTATE_INT64(watchdog_expiry, IPMIBmcSim),
VMSTATE_UINT8_ARRAY(evtbuf, IPMIBmcSim, 16),
VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].status, IPMIBmcSim),
VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].reading, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].states, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_states, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].deassert_states,
IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_enable, IPMIBmcSim),
VMSTATE_END_OF_LIST()
}
};
static void ipmi_fru_init(IPMIFru *fru)
{
int fsize;
int size = 0;
if (!fru->filename) {
goto out;
}
fsize = get_image_size(fru->filename);
if (fsize > 0) {
size = QEMU_ALIGN_UP(fsize, fru->areasize);
fru->data = g_malloc0(size);
if (load_image_size(fru->filename, fru->data, fsize) != fsize) {
error_report("Could not load file '%s'", fru->filename);
g_free(fru->data);
fru->data = NULL;
}
}
out:
if (!fru->data) {
/* give one default FRU */
size = fru->areasize;
fru->data = g_malloc0(size);
}
fru->nentries = size / fru->areasize;
}
static void ipmi_sim_realize(DeviceState *dev, Error **errp)
{
IPMIBmc *b = IPMI_BMC(dev);
unsigned int i;
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
QTAILQ_INIT(&ibs->rcvbufs);
ibs->bmc_global_enables = (1 << IPMI_BMC_EVENT_LOG_BIT);
ibs->device_id = 0x20;
ibs->ipmi_version = 0x02; /* IPMI 2.0 */
ibs->restart_cause = 0;
for (i = 0; i < 4; i++) {
ibs->sel.last_addition[i] = 0xff;
ibs->sel.last_clear[i] = 0xff;
ibs->sdr.last_addition[i] = 0xff;
ibs->sdr.last_clear[i] = 0xff;
}
ipmi_sdr_init(ibs);
ipmi_fru_init(&ibs->fru);
ibs->acpi_power_state[0] = 0;
ibs->acpi_power_state[1] = 0;
ipmi_init_sensors_from_sdrs(ibs);
register_cmds(ibs);
ibs->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ipmi_timeout, ibs);
vmstate_register(NULL, 0, &vmstate_ipmi_sim, ibs);
}
static Property ipmi_sim_properties[] = {
DEFINE_PROP_UINT16("fruareasize", IPMIBmcSim, fru.areasize, 1024),
DEFINE_PROP_STRING("frudatafile", IPMIBmcSim, fru.filename),
DEFINE_PROP_STRING("sdrfile", IPMIBmcSim, sdr_filename),
DEFINE_PROP_UINT8("device_id", IPMIBmcSim, device_id, 0x20),
DEFINE_PROP_UINT8("ipmi_version", IPMIBmcSim, ipmi_version, 0x02),
DEFINE_PROP_UINT8("device_rev", IPMIBmcSim, device_rev, 0),
DEFINE_PROP_UINT8("fwrev1", IPMIBmcSim, fwrev1, 0),
DEFINE_PROP_UINT8("fwrev2", IPMIBmcSim, fwrev2, 0),
DEFINE_PROP_UINT32("mfg_id", IPMIBmcSim, mfg_id, 0),
DEFINE_PROP_UINT16("product_id", IPMIBmcSim, product_id, 0),
DEFINE_PROP_UUID_NODEFAULT("guid", IPMIBmcSim, uuid),
DEFINE_PROP_END_OF_LIST(),
};
static void ipmi_sim_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
IPMIBmcClass *bk = IPMI_BMC_CLASS(oc);
dc->hotpluggable = false;
dc->realize = ipmi_sim_realize;
device_class_set_props(dc, ipmi_sim_properties);
bk->handle_command = ipmi_sim_handle_command;
}
static const TypeInfo ipmi_sim_type = {
.name = TYPE_IPMI_BMC_SIMULATOR,
.parent = TYPE_IPMI_BMC,
.instance_size = sizeof(IPMIBmcSim),
.class_init = ipmi_sim_class_init,
};
static void ipmi_sim_register_types(void)
{
type_register_static(&ipmi_sim_type);
}
type_init(ipmi_sim_register_types)