/* * Core code for QEMU e1000e emulation * * Software developer's manuals: * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf * * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) * Developed by Daynix Computing LTD (http://www.daynix.com) * * Authors: * Dmitry Fleytman * Leonid Bloch * Yan Vugenfirer * * Based on work done by: * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. * Copyright (c) 2008 Qumranet * Based on work done by: * Copyright (c) 2007 Dan Aloni * Copyright (c) 2004 Antony T Curtis * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "sysemu/sysemu.h" #include "net/net.h" #include "net/tap.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "net_tx_pkt.h" #include "net_rx_pkt.h" #include "e1000x_common.h" #include "e1000e_core.h" #include "trace.h" #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per second according to spec 10.2.4.2 */ #define E1000E_MAX_TX_FRAGS (64) static inline void e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val); static inline void e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp) { if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) { trace_e1000e_wrn_no_ts_support(); } } static inline void e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length) { if (cmd_and_length & E1000_TXD_CMD_SNAP) { trace_e1000e_wrn_no_snap_support(); } } static inline void e1000e_raise_legacy_irq(E1000ECore *core) { trace_e1000e_irq_legacy_notify(true); e1000x_inc_reg_if_not_full(core->mac, IAC); pci_set_irq(core->owner, 1); } static inline void e1000e_lower_legacy_irq(E1000ECore *core) { trace_e1000e_irq_legacy_notify(false); pci_set_irq(core->owner, 0); } static inline void e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer) { int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * timer->delay_resolution_ns; trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); timer->running = true; } static void e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer) { if (timer->running) { e1000e_intrmgr_rearm_timer(timer); } } static void e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer) { if (timer->running) { timer_del(timer->timer); } } static inline void e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer) { if (timer->running) { timer_del(timer->timer); timer->running = false; } } static inline void e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core) { trace_e1000e_irq_fire_delayed_interrupts(); e1000e_set_interrupt_cause(core, 0); } static void e1000e_intrmgr_on_timer(void *opaque) { E1000IntrDelayTimer *timer = opaque; trace_e1000e_irq_throttling_timer(timer->delay_reg << 2); timer->running = false; e1000e_intrmgr_fire_delayed_interrupts(timer->core); } static void e1000e_intrmgr_on_throttling_timer(void *opaque) { E1000IntrDelayTimer *timer = opaque; assert(!msix_enabled(timer->core->owner)); timer->running = false; if (!timer->core->itr_intr_pending) { trace_e1000e_irq_throttling_no_pending_interrupts(); return; } if (msi_enabled(timer->core->owner)) { trace_e1000e_irq_msi_notify_postponed(); e1000e_set_interrupt_cause(timer->core, 0); } else { trace_e1000e_irq_legacy_notify_postponed(); e1000e_set_interrupt_cause(timer->core, 0); } } static void e1000e_intrmgr_on_msix_throttling_timer(void *opaque) { E1000IntrDelayTimer *timer = opaque; int idx = timer - &timer->core->eitr[0]; assert(msix_enabled(timer->core->owner)); timer->running = false; if (!timer->core->eitr_intr_pending[idx]) { trace_e1000e_irq_throttling_no_pending_vec(idx); return; } trace_e1000e_irq_msix_notify_postponed_vec(idx); msix_notify(timer->core->owner, idx); } static void e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create) { int i; core->radv.delay_reg = RADV; core->rdtr.delay_reg = RDTR; core->raid.delay_reg = RAID; core->tadv.delay_reg = TADV; core->tidv.delay_reg = TIDV; core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; core->radv.core = core; core->rdtr.core = core; core->raid.core = core; core->tadv.core = core; core->tidv.core = core; core->itr.core = core; core->itr.delay_reg = ITR; core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { core->eitr[i].core = core; core->eitr[i].delay_reg = EITR + i; core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; } if (!create) { return; } core->radv.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv); core->rdtr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr); core->raid.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid); core->tadv.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv); core->tidv.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv); core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_throttling_timer, &core->itr); for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_msix_throttling_timer, &core->eitr[i]); } } static inline void e1000e_intrmgr_stop_delay_timers(E1000ECore *core) { e1000e_intrmgr_stop_timer(&core->radv); e1000e_intrmgr_stop_timer(&core->rdtr); e1000e_intrmgr_stop_timer(&core->raid); e1000e_intrmgr_stop_timer(&core->tidv); e1000e_intrmgr_stop_timer(&core->tadv); } static bool e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes) { uint32_t delayable_causes; uint32_t rdtr = core->mac[RDTR]; uint32_t radv = core->mac[RADV]; uint32_t raid = core->mac[RAID]; if (msix_enabled(core->owner)) { return false; } delayable_causes = E1000_ICR_RXQ0 | E1000_ICR_RXQ1 | E1000_ICR_RXT0; if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) { delayable_causes |= E1000_ICR_ACK; } /* Clean up all causes that may be delayed */ core->delayed_causes |= *causes & delayable_causes; *causes &= ~delayable_causes; /* Check if delayed RX interrupts disabled by client or if there are causes that cannot be delayed */ if ((rdtr == 0) || (*causes != 0)) { return false; } /* Check if delayed RX ACK interrupts disabled by client and there is an ACK packet received */ if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) { return false; } /* All causes delayed */ e1000e_intrmgr_rearm_timer(&core->rdtr); if (!core->radv.running && (radv != 0)) { e1000e_intrmgr_rearm_timer(&core->radv); } if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) { e1000e_intrmgr_rearm_timer(&core->raid); } return true; } static bool e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes) { static const uint32_t delayable_causes = E1000_ICR_TXQ0 | E1000_ICR_TXQ1 | E1000_ICR_TXQE | E1000_ICR_TXDW; if (msix_enabled(core->owner)) { return false; } /* Clean up all causes that may be delayed */ core->delayed_causes |= *causes & delayable_causes; *causes &= ~delayable_causes; /* If there are causes that cannot be delayed */ if (*causes != 0) { return false; } /* All causes delayed */ e1000e_intrmgr_rearm_timer(&core->tidv); if (!core->tadv.running && (core->mac[TADV] != 0)) { e1000e_intrmgr_rearm_timer(&core->tadv); } return true; } static uint32_t e1000e_intmgr_collect_delayed_causes(E1000ECore *core) { uint32_t res; if (msix_enabled(core->owner)) { assert(core->delayed_causes == 0); return 0; } res = core->delayed_causes; core->delayed_causes = 0; e1000e_intrmgr_stop_delay_timers(core); return res; } static void e1000e_intrmgr_fire_all_timers(E1000ECore *core) { int i; uint32_t val = e1000e_intmgr_collect_delayed_causes(core); trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]); core->mac[ICR] |= val; if (core->itr.running) { timer_del(core->itr.timer); e1000e_intrmgr_on_throttling_timer(&core->itr); } for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { if (core->eitr[i].running) { timer_del(core->eitr[i].timer); e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]); } } } static void e1000e_intrmgr_resume(E1000ECore *core) { int i; e1000e_intmgr_timer_resume(&core->radv); e1000e_intmgr_timer_resume(&core->rdtr); e1000e_intmgr_timer_resume(&core->raid); e1000e_intmgr_timer_resume(&core->tidv); e1000e_intmgr_timer_resume(&core->tadv); e1000e_intmgr_timer_resume(&core->itr); for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { e1000e_intmgr_timer_resume(&core->eitr[i]); } } static void e1000e_intrmgr_pause(E1000ECore *core) { int i; e1000e_intmgr_timer_pause(&core->radv); e1000e_intmgr_timer_pause(&core->rdtr); e1000e_intmgr_timer_pause(&core->raid); e1000e_intmgr_timer_pause(&core->tidv); e1000e_intmgr_timer_pause(&core->tadv); e1000e_intmgr_timer_pause(&core->itr); for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { e1000e_intmgr_timer_pause(&core->eitr[i]); } } static void e1000e_intrmgr_reset(E1000ECore *core) { int i; core->delayed_causes = 0; e1000e_intrmgr_stop_delay_timers(core); e1000e_intrmgr_stop_timer(&core->itr); for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { e1000e_intrmgr_stop_timer(&core->eitr[i]); } } static void e1000e_intrmgr_pci_unint(E1000ECore *core) { int i; timer_del(core->radv.timer); timer_free(core->radv.timer); timer_del(core->rdtr.timer); timer_free(core->rdtr.timer); timer_del(core->raid.timer); timer_free(core->raid.timer); timer_del(core->tadv.timer); timer_free(core->tadv.timer); timer_del(core->tidv.timer); timer_free(core->tidv.timer); timer_del(core->itr.timer); timer_free(core->itr.timer); for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { timer_del(core->eitr[i].timer); timer_free(core->eitr[i].timer); } } static void e1000e_intrmgr_pci_realize(E1000ECore *core) { e1000e_intrmgr_initialize_all_timers(core, true); } static inline bool e1000e_rx_csum_enabled(E1000ECore *core) { return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; } static inline bool e1000e_rx_use_legacy_descriptor(E1000ECore *core) { return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true; } static inline bool e1000e_rx_use_ps_descriptor(E1000ECore *core) { return !e1000e_rx_use_legacy_descriptor(core) && (core->mac[RCTL] & E1000_RCTL_DTYP_PS); } static inline bool e1000e_rss_enabled(E1000ECore *core) { return E1000_MRQC_ENABLED(core->mac[MRQC]) && !e1000e_rx_csum_enabled(core) && !e1000e_rx_use_legacy_descriptor(core); } typedef struct E1000E_RSSInfo_st { bool enabled; uint32_t hash; uint32_t queue; uint32_t type; } E1000E_RSSInfo; static uint32_t e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt) { bool isip4, isip6, isudp, istcp; assert(e1000e_rss_enabled(core)); net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); if (isip4) { bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC], E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), E1000_MRQC_EN_IPV4(core->mac[MRQC])); if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { return E1000_MRQ_RSS_TYPE_IPV4TCP; } if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { return E1000_MRQ_RSS_TYPE_IPV4; } } else if (isip6) { eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; /* * Following two traces must not be combined because resulting * event will have 11 arguments totally and some trace backends * (at least "ust") have limitation of maximum 10 arguments per * event. Events with more arguments fail to compile for * backends like these. */ trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp, ip6info->has_ext_hdrs, ip6info->rss_ex_dst_valid, ip6info->rss_ex_src_valid, core->mac[MRQC], E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), E1000_MRQC_EN_IPV6(core->mac[MRQC])); if ((!ex_dis || !ip6info->has_ext_hdrs) && (!new_ex_dis || !(ip6info->rss_ex_dst_valid || ip6info->rss_ex_src_valid))) { if (istcp && !ip6info->fragment && E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { return E1000_MRQ_RSS_TYPE_IPV6TCP; } if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { return E1000_MRQ_RSS_TYPE_IPV6EX; } } if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { return E1000_MRQ_RSS_TYPE_IPV6; } } return E1000_MRQ_RSS_TYPE_NONE; } static uint32_t e1000e_rss_calc_hash(E1000ECore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) { NetRxPktRssType type; assert(e1000e_rss_enabled(core)); switch (info->type) { case E1000_MRQ_RSS_TYPE_IPV4: type = NetPktRssIpV4; break; case E1000_MRQ_RSS_TYPE_IPV4TCP: type = NetPktRssIpV4Tcp; break; case E1000_MRQ_RSS_TYPE_IPV6TCP: type = NetPktRssIpV6Tcp; break; case E1000_MRQ_RSS_TYPE_IPV6: type = NetPktRssIpV6; break; case E1000_MRQ_RSS_TYPE_IPV6EX: type = NetPktRssIpV6Ex; break; default: assert(false); return 0; } return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); } static void e1000e_rss_parse_packet(E1000ECore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) { trace_e1000e_rx_rss_started(); if (!e1000e_rss_enabled(core)) { info->enabled = false; info->hash = 0; info->queue = 0; info->type = 0; trace_e1000e_rx_rss_disabled(); return; } info->enabled = true; info->type = e1000e_rss_get_hash_type(core, pkt); trace_e1000e_rx_rss_type(info->type); if (info->type == E1000_MRQ_RSS_TYPE_NONE) { info->hash = 0; info->queue = 0; return; } info->hash = e1000e_rss_calc_hash(core, pkt, info); info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); } static void e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) { if (tx->props.tse && tx->cptse) { net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss); net_tx_pkt_update_ip_checksums(tx->tx_pkt); e1000x_inc_reg_if_not_full(core->mac, TSCTC); return; } if (tx->sum_needed & E1000_TXD_POPTS_TXSM) { net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0); } if (tx->sum_needed & E1000_TXD_POPTS_IXSM) { net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); } } static bool e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index) { int target_queue = MIN(core->max_queue_num, queue_index); NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); e1000e_setup_tx_offloads(core, tx); net_tx_pkt_dump(tx->tx_pkt); if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) || ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { return net_tx_pkt_send_loopback(tx->tx_pkt, queue); } else { return net_tx_pkt_send(tx->tx_pkt, queue); } } static void e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt) { static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, PTC1023, PTC1522 }; size_t tot_len = net_tx_pkt_get_total_len(tx_pkt); e1000x_increase_size_stats(core->mac, PTCregs, tot_len); e1000x_inc_reg_if_not_full(core->mac, TPT); e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); switch (net_tx_pkt_get_packet_type(tx_pkt)) { case ETH_PKT_BCAST: e1000x_inc_reg_if_not_full(core->mac, BPTC); break; case ETH_PKT_MCAST: e1000x_inc_reg_if_not_full(core->mac, MPTC); break; case ETH_PKT_UCAST: break; default: g_assert_not_reached(); } core->mac[GPTC] = core->mac[TPT]; core->mac[GOTCL] = core->mac[TOTL]; core->mac[GOTCH] = core->mac[TOTH]; } static void e1000e_process_tx_desc(E1000ECore *core, struct e1000e_tx *tx, struct e1000_tx_desc *dp, int queue_index) { uint32_t txd_lower = le32_to_cpu(dp->lower.data); uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); unsigned int split_size = txd_lower & 0xffff; uint64_t addr; struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; bool eop = txd_lower & E1000_TXD_CMD_EOP; if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ e1000x_read_tx_ctx_descr(xp, &tx->props); e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length)); return; } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { /* data descriptor */ tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8; tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; e1000e_process_ts_option(core, dp); } else { /* legacy descriptor */ e1000e_process_ts_option(core, dp); tx->cptse = 0; } addr = le64_to_cpu(dp->buffer_addr); if (!tx->skip_cp) { if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) { tx->skip_cp = true; } } if (eop) { if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { if (e1000x_vlan_enabled(core->mac) && e1000x_is_vlan_txd(txd_lower)) { net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, le16_to_cpu(dp->upper.fields.special), core->vet); } if (e1000e_tx_pkt_send(core, tx, queue_index)) { e1000e_on_tx_done_update_stats(core, tx->tx_pkt); } } tx->skip_cp = false; net_tx_pkt_reset(tx->tx_pkt); tx->sum_needed = 0; tx->cptse = 0; } } static inline uint32_t e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx) { if (!msix_enabled(core->owner)) { return E1000_ICR_TXDW; } return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1; } static inline uint32_t e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx, bool min_threshold_hit) { if (!msix_enabled(core->owner)) { return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0); } return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1; } static uint32_t e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base, struct e1000_tx_desc *dp, bool *ide, int queue_idx) { uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); if (!(txd_lower & E1000_TXD_CMD_RS) && !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) { return 0; } *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false; txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD; dp->upper.data = cpu_to_le32(txd_upper); pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp), &dp->upper, sizeof(dp->upper)); return e1000e_tx_wb_interrupt_cause(core, queue_idx); } typedef struct E1000E_RingInfo_st { int dbah; int dbal; int dlen; int dh; int dt; int idx; } E1000E_RingInfo; static inline bool e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r) { return core->mac[r->dh] == core->mac[r->dt] || core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; } static inline uint64_t e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r) { uint64_t bah = core->mac[r->dbah]; uint64_t bal = core->mac[r->dbal]; return (bah << 32) + bal; } static inline uint64_t e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r) { return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; } static inline void e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count) { core->mac[r->dh] += count; if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { core->mac[r->dh] = 0; } } static inline uint32_t e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r) { trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], core->mac[r->dh], core->mac[r->dt]); if (core->mac[r->dh] <= core->mac[r->dt]) { return core->mac[r->dt] - core->mac[r->dh]; } if (core->mac[r->dh] > core->mac[r->dt]) { return core->mac[r->dlen] / E1000_RING_DESC_LEN + core->mac[r->dt] - core->mac[r->dh]; } g_assert_not_reached(); return 0; } static inline bool e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r) { return core->mac[r->dlen] > 0; } static inline uint32_t e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r) { return core->mac[r->dlen]; } typedef struct E1000E_TxRing_st { const E1000E_RingInfo *i; struct e1000e_tx *tx; } E1000E_TxRing; static inline int e1000e_mq_queue_idx(int base_reg_idx, int reg_idx) { return (reg_idx - base_reg_idx) / (0x100 >> 2); } static inline void e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx) { static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 }, { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 } }; assert(idx < ARRAY_SIZE(i)); txr->i = &i[idx]; txr->tx = &core->tx[idx]; } typedef struct E1000E_RxRing_st { const E1000E_RingInfo *i; } E1000E_RxRing; static inline void e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx) { static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 } }; assert(idx < ARRAY_SIZE(i)); rxr->i = &i[idx]; } static void e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr) { dma_addr_t base; struct e1000_tx_desc desc; bool ide = false; const E1000E_RingInfo *txi = txr->i; uint32_t cause = E1000_ICS_TXQE; if (!(core->mac[TCTL] & E1000_TCTL_EN)) { trace_e1000e_tx_disabled(); return; } while (!e1000e_ring_empty(core, txi)) { base = e1000e_ring_head_descr(core, txi); pci_dma_read(core->owner, base, &desc, sizeof(desc)); trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr, desc.lower.data, desc.upper.data); e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx); cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx); e1000e_ring_advance(core, txi, 1); } if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) { e1000e_set_interrupt_cause(core, cause); } } static bool e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r, size_t total_size) { uint32_t bufs = e1000e_ring_free_descr_num(core, r); trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, core->rx_desc_buf_size); return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * core->rx_desc_buf_size; } void e1000e_start_recv(E1000ECore *core) { int i; trace_e1000e_rx_start_recv(); for (i = 0; i <= core->max_queue_num; i++) { qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); } } int e1000e_can_receive(E1000ECore *core) { int i; if (!e1000x_rx_ready(core->owner, core->mac)) { return false; } for (i = 0; i < E1000E_NUM_QUEUES; i++) { E1000E_RxRing rxr; e1000e_rx_ring_init(core, &rxr, i); if (e1000e_ring_enabled(core, rxr.i) && e1000e_has_rxbufs(core, rxr.i, 1)) { trace_e1000e_rx_can_recv(); return true; } } trace_e1000e_rx_can_recv_rings_full(); return false; } ssize_t e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size) { const struct iovec iov = { .iov_base = (uint8_t *)buf, .iov_len = size }; return e1000e_receive_iov(core, &iov, 1); } static inline bool e1000e_rx_l3_cso_enabled(E1000ECore *core) { return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); } static inline bool e1000e_rx_l4_cso_enabled(E1000ECore *core) { return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); } static bool e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size) { uint32_t rctl = core->mac[RCTL]; if (e1000x_is_vlan_packet(buf, core->vet) && e1000x_vlan_rx_filter_enabled(core->mac)) { uint16_t vid = lduw_be_p(buf + 14); uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) + ((vid >> 5) & 0x7f)); if ((vfta & (1 << (vid & 0x1f))) == 0) { trace_e1000e_rx_flt_vlan_mismatch(vid); return false; } else { trace_e1000e_rx_flt_vlan_match(vid); } } switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { case ETH_PKT_UCAST: if (rctl & E1000_RCTL_UPE) { return true; /* promiscuous ucast */ } break; case ETH_PKT_BCAST: if (rctl & E1000_RCTL_BAM) { return true; /* broadcast enabled */ } break; case ETH_PKT_MCAST: if (rctl & E1000_RCTL_MPE) { return true; /* promiscuous mcast */ } break; default: g_assert_not_reached(); } return e1000x_rx_group_filter(core->mac, buf); } static inline void e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) { struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; *buff_addr = le64_to_cpu(d->buffer_addr); } static inline void e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) { union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; *buff_addr = le64_to_cpu(d->read.buffer_addr); } static inline void e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr (*buff_addr)[MAX_PS_BUFFERS]) { int i; union e1000_rx_desc_packet_split *d = (union e1000_rx_desc_packet_split *) desc; for (i = 0; i < MAX_PS_BUFFERS; i++) { (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]); } trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1], (*buff_addr)[2], (*buff_addr)[3]); } static inline void e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr (*buff_addr)[MAX_PS_BUFFERS]) { if (e1000e_rx_use_legacy_descriptor(core)) { e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]); (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; } else { if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { e1000e_read_ps_rx_descr(core, desc, buff_addr); } else { e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]); (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; } } } static void e1000e_verify_csum_in_sw(E1000ECore *core, struct NetRxPkt *pkt, uint32_t *status_flags, bool istcp, bool isudp) { bool csum_valid; uint32_t csum_error; if (e1000e_rx_l3_cso_enabled(core)) { if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { trace_e1000e_rx_metadata_l3_csum_validation_failed(); } else { csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; *status_flags |= E1000_RXD_STAT_IPCS | csum_error; } } else { trace_e1000e_rx_metadata_l3_cso_disabled(); } if (!e1000e_rx_l4_cso_enabled(core)) { trace_e1000e_rx_metadata_l4_cso_disabled(); return; } if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { trace_e1000e_rx_metadata_l4_csum_validation_failed(); return; } csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; if (istcp) { *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; } else if (isudp) { *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS | csum_error; } } static inline bool e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt) { if (!net_rx_pkt_is_tcp_ack(rx_pkt)) { return false; } if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) { return !net_rx_pkt_has_tcp_data(rx_pkt); } return true; } static void e1000e_build_rx_metadata(E1000ECore *core, struct NetRxPkt *pkt, bool is_eop, const E1000E_RSSInfo *rss_info, uint32_t *rss, uint32_t *mrq, uint32_t *status_flags, uint16_t *ip_id, uint16_t *vlan_tag) { struct virtio_net_hdr *vhdr; bool isip4, isip6, istcp, isudp; uint32_t pkt_type; *status_flags = E1000_RXD_STAT_DD; /* No additional metadata needed for non-EOP descriptors */ if (!is_eop) { goto func_exit; } *status_flags |= E1000_RXD_STAT_EOP; net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp); /* VLAN state */ if (net_rx_pkt_is_vlan_stripped(pkt)) { *status_flags |= E1000_RXD_STAT_VP; *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); trace_e1000e_rx_metadata_vlan(*vlan_tag); } /* Packet parsing results */ if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { if (rss_info->enabled) { *rss = cpu_to_le32(rss_info->hash); *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8)); trace_e1000e_rx_metadata_rss(*rss, *mrq); } } else if (isip4) { *status_flags |= E1000_RXD_STAT_IPIDV; *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); trace_e1000e_rx_metadata_ip_id(*ip_id); } if (istcp && e1000e_is_tcp_ack(core, pkt)) { *status_flags |= E1000_RXD_STAT_ACK; trace_e1000e_rx_metadata_ack(); } if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { trace_e1000e_rx_metadata_ipv6_filtering_disabled(); pkt_type = E1000_RXD_PKT_MAC; } else if (istcp || isudp) { pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; } else if (isip4 || isip6) { pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; } else { pkt_type = E1000_RXD_PKT_MAC; } *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); trace_e1000e_rx_metadata_pkt_type(pkt_type); /* RX CSO information */ if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { trace_e1000e_rx_metadata_ipv6_sum_disabled(); goto func_exit; } if (!net_rx_pkt_has_virt_hdr(pkt)) { trace_e1000e_rx_metadata_no_virthdr(); e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); goto func_exit; } vhdr = net_rx_pkt_get_vhdr(pkt); if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { trace_e1000e_rx_metadata_virthdr_no_csum_info(); e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); goto func_exit; } if (e1000e_rx_l3_cso_enabled(core)) { *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0; } else { trace_e1000e_rx_metadata_l3_cso_disabled(); } if (e1000e_rx_l4_cso_enabled(core)) { if (istcp) { *status_flags |= E1000_RXD_STAT_TCPCS; } else if (isudp) { *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; } } else { trace_e1000e_rx_metadata_l4_cso_disabled(); } trace_e1000e_rx_metadata_status_flags(*status_flags); func_exit: *status_flags = cpu_to_le32(*status_flags); } static inline void e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length) { uint32_t status_flags, rss, mrq; uint16_t ip_id; struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; assert(!rss_info->enabled); d->length = cpu_to_le16(length); d->csum = 0; e1000e_build_rx_metadata(core, pkt, pkt != NULL, rss_info, &rss, &mrq, &status_flags, &ip_id, &d->special); d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); d->status = (uint8_t) le32_to_cpu(status_flags); d->special = 0; } static inline void e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc, struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length) { union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; memset(&d->wb, 0, sizeof(d->wb)); d->wb.upper.length = cpu_to_le16(length); e1000e_build_rx_metadata(core, pkt, pkt != NULL, rss_info, &d->wb.lower.hi_dword.rss, &d->wb.lower.mrq, &d->wb.upper.status_error, &d->wb.lower.hi_dword.csum_ip.ip_id, &d->wb.upper.vlan); } static inline void e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc, struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) { int i; union e1000_rx_desc_packet_split *d = (union e1000_rx_desc_packet_split *) desc; memset(&d->wb, 0, sizeof(d->wb)); d->wb.middle.length0 = cpu_to_le16((*written)[0]); for (i = 0; i < PS_PAGE_BUFFERS; i++) { d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]); } e1000e_build_rx_metadata(core, pkt, pkt != NULL, rss_info, &d->wb.lower.hi_dword.rss, &d->wb.lower.mrq, &d->wb.middle.status_error, &d->wb.lower.hi_dword.csum_ip.ip_id, &d->wb.middle.vlan); d->wb.upper.header_status = cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0)); trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1], (*written)[2], (*written)[3]); } static inline void e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc, struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) { if (e1000e_rx_use_legacy_descriptor(core)) { assert(ps_hdr_len == 0); e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]); } else { if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { e1000e_write_ps_rx_descr(core, desc, pkt, rss_info, ps_hdr_len, written); } else { assert(ps_hdr_len == 0); e1000e_write_ext_rx_descr(core, desc, pkt, rss_info, (*written)[0]); } } } typedef struct e1000e_ba_state_st { uint16_t written[MAX_PS_BUFFERS]; uint8_t cur_idx; } e1000e_ba_state; static inline void e1000e_write_hdr_to_rx_buffers(E1000ECore *core, hwaddr (*ba)[MAX_PS_BUFFERS], e1000e_ba_state *bastate, const char *data, dma_addr_t data_len) { assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]); pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len); bastate->written[0] += data_len; bastate->cur_idx = 1; } static void e1000e_write_to_rx_buffers(E1000ECore *core, hwaddr (*ba)[MAX_PS_BUFFERS], e1000e_ba_state *bastate, const char *data, dma_addr_t data_len) { while (data_len > 0) { uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx]; uint32_t cur_buf_bytes_left = cur_buf_len - bastate->written[bastate->cur_idx]; uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left); trace_e1000e_rx_desc_buff_write(bastate->cur_idx, (*ba)[bastate->cur_idx], bastate->written[bastate->cur_idx], data, bytes_to_write); pci_dma_write(core->owner, (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx], data, bytes_to_write); bastate->written[bastate->cur_idx] += bytes_to_write; data += bytes_to_write; data_len -= bytes_to_write; if (bastate->written[bastate->cur_idx] == cur_buf_len) { bastate->cur_idx++; } assert(bastate->cur_idx < MAX_PS_BUFFERS); } } static void e1000e_update_rx_stats(E1000ECore *core, size_t data_size, size_t data_fcs_size) { e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { case ETH_PKT_BCAST: e1000x_inc_reg_if_not_full(core->mac, BPRC); break; case ETH_PKT_MCAST: e1000x_inc_reg_if_not_full(core->mac, MPRC); break; default: break; } } static inline bool e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi) { return e1000e_ring_free_descr_num(core, rxi) == e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift; } static bool e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len) { bool isip4, isip6, isudp, istcp; bool fragment; if (!e1000e_rx_use_ps_descriptor(core)) { return false; } net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); if (isip4) { fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; } else if (isip6) { fragment = net_rx_pkt_get_ip6_info(pkt)->fragment; } else { return false; } if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) { return false; } if (!fragment && (isudp || istcp)) { *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt); } else { *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt); } if ((*hdr_len > core->rxbuf_sizes[0]) || (*hdr_len > net_rx_pkt_get_total_len(pkt))) { return false; } return true; } static void e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt, const E1000E_RxRing *rxr, const E1000E_RSSInfo *rss_info) { PCIDevice *d = core->owner; dma_addr_t base; uint8_t desc[E1000_MAX_RX_DESC_LEN]; size_t desc_size; size_t desc_offset = 0; size_t iov_ofs = 0; struct iovec *iov = net_rx_pkt_get_iovec(pkt); size_t size = net_rx_pkt_get_total_len(pkt); size_t total_size = size + e1000x_fcs_len(core->mac); const E1000E_RingInfo *rxi; size_t ps_hdr_len = 0; bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len); bool is_first = true; rxi = rxr->i; do { hwaddr ba[MAX_PS_BUFFERS]; e1000e_ba_state bastate = { { 0 } }; bool is_last = false; desc_size = total_size - desc_offset; if (desc_size > core->rx_desc_buf_size) { desc_size = core->rx_desc_buf_size; } if (e1000e_ring_empty(core, rxi)) { return; } base = e1000e_ring_head_descr(core, rxi); pci_dma_read(d, base, &desc, core->rx_desc_len); trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); e1000e_read_rx_descr(core, desc, &ba); if (ba[0]) { if (desc_offset < size) { static const uint32_t fcs_pad; size_t iov_copy; size_t copy_size = size - desc_offset; if (copy_size > core->rx_desc_buf_size) { copy_size = core->rx_desc_buf_size; } /* For PS mode copy the packet header first */ if (do_ps) { if (is_first) { size_t ps_hdr_copied = 0; do { iov_copy = MIN(ps_hdr_len - ps_hdr_copied, iov->iov_len - iov_ofs); e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, iov->iov_base, iov_copy); copy_size -= iov_copy; ps_hdr_copied += iov_copy; iov_ofs += iov_copy; if (iov_ofs == iov->iov_len) { iov++; iov_ofs = 0; } } while (ps_hdr_copied < ps_hdr_len); is_first = false; } else { /* Leave buffer 0 of each descriptor except first */ /* empty as per spec 7.1.5.1 */ e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, NULL, 0); } } /* Copy packet payload */ while (copy_size) { iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); e1000e_write_to_rx_buffers(core, &ba, &bastate, iov->iov_base + iov_ofs, iov_copy); copy_size -= iov_copy; iov_ofs += iov_copy; if (iov_ofs == iov->iov_len) { iov++; iov_ofs = 0; } } if (desc_offset + desc_size >= total_size) { /* Simulate FCS checksum presence in the last descriptor */ e1000e_write_to_rx_buffers(core, &ba, &bastate, (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); } } desc_offset += desc_size; if (desc_offset >= total_size) { is_last = true; } } else { /* as per intel docs; skip descriptors with null buf addr */ trace_e1000e_rx_null_descriptor(); } e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL, rss_info, do_ps ? ps_hdr_len : 0, &bastate.written); pci_dma_write(d, base, &desc, core->rx_desc_len); e1000e_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN); } while (desc_offset < total_size); e1000e_update_rx_stats(core, size, total_size); } static inline void e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt) { if (net_rx_pkt_has_virt_hdr(pkt)) { struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { net_rx_pkt_fix_l4_csum(pkt); } } } ssize_t e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt) { static const int maximum_ethernet_hdr_len = (14 + 4); /* Min. octets in an ethernet frame sans FCS */ static const int min_buf_size = 60; uint32_t n = 0; uint8_t min_buf[min_buf_size]; struct iovec min_iov; uint8_t *filter_buf; size_t size, orig_size; size_t iov_ofs = 0; E1000E_RxRing rxr; E1000E_RSSInfo rss_info; size_t total_size; ssize_t retval; bool rdmts_hit; trace_e1000e_rx_receive_iov(iovcnt); if (!e1000x_hw_rx_enabled(core->mac)) { return -1; } /* Pull virtio header in */ if (core->has_vnet) { net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); iov_ofs = sizeof(struct virtio_net_hdr); } filter_buf = iov->iov_base + iov_ofs; orig_size = iov_size(iov, iovcnt); size = orig_size - iov_ofs; /* Pad to minimum Ethernet frame length */ if (size < sizeof(min_buf)) { iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); memset(&min_buf[size], 0, sizeof(min_buf) - size); e1000x_inc_reg_if_not_full(core->mac, RUC); min_iov.iov_base = filter_buf = min_buf; min_iov.iov_len = size = sizeof(min_buf); iovcnt = 1; iov = &min_iov; iov_ofs = 0; } else if (iov->iov_len < maximum_ethernet_hdr_len) { /* This is very unlikely, but may happen. */ iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); filter_buf = min_buf; } /* Discard oversized packets if !LPE and !SBP. */ if (e1000x_is_oversized(core->mac, size)) { return orig_size; } net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf))); if (!e1000e_receive_filter(core, filter_buf, size)) { trace_e1000e_rx_flt_dropped(); return orig_size; } net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, e1000x_vlan_enabled(core->mac), core->vet); e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info); e1000e_rx_ring_init(core, &rxr, rss_info.queue); trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx); total_size = net_rx_pkt_get_total_len(core->rx_pkt) + e1000x_fcs_len(core->mac); if (e1000e_has_rxbufs(core, rxr.i, total_size)) { e1000e_rx_fix_l4_csum(core, core->rx_pkt); e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); retval = orig_size; /* Perform small receive detection (RSRPD) */ if (total_size < core->mac[RSRPD]) { n |= E1000_ICS_SRPD; } /* Perform ACK receive detection */ if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) && (e1000e_is_tcp_ack(core, core->rx_pkt))) { n |= E1000_ICS_ACK; } /* Check if receive descriptor minimum threshold hit */ rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i); n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit); trace_e1000e_rx_written_to_guest(n); } else { n |= E1000_ICS_RXO; retval = 0; trace_e1000e_rx_not_written_to_guest(n); } if (!e1000e_intrmgr_delay_rx_causes(core, &n)) { trace_e1000e_rx_interrupt_set(n); e1000e_set_interrupt_cause(core, n); } else { trace_e1000e_rx_interrupt_delayed(n); } return retval; } static inline bool e1000e_have_autoneg(E1000ECore *core) { return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN; } static void e1000e_update_flowctl_status(E1000ECore *core) { if (e1000e_have_autoneg(core) && core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) { trace_e1000e_link_autoneg_flowctl(true); core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; } else { trace_e1000e_link_autoneg_flowctl(false); } } static inline void e1000e_link_down(E1000ECore *core) { e1000x_update_regs_on_link_down(core->mac, core->phy[0]); e1000e_update_flowctl_status(core); } static inline void e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val) { /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ core->phy[0][PHY_CTRL] = val & ~(0x3f | MII_CR_RESET | MII_CR_RESTART_AUTO_NEG); if ((val & MII_CR_RESTART_AUTO_NEG) && e1000e_have_autoneg(core)) { e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); } } static void e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val) { core->phy[0][PHY_OEM_BITS] = val & ~BIT(10); if (val & BIT(10)) { e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); } } static void e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val) { core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK; } void e1000e_core_set_link_status(E1000ECore *core) { NetClientState *nc = qemu_get_queue(core->owner_nic); uint32_t old_status = core->mac[STATUS]; trace_e1000e_link_status_changed(nc->link_down ? false : true); if (nc->link_down) { e1000x_update_regs_on_link_down(core->mac, core->phy[0]); } else { if (e1000e_have_autoneg(core) && !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); } else { e1000x_update_regs_on_link_up(core->mac, core->phy[0]); e1000e_start_recv(core); } } if (core->mac[STATUS] != old_status) { e1000e_set_interrupt_cause(core, E1000_ICR_LSC); } } static void e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val) { trace_e1000e_core_ctrl_write(index, val); /* RST is self clearing */ core->mac[CTRL] = val & ~E1000_CTRL_RST; core->mac[CTRL_DUP] = core->mac[CTRL]; trace_e1000e_link_set_params( !!(val & E1000_CTRL_ASDE), (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, !!(val & E1000_CTRL_FRCSPD), !!(val & E1000_CTRL_FRCDPX), !!(val & E1000_CTRL_RFCE), !!(val & E1000_CTRL_TFCE)); if (val & E1000_CTRL_RST) { trace_e1000e_core_ctrl_sw_reset(); e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); } if (val & E1000_CTRL_PHY_RST) { trace_e1000e_core_ctrl_phy_reset(); core->mac[STATUS] |= E1000_STATUS_PHYRA; } } static void e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val) { trace_e1000e_rx_set_rfctl(val); if (!(val & E1000_RFCTL_ISCSI_DIS)) { trace_e1000e_wrn_iscsi_filtering_not_supported(); } if (!(val & E1000_RFCTL_NFSW_DIS)) { trace_e1000e_wrn_nfsw_filtering_not_supported(); } if (!(val & E1000_RFCTL_NFSR_DIS)) { trace_e1000e_wrn_nfsr_filtering_not_supported(); } core->mac[RFCTL] = val; } static void e1000e_calc_per_desc_buf_size(E1000ECore *core) { int i; core->rx_desc_buf_size = 0; for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) { core->rx_desc_buf_size += core->rxbuf_sizes[i]; } } static void e1000e_parse_rxbufsize(E1000ECore *core) { uint32_t rctl = core->mac[RCTL]; memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes)); if (rctl & E1000_RCTL_DTYP_MASK) { uint32_t bsize; bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK; core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128; bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK; core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024; bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK; core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024; bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK; core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024; } else if (rctl & E1000_RCTL_FLXBUF_MASK) { int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK; core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024; } else { core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl); } trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1], core->rxbuf_sizes[2], core->rxbuf_sizes[3]); e1000e_calc_per_desc_buf_size(core); } static void e1000e_calc_rxdesclen(E1000ECore *core) { if (e1000e_rx_use_legacy_descriptor(core)) { core->rx_desc_len = sizeof(struct e1000_rx_desc); } else { if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split); } else { core->rx_desc_len = sizeof(union e1000_rx_desc_extended); } } trace_e1000e_rx_desc_len(core->rx_desc_len); } static void e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val) { core->mac[RCTL] = val; trace_e1000e_rx_set_rctl(core->mac[RCTL]); if (val & E1000_RCTL_EN) { e1000e_parse_rxbufsize(core); e1000e_calc_rxdesclen(core); core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 + E1000_RING_DESC_LEN_SHIFT; e1000e_start_recv(core); } } static void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE]) (E1000ECore *, int, uint16_t) = { [0] = { [PHY_CTRL] = e1000e_set_phy_ctrl, [PHY_PAGE] = e1000e_set_phy_page, [PHY_OEM_BITS] = e1000e_set_phy_oem_bits } }; static inline void e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits) { trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); core->mac[IMS] &= ~bits; } static inline bool e1000e_postpone_interrupt(bool *interrupt_pending, E1000IntrDelayTimer *timer) { if (timer->running) { trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); *interrupt_pending = true; return true; } if (timer->core->mac[timer->delay_reg] != 0) { e1000e_intrmgr_rearm_timer(timer); } return false; } static inline bool e1000e_itr_should_postpone(E1000ECore *core) { return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr); } static inline bool e1000e_eitr_should_postpone(E1000ECore *core, int idx) { return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx], &core->eitr[idx]); } static void e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) { uint32_t effective_eiac; if (E1000_IVAR_ENTRY_VALID(int_cfg)) { uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); if (vec < E1000E_MSIX_VEC_NUM) { if (!e1000e_eitr_should_postpone(core, vec)) { trace_e1000e_irq_msix_notify_vec(vec); msix_notify(core->owner, vec); } } else { trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); } } else { trace_e1000e_wrn_msix_invalid(cause, int_cfg); } if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) { trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause); core->mac[IAM] &= ~cause; } trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]); effective_eiac = core->mac[EIAC] & cause; core->mac[ICR] &= ~effective_eiac; if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { core->mac[IMS] &= ~effective_eiac; } } static void e1000e_msix_notify(E1000ECore *core, uint32_t causes) { if (causes & E1000_ICR_RXQ0) { e1000e_msix_notify_one(core, E1000_ICR_RXQ0, E1000_IVAR_RXQ0(core->mac[IVAR])); } if (causes & E1000_ICR_RXQ1) { e1000e_msix_notify_one(core, E1000_ICR_RXQ1, E1000_IVAR_RXQ1(core->mac[IVAR])); } if (causes & E1000_ICR_TXQ0) { e1000e_msix_notify_one(core, E1000_ICR_TXQ0, E1000_IVAR_TXQ0(core->mac[IVAR])); } if (causes & E1000_ICR_TXQ1) { e1000e_msix_notify_one(core, E1000_ICR_TXQ1, E1000_IVAR_TXQ1(core->mac[IVAR])); } if (causes & E1000_ICR_OTHER) { e1000e_msix_notify_one(core, E1000_ICR_OTHER, E1000_IVAR_OTHER(core->mac[IVAR])); } } static void e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) { if (E1000_IVAR_ENTRY_VALID(int_cfg)) { uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); if (vec < E1000E_MSIX_VEC_NUM) { trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec); msix_clr_pending(core->owner, vec); } else { trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); } } else { trace_e1000e_wrn_msix_invalid(cause, int_cfg); } } static void e1000e_msix_clear(E1000ECore *core, uint32_t causes) { if (causes & E1000_ICR_RXQ0) { e1000e_msix_clear_one(core, E1000_ICR_RXQ0, E1000_IVAR_RXQ0(core->mac[IVAR])); } if (causes & E1000_ICR_RXQ1) { e1000e_msix_clear_one(core, E1000_ICR_RXQ1, E1000_IVAR_RXQ1(core->mac[IVAR])); } if (causes & E1000_ICR_TXQ0) { e1000e_msix_clear_one(core, E1000_ICR_TXQ0, E1000_IVAR_TXQ0(core->mac[IVAR])); } if (causes & E1000_ICR_TXQ1) { e1000e_msix_clear_one(core, E1000_ICR_TXQ1, E1000_IVAR_TXQ1(core->mac[IVAR])); } if (causes & E1000_ICR_OTHER) { e1000e_msix_clear_one(core, E1000_ICR_OTHER, E1000_IVAR_OTHER(core->mac[IVAR])); } } static inline void e1000e_fix_icr_asserted(E1000ECore *core) { core->mac[ICR] &= ~E1000_ICR_ASSERTED; if (core->mac[ICR]) { core->mac[ICR] |= E1000_ICR_ASSERTED; } trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); } static void e1000e_send_msi(E1000ECore *core, bool msix) { uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED; if (msix) { e1000e_msix_notify(core, causes); } else { if (!e1000e_itr_should_postpone(core)) { trace_e1000e_irq_msi_notify(causes); msi_notify(core->owner, 0); } } } static void e1000e_update_interrupt_state(E1000ECore *core) { bool interrupts_pending; bool is_msix = msix_enabled(core->owner); /* Set ICR[OTHER] for MSI-X */ if (is_msix) { if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) { core->mac[ICR] |= E1000_ICR_OTHER; trace_e1000e_irq_add_msi_other(core->mac[ICR]); } } e1000e_fix_icr_asserted(core); /* * Make sure ICR and ICS registers have the same value. * The spec says that the ICS register is write-only. However in practice, * on real hardware ICS is readable, and for reads it has the same value as * ICR (except that ICS does not have the clear on read behaviour of ICR). * * The VxWorks PRO/1000 driver uses this behaviour. */ core->mac[ICS] = core->mac[ICR]; interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false; trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], core->mac[ICR], core->mac[IMS]); if (is_msix || msi_enabled(core->owner)) { if (interrupts_pending) { e1000e_send_msi(core, is_msix); } } else { if (interrupts_pending) { if (!e1000e_itr_should_postpone(core)) { e1000e_raise_legacy_irq(core); } } else { e1000e_lower_legacy_irq(core); } } } static void e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val) { trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); val |= e1000e_intmgr_collect_delayed_causes(core); core->mac[ICR] |= val; trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); e1000e_update_interrupt_state(core); } static inline void e1000e_autoneg_timer(void *opaque) { E1000ECore *core = opaque; if (!qemu_get_queue(core->owner_nic)->link_down) { e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]); e1000e_start_recv(core); e1000e_update_flowctl_status(core); /* signal link status change to the guest */ e1000e_set_interrupt_cause(core, E1000_ICR_LSC); } } static inline uint16_t e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) { uint16_t index = (addr & 0x1ffff) >> 2; return index + (mac_reg_access[index] & 0xfffe); } static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = { [0] = { [PHY_CTRL] = PHY_ANYPAGE | PHY_RW, [PHY_STATUS] = PHY_ANYPAGE | PHY_R, [PHY_ID1] = PHY_ANYPAGE | PHY_R, [PHY_ID2] = PHY_ANYPAGE | PHY_R, [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW, [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R, [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R, [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW, [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R, [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW, [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R, [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R, [PHY_PAGE] = PHY_ANYPAGE | PHY_RW, [PHY_COPPER_CTRL1] = PHY_RW, [PHY_COPPER_STAT1] = PHY_R, [PHY_COPPER_CTRL3] = PHY_RW, [PHY_RX_ERR_CNTR] = PHY_R, [PHY_OEM_BITS] = PHY_RW, [PHY_BIAS_1] = PHY_RW, [PHY_BIAS_2] = PHY_RW, [PHY_COPPER_INT_ENABLE] = PHY_RW, [PHY_COPPER_STAT2] = PHY_R, [PHY_COPPER_CTRL2] = PHY_RW }, [2] = { [PHY_MAC_CTRL1] = PHY_RW, [PHY_MAC_INT_ENABLE] = PHY_RW, [PHY_MAC_STAT] = PHY_R, [PHY_MAC_CTRL2] = PHY_RW }, [3] = { [PHY_LED_03_FUNC_CTRL1] = PHY_RW, [PHY_LED_03_POL_CTRL] = PHY_RW, [PHY_LED_TIMER_CTRL] = PHY_RW, [PHY_LED_45_CTRL] = PHY_RW }, [5] = { [PHY_1000T_SKEW] = PHY_R, [PHY_1000T_SWAP] = PHY_R }, [6] = { [PHY_CRC_COUNTERS] = PHY_R } }; static bool e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr, char cap, uint8_t *page) { *page = (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0 : core->phy[0][PHY_PAGE]; if (*page >= E1000E_PHY_PAGES) { return false; } return e1000e_phy_regcap[*page][addr] & cap; } static void e1000e_phy_reg_write(E1000ECore *core, uint8_t page, uint32_t addr, uint16_t data) { assert(page < E1000E_PHY_PAGES); assert(addr < E1000E_PHY_PAGE_SIZE); if (e1000e_phyreg_writeops[page][addr]) { e1000e_phyreg_writeops[page][addr](core, addr, data); } else { core->phy[page][addr] = data; } } static void e1000e_set_mdic(E1000ECore *core, int index, uint32_t val) { uint32_t data = val & E1000_MDIC_DATA_MASK; uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); uint8_t page; if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ val = core->mac[MDIC] | E1000_MDIC_ERROR; } else if (val & E1000_MDIC_OP_READ) { if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) { trace_e1000e_core_mdic_read_unhandled(page, addr); val |= E1000_MDIC_ERROR; } else { val = (val ^ data) | core->phy[page][addr]; trace_e1000e_core_mdic_read(page, addr, val); } } else if (val & E1000_MDIC_OP_WRITE) { if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) { trace_e1000e_core_mdic_write_unhandled(page, addr); val |= E1000_MDIC_ERROR; } else { trace_e1000e_core_mdic_write(page, addr, data); e1000e_phy_reg_write(core, page, addr, data); } } core->mac[MDIC] = val | E1000_MDIC_READY; if (val & E1000_MDIC_INT_EN) { e1000e_set_interrupt_cause(core, E1000_ICR_MDAC); } } static void e1000e_set_rdt(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val & 0xffff; trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val); e1000e_start_recv(core); } static void e1000e_set_status(E1000ECore *core, int index, uint32_t val) { if ((val & E1000_STATUS_PHYRA) == 0) { core->mac[index] &= ~E1000_STATUS_PHYRA; } } static void e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val) { trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), !!(val & E1000_CTRL_EXT_SPD_BYPS)); /* Zero self-clearing bits */ val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); core->mac[CTRL_EXT] = val; } static void e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val) { int i; core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; if (!msix_enabled(core->owner)) { return; } for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { if (core->mac[PBACLR] & BIT(i)) { msix_clr_pending(core->owner, i); } } } static void e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val) { core->mac[FCRTH] = val & 0xFFF8; } static void e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val) { core->mac[FCRTL] = val & 0x8000FFF8; } static inline void e1000e_set_16bit(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val & 0xffff; } static void e1000e_set_12bit(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val & 0xfff; } static void e1000e_set_vet(E1000ECore *core, int index, uint32_t val) { core->mac[VET] = val & 0xffff; core->vet = le16_to_cpu(core->mac[VET]); trace_e1000e_vlan_vet(core->vet); } static void e1000e_set_dlen(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val & E1000_XDLEN_MASK; } static void e1000e_set_dbal(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val & E1000_XDBAL_MASK; } static void e1000e_set_tctl(E1000ECore *core, int index, uint32_t val) { E1000E_TxRing txr; core->mac[index] = val; if (core->mac[TARC0] & E1000_TARC_ENABLE) { e1000e_tx_ring_init(core, &txr, 0); e1000e_start_xmit(core, &txr); } if (core->mac[TARC1] & E1000_TARC_ENABLE) { e1000e_tx_ring_init(core, &txr, 1); e1000e_start_xmit(core, &txr); } } static void e1000e_set_tdt(E1000ECore *core, int index, uint32_t val) { E1000E_TxRing txr; int qidx = e1000e_mq_queue_idx(TDT, index); uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1; core->mac[index] = val & 0xffff; if (core->mac[tarc_reg] & E1000_TARC_ENABLE) { e1000e_tx_ring_init(core, &txr, qidx); e1000e_start_xmit(core, &txr); } } static void e1000e_set_ics(E1000ECore *core, int index, uint32_t val) { trace_e1000e_irq_write_ics(val); e1000e_set_interrupt_cause(core, val); } static void e1000e_set_icr(E1000ECore *core, int index, uint32_t val) { uint32_t icr = 0; if ((core->mac[ICR] & E1000_ICR_ASSERTED) && (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { trace_e1000e_irq_icr_process_iame(); e1000e_clear_ims_bits(core, core->mac[IAM]); } icr = core->mac[ICR] & ~val; /* Windows driver expects that the "receive overrun" bit and other * ones to be cleared when the "Other" bit (#24) is cleared. */ icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr; trace_e1000e_irq_icr_write(val, core->mac[ICR], icr); core->mac[ICR] = icr; e1000e_update_interrupt_state(core); } static void e1000e_set_imc(E1000ECore *core, int index, uint32_t val) { trace_e1000e_irq_ims_clear_set_imc(val); e1000e_clear_ims_bits(core, val); e1000e_update_interrupt_state(core); } static void e1000e_set_ims(E1000ECore *core, int index, uint32_t val) { static const uint32_t ims_ext_mask = E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | E1000_IMS_OTHER; static const uint32_t ims_valid_mask = E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC | E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 | E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD | E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | E1000_IMS_OTHER; uint32_t valid_val = val & ims_valid_mask; trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); core->mac[IMS] |= valid_val; if ((valid_val & ims_ext_mask) && (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) && msix_enabled(core->owner)) { e1000e_msix_clear(core, valid_val); } if ((valid_val == ims_valid_mask) && (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) { trace_e1000e_irq_fire_all_timers(val); e1000e_intrmgr_fire_all_timers(core); } e1000e_update_interrupt_state(core); } static void e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val) { e1000e_set_16bit(core, index, val); if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) { trace_e1000e_irq_rdtr_fpd_running(); e1000e_intrmgr_fire_delayed_interrupts(core); } else { trace_e1000e_irq_rdtr_fpd_not_running(); } } static void e1000e_set_tidv(E1000ECore *core, int index, uint32_t val) { e1000e_set_16bit(core, index, val); if ((val & E1000_TIDV_FPD) && (core->tidv.running)) { trace_e1000e_irq_tidv_fpd_running(); e1000e_intrmgr_fire_delayed_interrupts(core); } else { trace_e1000e_irq_tidv_fpd_not_running(); } } static uint32_t e1000e_mac_readreg(E1000ECore *core, int index) { return core->mac[index]; } static uint32_t e1000e_mac_ics_read(E1000ECore *core, int index) { trace_e1000e_irq_read_ics(core->mac[ICS]); return core->mac[ICS]; } static uint32_t e1000e_mac_ims_read(E1000ECore *core, int index) { trace_e1000e_irq_read_ims(core->mac[IMS]); return core->mac[IMS]; } #define E1000E_LOW_BITS_READ_FUNC(num) \ static uint32_t \ e1000e_mac_low##num##_read(E1000ECore *core, int index) \ { \ return core->mac[index] & (BIT(num) - 1); \ } \ #define E1000E_LOW_BITS_READ(num) \ e1000e_mac_low##num##_read E1000E_LOW_BITS_READ_FUNC(4); E1000E_LOW_BITS_READ_FUNC(6); E1000E_LOW_BITS_READ_FUNC(11); E1000E_LOW_BITS_READ_FUNC(13); E1000E_LOW_BITS_READ_FUNC(16); static uint32_t e1000e_mac_swsm_read(E1000ECore *core, int index) { uint32_t val = core->mac[SWSM]; core->mac[SWSM] = val | 1; return val; } static uint32_t e1000e_mac_itr_read(E1000ECore *core, int index) { return core->itr_guest_value; } static uint32_t e1000e_mac_eitr_read(E1000ECore *core, int index) { return core->eitr_guest_value[index - EITR]; } static uint32_t e1000e_mac_icr_read(E1000ECore *core, int index) { uint32_t ret = core->mac[ICR]; trace_e1000e_irq_icr_read_entry(ret); if (core->mac[IMS] == 0) { trace_e1000e_irq_icr_clear_zero_ims(); core->mac[ICR] = 0; } if ((core->mac[ICR] & E1000_ICR_ASSERTED) && (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { trace_e1000e_irq_icr_clear_iame(); core->mac[ICR] = 0; trace_e1000e_irq_icr_process_iame(); e1000e_clear_ims_bits(core, core->mac[IAM]); } trace_e1000e_irq_icr_read_exit(core->mac[ICR]); e1000e_update_interrupt_state(core); return ret; } static uint32_t e1000e_mac_read_clr4(E1000ECore *core, int index) { uint32_t ret = core->mac[index]; core->mac[index] = 0; return ret; } static uint32_t e1000e_mac_read_clr8(E1000ECore *core, int index) { uint32_t ret = core->mac[index]; core->mac[index] = 0; core->mac[index - 1] = 0; return ret; } static uint32_t e1000e_get_ctrl(E1000ECore *core, int index) { uint32_t val = core->mac[CTRL]; trace_e1000e_link_read_params( !!(val & E1000_CTRL_ASDE), (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, !!(val & E1000_CTRL_FRCSPD), !!(val & E1000_CTRL_FRCDPX), !!(val & E1000_CTRL_RFCE), !!(val & E1000_CTRL_TFCE)); return val; } static uint32_t e1000e_get_status(E1000ECore *core, int index) { uint32_t res = core->mac[STATUS]; if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { res |= E1000_STATUS_GIO_MASTER_ENABLE; } if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; } else { res |= E1000_STATUS_FD; } if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { case E1000_CTRL_SPD_10: res |= E1000_STATUS_SPEED_10; break; case E1000_CTRL_SPD_100: res |= E1000_STATUS_SPEED_100; break; case E1000_CTRL_SPD_1000: default: res |= E1000_STATUS_SPEED_1000; break; } } else { res |= E1000_STATUS_SPEED_1000; } trace_e1000e_link_status( !!(res & E1000_STATUS_LU), !!(res & E1000_STATUS_FD), (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT, (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT); return res; } static uint32_t e1000e_get_tarc(E1000ECore *core, int index) { return core->mac[index] & ((BIT(11) - 1) | BIT(27) | BIT(28) | BIT(29) | BIT(30)); } static void e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val) { core->mac[index] = val; } static void e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val) { uint32_t macaddr[2]; core->mac[index] = val; macaddr[0] = cpu_to_le32(core->mac[RA]); macaddr[1] = cpu_to_le32(core->mac[RA + 1]); qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), (uint8_t *) macaddr); trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); } static void e1000e_set_eecd(E1000ECore *core, int index, uint32_t val) { static const uint32_t ro_bits = E1000_EECD_PRES | E1000_EECD_AUTO_RD | E1000_EECD_SIZE_EX_MASK; core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); } static void e1000e_set_eerd(E1000ECore *core, int index, uint32_t val) { uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; uint32_t flags = 0; uint32_t data = 0; if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { data = core->eeprom[addr]; flags = E1000_EERW_DONE; } core->mac[EERD] = flags | (addr << E1000_EERW_ADDR_SHIFT) | (data << E1000_EERW_DATA_SHIFT); } static void e1000e_set_eewr(E1000ECore *core, int index, uint32_t val) { uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK; uint32_t flags = 0; if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { core->eeprom[addr] = data; flags = E1000_EERW_DONE; } core->mac[EERD] = flags | (addr << E1000_EERW_ADDR_SHIFT) | (data << E1000_EERW_DATA_SHIFT); } static void e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val) { core->mac[RXDCTL] = core->mac[RXDCTL1] = val; } static void e1000e_set_itr(E1000ECore *core, int index, uint32_t val) { uint32_t interval = val & 0xffff; trace_e1000e_irq_itr_set(val); core->itr_guest_value = interval; core->mac[index] = MAX(interval, E1000E_MIN_XITR); } static void e1000e_set_eitr(E1000ECore *core, int index, uint32_t val) { uint32_t interval = val & 0xffff; uint32_t eitr_num = index - EITR; trace_e1000e_irq_eitr_set(eitr_num, val); core->eitr_guest_value[eitr_num] = interval; core->mac[index] = MAX(interval, E1000E_MIN_XITR); } static void e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val) { if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) { hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero"); } if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) { hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero"); } core->mac[PSRCTL] = val; } static void e1000e_update_rx_offloads(E1000ECore *core) { int cso_state = e1000e_rx_l4_cso_enabled(core); trace_e1000e_rx_set_cso(cso_state); if (core->has_vnet) { qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, cso_state, 0, 0, 0, 0); } } static void e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val) { core->mac[RXCSUM] = val; e1000e_update_rx_offloads(core); } static void e1000e_set_gcr(E1000ECore *core, int index, uint32_t val) { uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; } #define e1000e_getreg(x) [x] = e1000e_mac_readreg static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = { e1000e_getreg(PBA), e1000e_getreg(WUFC), e1000e_getreg(MANC), e1000e_getreg(TOTL), e1000e_getreg(RDT0), e1000e_getreg(RDBAH0), e1000e_getreg(TDBAL1), e1000e_getreg(RDLEN0), e1000e_getreg(RDH1), e1000e_getreg(LATECOL), e1000e_getreg(SEQEC), e1000e_getreg(XONTXC), e1000e_getreg(WUS), e1000e_getreg(GORCL), e1000e_getreg(MGTPRC), e1000e_getreg(EERD), e1000e_getreg(EIAC), e1000e_getreg(PSRCTL), e1000e_getreg(MANC2H), e1000e_getreg(RXCSUM), e1000e_getreg(GSCL_3), e1000e_getreg(GSCN_2), e1000e_getreg(RSRPD), e1000e_getreg(RDBAL1), e1000e_getreg(FCAH), e1000e_getreg(FCRTH), e1000e_getreg(FLOP), e1000e_getreg(FLASHT), e1000e_getreg(RXSTMPH), e1000e_getreg(TXSTMPL), e1000e_getreg(TIMADJL), e1000e_getreg(TXDCTL), e1000e_getreg(RDH0), e1000e_getreg(TDT1), e1000e_getreg(TNCRS), e1000e_getreg(RJC), e1000e_getreg(IAM), e1000e_getreg(GSCL_2), e1000e_getreg(RDBAH1), e1000e_getreg(FLSWDATA), e1000e_getreg(RXSATRH), e1000e_getreg(TIPG), e1000e_getreg(FLMNGCTL), e1000e_getreg(FLMNGCNT), e1000e_getreg(TSYNCTXCTL), e1000e_getreg(EXTCNF_SIZE), e1000e_getreg(EXTCNF_CTRL), e1000e_getreg(EEMNGDATA), e1000e_getreg(CTRL_EXT), e1000e_getreg(SYSTIMH), e1000e_getreg(EEMNGCTL), e1000e_getreg(FLMNGDATA), e1000e_getreg(TSYNCRXCTL), e1000e_getreg(TDH), e1000e_getreg(LEDCTL), e1000e_getreg(STATUS), e1000e_getreg(TCTL), e1000e_getreg(TDBAL), e1000e_getreg(TDLEN), e1000e_getreg(TDH1), e1000e_getreg(RADV), e1000e_getreg(ECOL), e1000e_getreg(DC), e1000e_getreg(RLEC), e1000e_getreg(XOFFTXC), e1000e_getreg(RFC), e1000e_getreg(RNBC), e1000e_getreg(MGTPTC), e1000e_getreg(TIMINCA), e1000e_getreg(RXCFGL), e1000e_getreg(MFUTP01), e1000e_getreg(FACTPS), e1000e_getreg(GSCL_1), e1000e_getreg(GSCN_0), e1000e_getreg(GCR2), e1000e_getreg(RDT1), e1000e_getreg(PBACLR), e1000e_getreg(FCTTV), e1000e_getreg(EEWR), e1000e_getreg(FLSWCTL), e1000e_getreg(RXDCTL1), e1000e_getreg(RXSATRL), e1000e_getreg(SYSTIML), e1000e_getreg(RXUDP), e1000e_getreg(TORL), e1000e_getreg(TDLEN1), e1000e_getreg(MCC), e1000e_getreg(WUC), e1000e_getreg(EECD), e1000e_getreg(MFUTP23), e1000e_getreg(RAID), e1000e_getreg(FCRTV), e1000e_getreg(TXDCTL1), e1000e_getreg(RCTL), e1000e_getreg(TDT), e1000e_getreg(MDIC), e1000e_getreg(FCRUC), e1000e_getreg(VET), e1000e_getreg(RDBAL0), e1000e_getreg(TDBAH1), e1000e_getreg(RDTR), e1000e_getreg(SCC), e1000e_getreg(COLC), e1000e_getreg(CEXTERR), e1000e_getreg(XOFFRXC), e1000e_getreg(IPAV), e1000e_getreg(GOTCL), e1000e_getreg(MGTPDC), e1000e_getreg(GCR), e1000e_getreg(IVAR), e1000e_getreg(POEMB), e1000e_getreg(MFVAL), e1000e_getreg(FUNCTAG), e1000e_getreg(GSCL_4), e1000e_getreg(GSCN_3), e1000e_getreg(MRQC), e1000e_getreg(RDLEN1), e1000e_getreg(FCT), e1000e_getreg(FLA), e1000e_getreg(FLOL), e1000e_getreg(RXDCTL), e1000e_getreg(RXSTMPL), e1000e_getreg(TXSTMPH), e1000e_getreg(TIMADJH), e1000e_getreg(FCRTL), e1000e_getreg(TDBAH), e1000e_getreg(TADV), e1000e_getreg(XONRXC), e1000e_getreg(TSCTFC), e1000e_getreg(RFCTL), e1000e_getreg(GSCN_1), e1000e_getreg(FCAL), e1000e_getreg(FLSWCNT), [TOTH] = e1000e_mac_read_clr8, [GOTCH] = e1000e_mac_read_clr8, [PRC64] = e1000e_mac_read_clr4, [PRC255] = e1000e_mac_read_clr4, [PRC1023] = e1000e_mac_read_clr4, [PTC64] = e1000e_mac_read_clr4, [PTC255] = e1000e_mac_read_clr4, [PTC1023] = e1000e_mac_read_clr4, [GPRC] = e1000e_mac_read_clr4, [TPT] = e1000e_mac_read_clr4, [RUC] = e1000e_mac_read_clr4, [BPRC] = e1000e_mac_read_clr4, [MPTC] = e1000e_mac_read_clr4, [IAC] = e1000e_mac_read_clr4, [ICR] = e1000e_mac_icr_read, [RDFH] = E1000E_LOW_BITS_READ(13), [RDFHS] = E1000E_LOW_BITS_READ(13), [RDFPC] = E1000E_LOW_BITS_READ(13), [TDFH] = E1000E_LOW_BITS_READ(13), [TDFHS] = E1000E_LOW_BITS_READ(13), [STATUS] = e1000e_get_status, [TARC0] = e1000e_get_tarc, [PBS] = E1000E_LOW_BITS_READ(6), [ICS] = e1000e_mac_ics_read, [AIT] = E1000E_LOW_BITS_READ(16), [TORH] = e1000e_mac_read_clr8, [GORCH] = e1000e_mac_read_clr8, [PRC127] = e1000e_mac_read_clr4, [PRC511] = e1000e_mac_read_clr4, [PRC1522] = e1000e_mac_read_clr4, [PTC127] = e1000e_mac_read_clr4, [PTC511] = e1000e_mac_read_clr4, [PTC1522] = e1000e_mac_read_clr4, [GPTC] = e1000e_mac_read_clr4, [TPR] = e1000e_mac_read_clr4, [ROC] = e1000e_mac_read_clr4, [MPRC] = e1000e_mac_read_clr4, [BPTC] = e1000e_mac_read_clr4, [TSCTC] = e1000e_mac_read_clr4, [ITR] = e1000e_mac_itr_read, [RDFT] = E1000E_LOW_BITS_READ(13), [RDFTS] = E1000E_LOW_BITS_READ(13), [TDFPC] = E1000E_LOW_BITS_READ(13), [TDFT] = E1000E_LOW_BITS_READ(13), [TDFTS] = E1000E_LOW_BITS_READ(13), [CTRL] = e1000e_get_ctrl, [TARC1] = e1000e_get_tarc, [SWSM] = e1000e_mac_swsm_read, [IMS] = e1000e_mac_ims_read, [CRCERRS ... MPC] = e1000e_mac_readreg, [IP6AT ... IP6AT + 3] = e1000e_mac_readreg, [IP4AT ... IP4AT + 6] = e1000e_mac_readreg, [RA ... RA + 31] = e1000e_mac_readreg, [WUPM ... WUPM + 31] = e1000e_mac_readreg, [MTA ... MTA + 127] = e1000e_mac_readreg, [VFTA ... VFTA + 127] = e1000e_mac_readreg, [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4), [FFVT ... FFVT + 254] = e1000e_mac_readreg, [MDEF ... MDEF + 7] = e1000e_mac_readreg, [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11), [FTFT ... FTFT + 254] = e1000e_mac_readreg, [PBM ... PBM + 10239] = e1000e_mac_readreg, [RETA ... RETA + 31] = e1000e_mac_readreg, [RSSRK ... RSSRK + 31] = e1000e_mac_readreg, [MAVTV0 ... MAVTV3] = e1000e_mac_readreg, [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read }; enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) }; #define e1000e_putreg(x) [x] = e1000e_mac_writereg static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = { e1000e_putreg(PBA), e1000e_putreg(SWSM), e1000e_putreg(WUFC), e1000e_putreg(RDBAH1), e1000e_putreg(TDBAH), e1000e_putreg(TXDCTL), e1000e_putreg(RDBAH0), e1000e_putreg(LEDCTL), e1000e_putreg(FCAL), e1000e_putreg(FCRUC), e1000e_putreg(AIT), e1000e_putreg(TDFH), e1000e_putreg(TDFT), e1000e_putreg(TDFHS), e1000e_putreg(TDFTS), e1000e_putreg(TDFPC), e1000e_putreg(WUC), e1000e_putreg(WUS), e1000e_putreg(RDFH), e1000e_putreg(RDFT), e1000e_putreg(RDFHS), e1000e_putreg(RDFTS), e1000e_putreg(RDFPC), e1000e_putreg(IPAV), e1000e_putreg(TDBAH1), e1000e_putreg(TIMINCA), e1000e_putreg(IAM), e1000e_putreg(EIAC), e1000e_putreg(IVAR), e1000e_putreg(TARC0), e1000e_putreg(TARC1), e1000e_putreg(FLSWDATA), e1000e_putreg(POEMB), e1000e_putreg(PBS), e1000e_putreg(MFUTP01), e1000e_putreg(MFUTP23), e1000e_putreg(MANC), e1000e_putreg(MANC2H), e1000e_putreg(MFVAL), e1000e_putreg(EXTCNF_CTRL), e1000e_putreg(FACTPS), e1000e_putreg(FUNCTAG), e1000e_putreg(GSCL_1), e1000e_putreg(GSCL_2), e1000e_putreg(GSCL_3), e1000e_putreg(GSCL_4), e1000e_putreg(GSCN_0), e1000e_putreg(GSCN_1), e1000e_putreg(GSCN_2), e1000e_putreg(GSCN_3), e1000e_putreg(GCR2), e1000e_putreg(MRQC), e1000e_putreg(FLOP), e1000e_putreg(FLOL), e1000e_putreg(FLSWCTL), e1000e_putreg(FLSWCNT), e1000e_putreg(FLA), e1000e_putreg(RXDCTL1), e1000e_putreg(TXDCTL1), e1000e_putreg(TIPG), e1000e_putreg(RXSTMPH), e1000e_putreg(RXSTMPL), e1000e_putreg(RXSATRL), e1000e_putreg(RXSATRH), e1000e_putreg(TXSTMPL), e1000e_putreg(TXSTMPH), e1000e_putreg(SYSTIML), e1000e_putreg(SYSTIMH), e1000e_putreg(TIMADJL), e1000e_putreg(TIMADJH), e1000e_putreg(RXUDP), e1000e_putreg(RXCFGL), e1000e_putreg(TSYNCRXCTL), e1000e_putreg(TSYNCTXCTL), e1000e_putreg(FLSWDATA), e1000e_putreg(EXTCNF_SIZE), e1000e_putreg(EEMNGCTL), e1000e_putreg(RA), [TDH1] = e1000e_set_16bit, [TDT1] = e1000e_set_tdt, [TCTL] = e1000e_set_tctl, [TDT] = e1000e_set_tdt, [MDIC] = e1000e_set_mdic, [ICS] = e1000e_set_ics, [TDH] = e1000e_set_16bit, [RDH0] = e1000e_set_16bit, [RDT0] = e1000e_set_rdt, [IMC] = e1000e_set_imc, [IMS] = e1000e_set_ims, [ICR] = e1000e_set_icr, [EECD] = e1000e_set_eecd, [RCTL] = e1000e_set_rx_control, [CTRL] = e1000e_set_ctrl, [RDTR] = e1000e_set_rdtr, [RADV] = e1000e_set_16bit, [TADV] = e1000e_set_16bit, [ITR] = e1000e_set_itr, [EERD] = e1000e_set_eerd, [GCR] = e1000e_set_gcr, [PSRCTL] = e1000e_set_psrctl, [RXCSUM] = e1000e_set_rxcsum, [RAID] = e1000e_set_16bit, [RSRPD] = e1000e_set_12bit, [TIDV] = e1000e_set_tidv, [TDLEN1] = e1000e_set_dlen, [TDLEN] = e1000e_set_dlen, [RDLEN0] = e1000e_set_dlen, [RDLEN1] = e1000e_set_dlen, [TDBAL] = e1000e_set_dbal, [TDBAL1] = e1000e_set_dbal, [RDBAL0] = e1000e_set_dbal, [RDBAL1] = e1000e_set_dbal, [RDH1] = e1000e_set_16bit, [RDT1] = e1000e_set_rdt, [STATUS] = e1000e_set_status, [PBACLR] = e1000e_set_pbaclr, [CTRL_EXT] = e1000e_set_ctrlext, [FCAH] = e1000e_set_16bit, [FCT] = e1000e_set_16bit, [FCTTV] = e1000e_set_16bit, [FCRTV] = e1000e_set_16bit, [FCRTH] = e1000e_set_fcrth, [FCRTL] = e1000e_set_fcrtl, [VET] = e1000e_set_vet, [RXDCTL] = e1000e_set_rxdctl, [FLASHT] = e1000e_set_16bit, [EEWR] = e1000e_set_eewr, [CTRL_DUP] = e1000e_set_ctrl, [RFCTL] = e1000e_set_rfctl, [RA + 1] = e1000e_mac_setmacaddr, [IP6AT ... IP6AT + 3] = e1000e_mac_writereg, [IP4AT ... IP4AT + 6] = e1000e_mac_writereg, [RA + 2 ... RA + 31] = e1000e_mac_writereg, [WUPM ... WUPM + 31] = e1000e_mac_writereg, [MTA ... MTA + 127] = e1000e_mac_writereg, [VFTA ... VFTA + 127] = e1000e_mac_writereg, [FFMT ... FFMT + 254] = e1000e_mac_writereg, [FFVT ... FFVT + 254] = e1000e_mac_writereg, [PBM ... PBM + 10239] = e1000e_mac_writereg, [MDEF ... MDEF + 7] = e1000e_mac_writereg, [FFLT ... FFLT + 10] = e1000e_mac_writereg, [FTFT ... FTFT + 254] = e1000e_mac_writereg, [RETA ... RETA + 31] = e1000e_mac_writereg, [RSSRK ... RSSRK + 31] = e1000e_mac_writereg, [MAVTV0 ... MAVTV3] = e1000e_mac_writereg, [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr }; enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) }; enum { MAC_ACCESS_PARTIAL = 1 }; /* The array below combines alias offsets of the index values for the * MAC registers that have aliases, with the indication of not fully * implemented registers (lowest bit). This combination is possible * because all of the offsets are even. */ static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { /* Alias index offsets */ [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802, [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6, [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8, [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, [RA_A ... RA_A + 31] = 0x14f0, [VFTA_A ... VFTA_A + 127] = 0x1400, [RDBAL0_A ... RDLEN0_A] = 0x09bc, [TDBAL_A ... TDLEN_A] = 0x0cf8, /* Access options */ [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, [RDFPC] = MAC_ACCESS_PARTIAL, [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL, [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL, [TXDCTL1] = MAC_ACCESS_PARTIAL, [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL }; void e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size) { uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) { if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { trace_e1000e_wrn_regs_write_trivial(index << 2); } trace_e1000e_core_write(index << 2, size, val); e1000e_macreg_writeops[index](core, index, val); } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { trace_e1000e_wrn_regs_write_ro(index << 2, size, val); } else { trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); } } uint64_t e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size) { uint64_t val; uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { trace_e1000e_wrn_regs_read_trivial(index << 2); } val = e1000e_macreg_readops[index](core, index); trace_e1000e_core_read(index << 2, size, val); return val; } else { trace_e1000e_wrn_regs_read_unknown(index << 2, size); } return 0; } static inline void e1000e_autoneg_pause(E1000ECore *core) { timer_del(core->autoneg_timer); } static void e1000e_autoneg_resume(E1000ECore *core) { if (e1000e_have_autoneg(core) && !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { qemu_get_queue(core->owner_nic)->link_down = false; timer_mod(core->autoneg_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); } } static void e1000e_vm_state_change(void *opaque, int running, RunState state) { E1000ECore *core = opaque; if (running) { trace_e1000e_vm_state_running(); e1000e_intrmgr_resume(core); e1000e_autoneg_resume(core); } else { trace_e1000e_vm_state_stopped(); e1000e_autoneg_pause(core); e1000e_intrmgr_pause(core); } } void e1000e_core_pci_realize(E1000ECore *core, const uint16_t *eeprom_templ, uint32_t eeprom_size, const uint8_t *macaddr) { int i; core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000e_autoneg_timer, core); e1000e_intrmgr_pci_realize(core); core->vmstate = qemu_add_vm_change_state_handler(e1000e_vm_state_change, core); for (i = 0; i < E1000E_NUM_QUEUES; i++) { net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, E1000E_MAX_TX_FRAGS, core->has_vnet); } net_rx_pkt_init(&core->rx_pkt, core->has_vnet); e1000x_core_prepare_eeprom(core->eeprom, eeprom_templ, eeprom_size, PCI_DEVICE_GET_CLASS(core->owner)->device_id, macaddr); e1000e_update_rx_offloads(core); } void e1000e_core_pci_uninit(E1000ECore *core) { int i; timer_del(core->autoneg_timer); timer_free(core->autoneg_timer); e1000e_intrmgr_pci_unint(core); qemu_del_vm_change_state_handler(core->vmstate); for (i = 0; i < E1000E_NUM_QUEUES; i++) { net_tx_pkt_reset(core->tx[i].tx_pkt); net_tx_pkt_uninit(core->tx[i].tx_pkt); } net_rx_pkt_uninit(core->rx_pkt); } static const uint16_t e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = { [0] = { [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | MII_CR_FULL_DUPLEX | MII_CR_AUTO_NEG_EN, [PHY_STATUS] = MII_SR_EXTENDED_CAPS | MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS | MII_SR_PREAMBLE_SUPPRESS | MII_SR_EXTENDED_STATUS | MII_SR_10T_HD_CAPS | MII_SR_10T_FD_CAPS | MII_SR_100X_HD_CAPS | MII_SR_100X_FD_CAPS, [PHY_ID1] = 0x141, [PHY_ID2] = E1000_PHY_ID2_82574x, [PHY_AUTONEG_ADV] = 0xde1, [PHY_LP_ABILITY] = 0x7e0, [PHY_AUTONEG_EXP] = BIT(2), [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13), [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11), [PHY_1000T_STATUS] = 0x3c00, [PHY_EXT_STATUS] = BIT(12) | BIT(13), [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) | BIT(12) | BIT(13), [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15) }, [2] = { [PHY_MAC_CTRL1] = BIT(3) | BIT(7), [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12) }, [3] = { [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14) } }; static const uint32_t e1000e_mac_reg_init[] = { [PBA] = 0x00140014, [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18), [EXTCNF_CTRL] = BIT(3), [EEMNGCTL] = BIT(31), [FLASHT] = 0x2, [FLSWCTL] = BIT(30) | BIT(31), [FLOL] = BIT(0), [RXDCTL] = BIT(16), [RXDCTL1] = BIT(16), [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20), [RXCFGL] = 0x88F7, [RXUDP] = 0x319, [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU | E1000_CTRL_ADVD3WUC, [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU, [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) | (4 << E1000_PSRCTL_BSIZE1_SHIFT) | (4 << E1000_PSRCTL_BSIZE2_SHIFT), [TARC0] = 0x3 | E1000_TARC_ENABLE, [TARC1] = 0x3 | E1000_TARC_ENABLE, [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES, [EERD] = E1000_EERW_DONE, [EEWR] = E1000_EERW_DONE, [GCR] = E1000_L0S_ADJUST | E1000_L1_ENTRY_LATENCY_MSB | E1000_L1_ENTRY_LATENCY_LSB, [TDFH] = 0x600, [TDFT] = 0x600, [TDFHS] = 0x600, [TDFTS] = 0x600, [POEMB] = 0x30D, [PBS] = 0x028, [MANC] = E1000_MANC_DIS_IP_CHK_ARP, [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000, [SWSM] = 1, [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, [ITR] = E1000E_MIN_XITR, [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR, }; void e1000e_core_reset(E1000ECore *core) { int i; timer_del(core->autoneg_timer); e1000e_intrmgr_reset(core); memset(core->phy, 0, sizeof core->phy); memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init); memset(core->mac, 0, sizeof core->mac); memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init); core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT; if (qemu_get_queue(core->owner_nic)->link_down) { e1000e_link_down(core); } e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); for (i = 0; i < ARRAY_SIZE(core->tx); i++) { net_tx_pkt_reset(core->tx[i].tx_pkt); memset(&core->tx[i].props, 0, sizeof(core->tx[i].props)); core->tx[i].skip_cp = false; } } void e1000e_core_pre_save(E1000ECore *core) { int i; NetClientState *nc = qemu_get_queue(core->owner_nic); /* * If link is down and auto-negotiation is supported and ongoing, * complete auto-negotiation immediately. This allows us to look * at MII_SR_AUTONEG_COMPLETE to infer link status on load. */ if (nc->link_down && e1000e_have_autoneg(core)) { core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; e1000e_update_flowctl_status(core); } for (i = 0; i < ARRAY_SIZE(core->tx); i++) { if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { core->tx[i].skip_cp = true; } } } int e1000e_core_post_load(E1000ECore *core) { NetClientState *nc = qemu_get_queue(core->owner_nic); /* nc.link_down can't be migrated, so infer link_down according * to link status bit in core.mac[STATUS]. */ nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; return 0; }