qemu/crypto/hash-nettle.c
liequan che d078da86d6 crypto: Introduce SM3 hash hmac pbkdf algorithm
Introduce the SM3 cryptographic hash algorithm (GB/T 32905-2016).

SM3 (GB/T 32905-2016) is a cryptographic standard issued by the
Organization of State Commercial Cryptography Administration (OSCCA)
as an authorized cryptographic algorithm for use within China.

Detect the SM3 cryptographic hash algorithm and enable the feature silently
if it is available.

Signed-off-by: cheliequan <cheliequan@inspur.com>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
2024-11-05 18:37:18 +00:00

190 lines
5.7 KiB
C

/*
* QEMU Crypto hash algorithms
*
* Copyright (c) 2024 Seagate Technology LLC and/or its Affiliates
* Copyright (c) 2016 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "crypto/hash.h"
#include "hashpriv.h"
#include <nettle/md5.h>
#include <nettle/sha.h>
#include <nettle/ripemd160.h>
#ifdef CONFIG_CRYPTO_SM3
#include <nettle/sm3.h>
#endif
typedef void (*qcrypto_nettle_init)(void *ctx);
typedef void (*qcrypto_nettle_write)(void *ctx,
size_t len,
const uint8_t *buf);
typedef void (*qcrypto_nettle_result)(void *ctx,
size_t len,
uint8_t *buf);
union qcrypto_hash_ctx {
struct md5_ctx md5;
struct sha1_ctx sha1;
struct sha224_ctx sha224;
struct sha256_ctx sha256;
struct sha384_ctx sha384;
struct sha512_ctx sha512;
struct ripemd160_ctx ripemd160;
#ifdef CONFIG_CRYPTO_SM3
struct sm3_ctx sm3;
#endif
};
struct qcrypto_hash_alg {
qcrypto_nettle_init init;
qcrypto_nettle_write write;
qcrypto_nettle_result result;
size_t len;
} qcrypto_hash_alg_map[] = {
[QCRYPTO_HASH_ALGO_MD5] = {
.init = (qcrypto_nettle_init)md5_init,
.write = (qcrypto_nettle_write)md5_update,
.result = (qcrypto_nettle_result)md5_digest,
.len = MD5_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_SHA1] = {
.init = (qcrypto_nettle_init)sha1_init,
.write = (qcrypto_nettle_write)sha1_update,
.result = (qcrypto_nettle_result)sha1_digest,
.len = SHA1_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_SHA224] = {
.init = (qcrypto_nettle_init)sha224_init,
.write = (qcrypto_nettle_write)sha224_update,
.result = (qcrypto_nettle_result)sha224_digest,
.len = SHA224_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_SHA256] = {
.init = (qcrypto_nettle_init)sha256_init,
.write = (qcrypto_nettle_write)sha256_update,
.result = (qcrypto_nettle_result)sha256_digest,
.len = SHA256_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_SHA384] = {
.init = (qcrypto_nettle_init)sha384_init,
.write = (qcrypto_nettle_write)sha384_update,
.result = (qcrypto_nettle_result)sha384_digest,
.len = SHA384_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_SHA512] = {
.init = (qcrypto_nettle_init)sha512_init,
.write = (qcrypto_nettle_write)sha512_update,
.result = (qcrypto_nettle_result)sha512_digest,
.len = SHA512_DIGEST_SIZE,
},
[QCRYPTO_HASH_ALGO_RIPEMD160] = {
.init = (qcrypto_nettle_init)ripemd160_init,
.write = (qcrypto_nettle_write)ripemd160_update,
.result = (qcrypto_nettle_result)ripemd160_digest,
.len = RIPEMD160_DIGEST_SIZE,
},
#ifdef CONFIG_CRYPTO_SM3
[QCRYPTO_HASH_ALGO_SM3] = {
.init = (qcrypto_nettle_init)sm3_init,
.write = (qcrypto_nettle_write)sm3_update,
.result = (qcrypto_nettle_result)sm3_digest,
.len = SM3_DIGEST_SIZE,
},
#endif
};
gboolean qcrypto_hash_supports(QCryptoHashAlgo alg)
{
if (alg < G_N_ELEMENTS(qcrypto_hash_alg_map) &&
qcrypto_hash_alg_map[alg].init != NULL) {
return true;
}
return false;
}
static
QCryptoHash *qcrypto_nettle_hash_new(QCryptoHashAlgo alg, Error **errp)
{
QCryptoHash *hash;
hash = g_new(QCryptoHash, 1);
hash->alg = alg;
hash->opaque = g_new(union qcrypto_hash_ctx, 1);
qcrypto_hash_alg_map[alg].init(hash->opaque);
return hash;
}
static
void qcrypto_nettle_hash_free(QCryptoHash *hash)
{
union qcrypto_hash_ctx *ctx = hash->opaque;
g_free(ctx);
g_free(hash);
}
static
int qcrypto_nettle_hash_update(QCryptoHash *hash,
const struct iovec *iov,
size_t niov,
Error **errp)
{
union qcrypto_hash_ctx *ctx = hash->opaque;
for (int i = 0; i < niov; i++) {
qcrypto_hash_alg_map[hash->alg].write(ctx,
iov[i].iov_len,
iov[i].iov_base);
}
return 0;
}
static
int qcrypto_nettle_hash_finalize(QCryptoHash *hash,
uint8_t **result,
size_t *result_len,
Error **errp)
{
union qcrypto_hash_ctx *ctx = hash->opaque;
int ret = qcrypto_hash_alg_map[hash->alg].len;
if (*result_len == 0) {
*result_len = ret;
*result = g_new(uint8_t, *result_len);
} else if (*result_len != ret) {
error_setg(errp,
"Result buffer size %zu is smaller than hash %d",
*result_len, ret);
return -1;
}
qcrypto_hash_alg_map[hash->alg].result(ctx, *result_len, *result);
return 0;
}
QCryptoHashDriver qcrypto_hash_lib_driver = {
.hash_new = qcrypto_nettle_hash_new,
.hash_update = qcrypto_nettle_hash_update,
.hash_finalize = qcrypto_nettle_hash_finalize,
.hash_free = qcrypto_nettle_hash_free,
};