/* * ARM translation: M-profile MVE instructions * * Copyright (c) 2021 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/exec-all.h" #include "exec/gen-icount.h" #include "translate.h" #include "translate-a32.h" static inline int vidup_imm(DisasContext *s, int x) { return 1 << x; } /* Include the generated decoder */ #include "decode-mve.c.inc" typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64); typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64); typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32); typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32); /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */ static inline long mve_qreg_offset(unsigned reg) { return offsetof(CPUARMState, vfp.zregs[reg].d[0]); } static TCGv_ptr mve_qreg_ptr(unsigned reg) { TCGv_ptr ret = tcg_temp_new_ptr(); tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg)); return ret; } static bool mve_check_qreg_bank(DisasContext *s, int qmask) { /* * Check whether Qregs are in range. For v8.1M only Q0..Q7 * are supported, see VFPSmallRegisterBank(). */ return qmask < 8; } bool mve_eci_check(DisasContext *s) { /* * This is a beatwise insn: check that ECI is valid (not a * reserved value) and note that we are handling it. * Return true if OK, false if we generated an exception. */ s->eci_handled = true; switch (s->eci) { case ECI_NONE: case ECI_A0: case ECI_A0A1: case ECI_A0A1A2: case ECI_A0A1A2B0: return true; default: /* Reserved value: INVSTATE UsageFault */ gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(), default_exception_el(s)); return false; } } void mve_update_eci(DisasContext *s) { /* * The helper function will always update the CPUState field, * so we only need to update the DisasContext field. */ if (s->eci) { s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE; } } void mve_update_and_store_eci(DisasContext *s) { /* * For insns which don't call a helper function that will call * mve_advance_vpt(), this version updates s->eci and also stores * it out to the CPUState field. */ if (s->eci) { mve_update_eci(s); store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits); } } static bool mve_skip_first_beat(DisasContext *s) { /* Return true if PSR.ECI says we must skip the first beat of this insn */ switch (s->eci) { case ECI_NONE: return false; case ECI_A0: case ECI_A0A1: case ECI_A0A1A2: case ECI_A0A1A2B0: return true; default: g_assert_not_reached(); } } static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn, unsigned msize) { TCGv_i32 addr; uint32_t offset; TCGv_ptr qreg; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || !fn) { return false; } /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ if (a->rn == 15 || (a->rn == 13 && a->w)) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } offset = a->imm << msize; if (!a->a) { offset = -offset; } addr = load_reg(s, a->rn); if (a->p) { tcg_gen_addi_i32(addr, addr, offset); } qreg = mve_qreg_ptr(a->qd); fn(cpu_env, qreg, addr); tcg_temp_free_ptr(qreg); /* * Writeback always happens after the last beat of the insn, * regardless of predication */ if (a->w) { if (!a->p) { tcg_gen_addi_i32(addr, addr, offset); } store_reg(s, a->rn, addr); } else { tcg_temp_free_i32(addr); } mve_update_eci(s); return true; } static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a) { static MVEGenLdStFn * const ldstfns[4][2] = { { gen_helper_mve_vstrb, gen_helper_mve_vldrb }, { gen_helper_mve_vstrh, gen_helper_mve_vldrh }, { gen_helper_mve_vstrw, gen_helper_mve_vldrw }, { NULL, NULL } }; return do_ldst(s, a, ldstfns[a->size][a->l], a->size); } #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE) \ static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a) \ { \ static MVEGenLdStFn * const ldstfns[2][2] = { \ { gen_helper_mve_##ST, gen_helper_mve_##SLD }, \ { NULL, gen_helper_mve_##ULD }, \ }; \ return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE); \ } DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8) DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8) DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16) static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn) { TCGv_i32 addr; TCGv_ptr qd, qm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qm) || !fn || a->rn == 15) { /* Rn case is UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } addr = load_reg(s, a->rn); qd = mve_qreg_ptr(a->qd); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qd, qm, addr); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qm); tcg_temp_free_i32(addr); mve_update_eci(s); return true; } /* * The naming scheme here is "vldrb_sg_sh == in-memory byte loads * signextended to halfword elements in register". _os_ indicates that * the offsets in Qm should be scaled by the element size. */ /* This macro is just to make the arrays more compact in these functions */ #define F(N) gen_helper_mve_##N /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */ static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a) { static MVEGenLdStSGFn * const fns[2][4][4] = { { { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL }, { NULL, NULL, F(vldrh_sg_sw), NULL }, { NULL, NULL, NULL, NULL }, { NULL, NULL, NULL, NULL } }, { { NULL, NULL, NULL, NULL }, { NULL, NULL, F(vldrh_sg_os_sw), NULL }, { NULL, NULL, NULL, NULL }, { NULL, NULL, NULL, NULL } } }; if (a->qd == a->qm) { return false; /* UNPREDICTABLE */ } return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); } static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a) { static MVEGenLdStSGFn * const fns[2][4][4] = { { { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL }, { NULL, F(vldrh_sg_uh), F(vldrh_sg_uw), NULL }, { NULL, NULL, F(vldrw_sg_uw), NULL }, { NULL, NULL, NULL, F(vldrd_sg_ud) } }, { { NULL, NULL, NULL, NULL }, { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL }, { NULL, NULL, F(vldrw_sg_os_uw), NULL }, { NULL, NULL, NULL, F(vldrd_sg_os_ud) } } }; if (a->qd == a->qm) { return false; /* UNPREDICTABLE */ } return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); } static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a) { static MVEGenLdStSGFn * const fns[2][4][4] = { { { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL }, { NULL, F(vstrh_sg_uh), F(vstrh_sg_uw), NULL }, { NULL, NULL, F(vstrw_sg_uw), NULL }, { NULL, NULL, NULL, F(vstrd_sg_ud) } }, { { NULL, NULL, NULL, NULL }, { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL }, { NULL, NULL, F(vstrw_sg_os_uw), NULL }, { NULL, NULL, NULL, F(vstrd_sg_os_ud) } } }; return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]); } #undef F static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a, MVEGenLdStSGFn *fn, unsigned msize) { uint32_t offset; TCGv_ptr qd, qm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qm) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } offset = a->imm << msize; if (!a->a) { offset = -offset; } qd = mve_qreg_ptr(a->qd); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qd, qm, tcg_constant_i32(offset)); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) { static MVEGenLdStSGFn * const fns[] = { gen_helper_mve_vldrw_sg_uw, gen_helper_mve_vldrw_sg_wb_uw, }; if (a->qd == a->qm) { return false; /* UNPREDICTABLE */ } return do_ldst_sg_imm(s, a, fns[a->w], MO_32); } static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) { static MVEGenLdStSGFn * const fns[] = { gen_helper_mve_vldrd_sg_ud, gen_helper_mve_vldrd_sg_wb_ud, }; if (a->qd == a->qm) { return false; /* UNPREDICTABLE */ } return do_ldst_sg_imm(s, a, fns[a->w], MO_64); } static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) { static MVEGenLdStSGFn * const fns[] = { gen_helper_mve_vstrw_sg_uw, gen_helper_mve_vstrw_sg_wb_uw, }; return do_ldst_sg_imm(s, a, fns[a->w], MO_32); } static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a) { static MVEGenLdStSGFn * const fns[] = { gen_helper_mve_vstrd_sg_ud, gen_helper_mve_vstrd_sg_wb_ud, }; return do_ldst_sg_imm(s, a, fns[a->w], MO_64); } static bool trans_VDUP(DisasContext *s, arg_VDUP *a) { TCGv_ptr qd; TCGv_i32 rt; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { return false; } if (a->rt == 13 || a->rt == 15) { /* UNPREDICTABLE; we choose to UNDEF */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); rt = load_reg(s, a->rt); tcg_gen_dup_i32(a->size, rt, rt); gen_helper_mve_vdup(cpu_env, qd, rt); tcg_temp_free_ptr(qd); tcg_temp_free_i32(rt); mve_update_eci(s); return true; } static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn) { TCGv_ptr qd, qm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qm) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qd, qm); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } #define DO_1OP(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_1op *a) \ { \ static MVEGenOneOpFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_1op(s, a, fns[a->size]); \ } DO_1OP(VCLZ, vclz) DO_1OP(VCLS, vcls) DO_1OP(VABS, vabs) DO_1OP(VNEG, vneg) DO_1OP(VQABS, vqabs) DO_1OP(VQNEG, vqneg) DO_1OP(VMAXA, vmaxa) DO_1OP(VMINA, vmina) /* Narrowing moves: only size 0 and 1 are valid */ #define DO_VMOVN(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_1op *a) \ { \ static MVEGenOneOpFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ NULL, \ NULL, \ }; \ return do_1op(s, a, fns[a->size]); \ } DO_VMOVN(VMOVNB, vmovnb) DO_VMOVN(VMOVNT, vmovnt) DO_VMOVN(VQMOVUNB, vqmovunb) DO_VMOVN(VQMOVUNT, vqmovunt) DO_VMOVN(VQMOVN_BS, vqmovnbs) DO_VMOVN(VQMOVN_TS, vqmovnts) DO_VMOVN(VQMOVN_BU, vqmovnbu) DO_VMOVN(VQMOVN_TU, vqmovntu) static bool trans_VREV16(DisasContext *s, arg_1op *a) { static MVEGenOneOpFn * const fns[] = { gen_helper_mve_vrev16b, NULL, NULL, NULL, }; return do_1op(s, a, fns[a->size]); } static bool trans_VREV32(DisasContext *s, arg_1op *a) { static MVEGenOneOpFn * const fns[] = { gen_helper_mve_vrev32b, gen_helper_mve_vrev32h, NULL, NULL, }; return do_1op(s, a, fns[a->size]); } static bool trans_VREV64(DisasContext *s, arg_1op *a) { static MVEGenOneOpFn * const fns[] = { gen_helper_mve_vrev64b, gen_helper_mve_vrev64h, gen_helper_mve_vrev64w, NULL, }; return do_1op(s, a, fns[a->size]); } static bool trans_VMVN(DisasContext *s, arg_1op *a) { return do_1op(s, a, gen_helper_mve_vmvn); } static bool trans_VABS_fp(DisasContext *s, arg_1op *a) { static MVEGenOneOpFn * const fns[] = { NULL, gen_helper_mve_vfabsh, gen_helper_mve_vfabss, NULL, }; if (!dc_isar_feature(aa32_mve_fp, s)) { return false; } return do_1op(s, a, fns[a->size]); } static bool trans_VNEG_fp(DisasContext *s, arg_1op *a) { static MVEGenOneOpFn * const fns[] = { NULL, gen_helper_mve_vfnegh, gen_helper_mve_vfnegs, NULL, }; if (!dc_isar_feature(aa32_mve_fp, s)) { return false; } return do_1op(s, a, fns[a->size]); } static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn) { TCGv_ptr qd, qn, qm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); qn = mve_qreg_ptr(a->qn); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qd, qn, qm); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qn); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } #define DO_LOGIC(INSN, HELPER) \ static bool trans_##INSN(DisasContext *s, arg_2op *a) \ { \ return do_2op(s, a, HELPER); \ } DO_LOGIC(VAND, gen_helper_mve_vand) DO_LOGIC(VBIC, gen_helper_mve_vbic) DO_LOGIC(VORR, gen_helper_mve_vorr) DO_LOGIC(VORN, gen_helper_mve_vorn) DO_LOGIC(VEOR, gen_helper_mve_veor) DO_LOGIC(VPSEL, gen_helper_mve_vpsel) #define DO_2OP(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_2op *a) \ { \ static MVEGenTwoOpFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_2op(s, a, fns[a->size]); \ } DO_2OP(VADD, vadd) DO_2OP(VSUB, vsub) DO_2OP(VMUL, vmul) DO_2OP(VMULH_S, vmulhs) DO_2OP(VMULH_U, vmulhu) DO_2OP(VRMULH_S, vrmulhs) DO_2OP(VRMULH_U, vrmulhu) DO_2OP(VMAX_S, vmaxs) DO_2OP(VMAX_U, vmaxu) DO_2OP(VMIN_S, vmins) DO_2OP(VMIN_U, vminu) DO_2OP(VABD_S, vabds) DO_2OP(VABD_U, vabdu) DO_2OP(VHADD_S, vhadds) DO_2OP(VHADD_U, vhaddu) DO_2OP(VHSUB_S, vhsubs) DO_2OP(VHSUB_U, vhsubu) DO_2OP(VMULL_BS, vmullbs) DO_2OP(VMULL_BU, vmullbu) DO_2OP(VMULL_TS, vmullts) DO_2OP(VMULL_TU, vmulltu) DO_2OP(VQDMULH, vqdmulh) DO_2OP(VQRDMULH, vqrdmulh) DO_2OP(VQADD_S, vqadds) DO_2OP(VQADD_U, vqaddu) DO_2OP(VQSUB_S, vqsubs) DO_2OP(VQSUB_U, vqsubu) DO_2OP(VSHL_S, vshls) DO_2OP(VSHL_U, vshlu) DO_2OP(VRSHL_S, vrshls) DO_2OP(VRSHL_U, vrshlu) DO_2OP(VQSHL_S, vqshls) DO_2OP(VQSHL_U, vqshlu) DO_2OP(VQRSHL_S, vqrshls) DO_2OP(VQRSHL_U, vqrshlu) DO_2OP(VQDMLADH, vqdmladh) DO_2OP(VQDMLADHX, vqdmladhx) DO_2OP(VQRDMLADH, vqrdmladh) DO_2OP(VQRDMLADHX, vqrdmladhx) DO_2OP(VQDMLSDH, vqdmlsdh) DO_2OP(VQDMLSDHX, vqdmlsdhx) DO_2OP(VQRDMLSDH, vqrdmlsdh) DO_2OP(VQRDMLSDHX, vqrdmlsdhx) DO_2OP(VRHADD_S, vrhadds) DO_2OP(VRHADD_U, vrhaddu) /* * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose * so we can reuse the DO_2OP macro. (Our implementation calculates the * "expected" results in this case.) Similarly for VHCADD. */ DO_2OP(VCADD90, vcadd90) DO_2OP(VCADD270, vcadd270) DO_2OP(VHCADD90, vhcadd90) DO_2OP(VHCADD270, vhcadd270) static bool trans_VQDMULLB(DisasContext *s, arg_2op *a) { static MVEGenTwoOpFn * const fns[] = { NULL, gen_helper_mve_vqdmullbh, gen_helper_mve_vqdmullbw, NULL, }; if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { /* UNPREDICTABLE; we choose to undef */ return false; } return do_2op(s, a, fns[a->size]); } static bool trans_VQDMULLT(DisasContext *s, arg_2op *a) { static MVEGenTwoOpFn * const fns[] = { NULL, gen_helper_mve_vqdmullth, gen_helper_mve_vqdmulltw, NULL, }; if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) { /* UNPREDICTABLE; we choose to undef */ return false; } return do_2op(s, a, fns[a->size]); } static bool trans_VMULLP_B(DisasContext *s, arg_2op *a) { /* * Note that a->size indicates the output size, ie VMULL.P8 * is the 8x8->16 operation and a->size is MO_16; VMULL.P16 * is the 16x16->32 operation and a->size is MO_32. */ static MVEGenTwoOpFn * const fns[] = { NULL, gen_helper_mve_vmullpbh, gen_helper_mve_vmullpbw, NULL, }; return do_2op(s, a, fns[a->size]); } static bool trans_VMULLP_T(DisasContext *s, arg_2op *a) { /* a->size is as for trans_VMULLP_B */ static MVEGenTwoOpFn * const fns[] = { NULL, gen_helper_mve_vmullpth, gen_helper_mve_vmullptw, NULL, }; return do_2op(s, a, fns[a->size]); } /* * VADC and VSBC: these perform an add-with-carry or subtract-with-carry * of the 32-bit elements in each lane of the input vectors, where the * carry-out of each add is the carry-in of the next. The initial carry * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C. * These insns are subject to beat-wise execution. Partial execution * of an I=1 (initial carry input fixed) insn which does not * execute the first beat must start with the current FPSCR.NZCV * value, not the fixed constant input. */ static bool trans_VADC(DisasContext *s, arg_2op *a) { return do_2op(s, a, gen_helper_mve_vadc); } static bool trans_VADCI(DisasContext *s, arg_2op *a) { if (mve_skip_first_beat(s)) { return trans_VADC(s, a); } return do_2op(s, a, gen_helper_mve_vadci); } static bool trans_VSBC(DisasContext *s, arg_2op *a) { return do_2op(s, a, gen_helper_mve_vsbc); } static bool trans_VSBCI(DisasContext *s, arg_2op *a) { if (mve_skip_first_beat(s)) { return trans_VSBC(s, a); } return do_2op(s, a, gen_helper_mve_vsbci); } static bool do_2op_scalar(DisasContext *s, arg_2scalar *a, MVEGenTwoOpScalarFn fn) { TCGv_ptr qd, qn; TCGv_i32 rm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qn) || !fn) { return false; } if (a->rm == 13 || a->rm == 15) { /* UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); qn = mve_qreg_ptr(a->qn); rm = load_reg(s, a->rm); fn(cpu_env, qd, qn, rm); tcg_temp_free_i32(rm); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qn); mve_update_eci(s); return true; } #define DO_2OP_SCALAR(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_2scalar *a) \ { \ static MVEGenTwoOpScalarFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_2op_scalar(s, a, fns[a->size]); \ } DO_2OP_SCALAR(VADD_scalar, vadd_scalar) DO_2OP_SCALAR(VSUB_scalar, vsub_scalar) DO_2OP_SCALAR(VMUL_scalar, vmul_scalar) DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar) DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar) DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar) DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar) DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar) DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar) DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar) DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar) DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar) DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar) DO_2OP_SCALAR(VBRSR, vbrsr) DO_2OP_SCALAR(VMLA, vmla) DO_2OP_SCALAR(VMLAS, vmlas) DO_2OP_SCALAR(VQDMLAH, vqdmlah) DO_2OP_SCALAR(VQRDMLAH, vqrdmlah) DO_2OP_SCALAR(VQDMLASH, vqdmlash) DO_2OP_SCALAR(VQRDMLASH, vqrdmlash) static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a) { static MVEGenTwoOpScalarFn * const fns[] = { NULL, gen_helper_mve_vqdmullb_scalarh, gen_helper_mve_vqdmullb_scalarw, NULL, }; if (a->qd == a->qn && a->size == MO_32) { /* UNPREDICTABLE; we choose to undef */ return false; } return do_2op_scalar(s, a, fns[a->size]); } static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a) { static MVEGenTwoOpScalarFn * const fns[] = { NULL, gen_helper_mve_vqdmullt_scalarh, gen_helper_mve_vqdmullt_scalarw, NULL, }; if (a->qd == a->qn && a->size == MO_32) { /* UNPREDICTABLE; we choose to undef */ return false; } return do_2op_scalar(s, a, fns[a->size]); } static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a, MVEGenLongDualAccOpFn *fn) { TCGv_ptr qn, qm; TCGv_i64 rda; TCGv_i32 rdalo, rdahi; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qn | a->qm) || !fn) { return false; } /* * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. */ if (a->rdahi == 13 || a->rdahi == 15) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qn = mve_qreg_ptr(a->qn); qm = mve_qreg_ptr(a->qm); /* * This insn is subject to beat-wise execution. Partial execution * of an A=0 (no-accumulate) insn which does not execute the first * beat must start with the current rda value, not 0. */ if (a->a || mve_skip_first_beat(s)) { rda = tcg_temp_new_i64(); rdalo = load_reg(s, a->rdalo); rdahi = load_reg(s, a->rdahi); tcg_gen_concat_i32_i64(rda, rdalo, rdahi); tcg_temp_free_i32(rdalo); tcg_temp_free_i32(rdahi); } else { rda = tcg_const_i64(0); } fn(rda, cpu_env, qn, qm, rda); tcg_temp_free_ptr(qn); tcg_temp_free_ptr(qm); rdalo = tcg_temp_new_i32(); rdahi = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(rdalo, rda); tcg_gen_extrh_i64_i32(rdahi, rda); store_reg(s, a->rdalo, rdalo); store_reg(s, a->rdahi, rdahi); tcg_temp_free_i64(rda); mve_update_eci(s); return true; } static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[4][2] = { { NULL, NULL }, { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh }, { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw }, { NULL, NULL }, }; return do_long_dual_acc(s, a, fns[a->size][a->x]); } static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[4][2] = { { NULL, NULL }, { gen_helper_mve_vmlaldavuh, NULL }, { gen_helper_mve_vmlaldavuw, NULL }, { NULL, NULL }, }; return do_long_dual_acc(s, a, fns[a->size][a->x]); } static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[4][2] = { { NULL, NULL }, { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh }, { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw }, { NULL, NULL }, }; return do_long_dual_acc(s, a, fns[a->size][a->x]); } static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[] = { gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw, }; return do_long_dual_acc(s, a, fns[a->x]); } static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[] = { gen_helper_mve_vrmlaldavhuw, NULL, }; return do_long_dual_acc(s, a, fns[a->x]); } static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a) { static MVEGenLongDualAccOpFn * const fns[] = { gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw, }; return do_long_dual_acc(s, a, fns[a->x]); } static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn) { TCGv_ptr qn, qm; TCGv_i32 rda; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qn) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qn = mve_qreg_ptr(a->qn); qm = mve_qreg_ptr(a->qm); /* * This insn is subject to beat-wise execution. Partial execution * of an A=0 (no-accumulate) insn which does not execute the first * beat must start with the current rda value, not 0. */ if (a->a || mve_skip_first_beat(s)) { rda = load_reg(s, a->rda); } else { rda = tcg_const_i32(0); } fn(rda, cpu_env, qn, qm, rda); store_reg(s, a->rda, rda); tcg_temp_free_ptr(qn); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } #define DO_DUAL_ACC(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_vmladav *a) \ { \ static MVEGenDualAccOpFn * const fns[4][2] = { \ { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb }, \ { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh }, \ { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw }, \ { NULL, NULL }, \ }; \ return do_dual_acc(s, a, fns[a->size][a->x]); \ } DO_DUAL_ACC(VMLADAV_S, vmladavs) DO_DUAL_ACC(VMLSDAV, vmlsdav) static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a) { static MVEGenDualAccOpFn * const fns[4][2] = { { gen_helper_mve_vmladavub, NULL }, { gen_helper_mve_vmladavuh, NULL }, { gen_helper_mve_vmladavuw, NULL }, { NULL, NULL }, }; return do_dual_acc(s, a, fns[a->size][a->x]); } static void gen_vpst(DisasContext *s, uint32_t mask) { /* * Set the VPR mask fields. We take advantage of MASK01 and MASK23 * being adjacent fields in the register. * * Updating the masks is not predicated, but it is subject to beat-wise * execution, and the mask is updated on the odd-numbered beats. * So if PSR.ECI says we should skip beat 1, we mustn't update the * 01 mask field. */ TCGv_i32 vpr = load_cpu_field(v7m.vpr); switch (s->eci) { case ECI_NONE: case ECI_A0: /* Update both 01 and 23 fields */ tcg_gen_deposit_i32(vpr, vpr, tcg_constant_i32(mask | (mask << 4)), R_V7M_VPR_MASK01_SHIFT, R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH); break; case ECI_A0A1: case ECI_A0A1A2: case ECI_A0A1A2B0: /* Update only the 23 mask field */ tcg_gen_deposit_i32(vpr, vpr, tcg_constant_i32(mask), R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH); break; default: g_assert_not_reached(); } store_cpu_field(vpr, v7m.vpr); } static bool trans_VPST(DisasContext *s, arg_VPST *a) { /* mask == 0 is a "related encoding" */ if (!dc_isar_feature(aa32_mve, s) || !a->mask) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } gen_vpst(s, a->mask); mve_update_and_store_eci(s); return true; } static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a) { /* * Invert the predicate in VPR.P0. We have call out to * a helper because this insn itself is beatwise and can * be predicated. */ if (!dc_isar_feature(aa32_mve, s)) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } gen_helper_mve_vpnot(cpu_env); mve_update_eci(s); return true; } static bool trans_VADDV(DisasContext *s, arg_VADDV *a) { /* VADDV: vector add across vector */ static MVEGenVADDVFn * const fns[4][2] = { { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub }, { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh }, { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw }, { NULL, NULL } }; TCGv_ptr qm; TCGv_i32 rda; if (!dc_isar_feature(aa32_mve, s) || a->size == 3) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } /* * This insn is subject to beat-wise execution. Partial execution * of an A=0 (no-accumulate) insn which does not execute the first * beat must start with the current value of Rda, not zero. */ if (a->a || mve_skip_first_beat(s)) { /* Accumulate input from Rda */ rda = load_reg(s, a->rda); } else { /* Accumulate starting at zero */ rda = tcg_const_i32(0); } qm = mve_qreg_ptr(a->qm); fns[a->size][a->u](rda, cpu_env, qm, rda); store_reg(s, a->rda, rda); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a) { /* * Vector Add Long Across Vector: accumulate the 32-bit * elements of the vector into a 64-bit result stored in * a pair of general-purpose registers. * No need to check Qm's bank: it is only 3 bits in decode. */ TCGv_ptr qm; TCGv_i64 rda; TCGv_i32 rdalo, rdahi; if (!dc_isar_feature(aa32_mve, s)) { return false; } /* * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related * encoding; rdalo always has bit 0 clear so cannot be 13 or 15. */ if (a->rdahi == 13 || a->rdahi == 15) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } /* * This insn is subject to beat-wise execution. Partial execution * of an A=0 (no-accumulate) insn which does not execute the first * beat must start with the current value of RdaHi:RdaLo, not zero. */ if (a->a || mve_skip_first_beat(s)) { /* Accumulate input from RdaHi:RdaLo */ rda = tcg_temp_new_i64(); rdalo = load_reg(s, a->rdalo); rdahi = load_reg(s, a->rdahi); tcg_gen_concat_i32_i64(rda, rdalo, rdahi); tcg_temp_free_i32(rdalo); tcg_temp_free_i32(rdahi); } else { /* Accumulate starting at zero */ rda = tcg_const_i64(0); } qm = mve_qreg_ptr(a->qm); if (a->u) { gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda); } else { gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda); } tcg_temp_free_ptr(qm); rdalo = tcg_temp_new_i32(); rdahi = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(rdalo, rda); tcg_gen_extrh_i64_i32(rdahi, rda); store_reg(s, a->rdalo, rdalo); store_reg(s, a->rdahi, rdahi); tcg_temp_free_i64(rda); mve_update_eci(s); return true; } static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn) { TCGv_ptr qd; uint64_t imm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } imm = asimd_imm_const(a->imm, a->cmode, a->op); qd = mve_qreg_ptr(a->qd); fn(cpu_env, qd, tcg_constant_i64(imm)); tcg_temp_free_ptr(qd); mve_update_eci(s); return true; } static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a) { /* Handle decode of cmode/op here between VORR/VBIC/VMOV */ MVEGenOneOpImmFn *fn; if ((a->cmode & 1) && a->cmode < 12) { if (a->op) { /* * For op=1, the immediate will be inverted by asimd_imm_const(), * so the VBIC becomes a logical AND operation. */ fn = gen_helper_mve_vandi; } else { fn = gen_helper_mve_vorri; } } else { /* There is one unallocated cmode/op combination in this space */ if (a->cmode == 15 && a->op == 1) { return false; } /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */ fn = gen_helper_mve_vmovi; } return do_1imm(s, a, fn); } static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn, bool negateshift) { TCGv_ptr qd, qm; int shift = a->shift; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd | a->qm) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } /* * When we handle a right shift insn using a left-shift helper * which permits a negative shift count to indicate a right-shift, * we must negate the shift count. */ if (negateshift) { shift = -shift; } qd = mve_qreg_ptr(a->qd); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qd, qm, tcg_constant_i32(shift)); tcg_temp_free_ptr(qd); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } #define DO_2SHIFT(INSN, FN, NEGATESHIFT) \ static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ { \ static MVEGenTwoOpShiftFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_2shift(s, a, fns[a->size], NEGATESHIFT); \ } DO_2SHIFT(VSHLI, vshli_u, false) DO_2SHIFT(VQSHLI_S, vqshli_s, false) DO_2SHIFT(VQSHLI_U, vqshli_u, false) DO_2SHIFT(VQSHLUI, vqshlui_s, false) /* These right shifts use a left-shift helper with negated shift count */ DO_2SHIFT(VSHRI_S, vshli_s, true) DO_2SHIFT(VSHRI_U, vshli_u, true) DO_2SHIFT(VRSHRI_S, vrshli_s, true) DO_2SHIFT(VRSHRI_U, vrshli_u, true) DO_2SHIFT(VSRI, vsri, false) DO_2SHIFT(VSLI, vsli, false) static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a, MVEGenTwoOpShiftFn *fn) { TCGv_ptr qda; TCGv_i32 rm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qda) || a->rm == 13 || a->rm == 15 || !fn) { /* Rm cases are UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qda = mve_qreg_ptr(a->qda); rm = load_reg(s, a->rm); fn(cpu_env, qda, qda, rm); tcg_temp_free_ptr(qda); tcg_temp_free_i32(rm); mve_update_eci(s); return true; } #define DO_2SHIFT_SCALAR(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a) \ { \ static MVEGenTwoOpShiftFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_2shift_scalar(s, a, fns[a->size]); \ } DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s) DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u) DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s) DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u) DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s) DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u) DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s) DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u) #define DO_VSHLL(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ { \ static MVEGenTwoOpShiftFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ }; \ return do_2shift(s, a, fns[a->size], false); \ } DO_VSHLL(VSHLL_BS, vshllbs) DO_VSHLL(VSHLL_BU, vshllbu) DO_VSHLL(VSHLL_TS, vshllts) DO_VSHLL(VSHLL_TU, vshlltu) #define DO_2SHIFT_N(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_2shift *a) \ { \ static MVEGenTwoOpShiftFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ }; \ return do_2shift(s, a, fns[a->size], false); \ } DO_2SHIFT_N(VSHRNB, vshrnb) DO_2SHIFT_N(VSHRNT, vshrnt) DO_2SHIFT_N(VRSHRNB, vrshrnb) DO_2SHIFT_N(VRSHRNT, vrshrnt) DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s) DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s) DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u) DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u) DO_2SHIFT_N(VQSHRUNB, vqshrunb) DO_2SHIFT_N(VQSHRUNT, vqshrunt) DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s) DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s) DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u) DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u) DO_2SHIFT_N(VQRSHRUNB, vqrshrunb) DO_2SHIFT_N(VQRSHRUNT, vqrshrunt) static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a) { /* * Whole Vector Left Shift with Carry. The carry is taken * from a general purpose register and written back there. * An imm of 0 means "shift by 32". */ TCGv_ptr qd; TCGv_i32 rdm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { return false; } if (a->rdm == 13 || a->rdm == 15) { /* CONSTRAINED UNPREDICTABLE: we UNDEF */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); rdm = load_reg(s, a->rdm); gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm)); store_reg(s, a->rdm, rdm); tcg_temp_free_ptr(qd); mve_update_eci(s); return true; } static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn) { TCGv_ptr qd; TCGv_i32 rn; /* * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP). * This fills the vector with elements of successively increasing * or decreasing values, starting from Rn. */ if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { return false; } if (a->size == MO_64) { /* size 0b11 is another encoding */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); rn = load_reg(s, a->rn); fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm)); store_reg(s, a->rn, rn); tcg_temp_free_ptr(qd); mve_update_eci(s); return true; } static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn) { TCGv_ptr qd; TCGv_i32 rn, rm; /* * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP) * This fills the vector with elements of successively increasing * or decreasing values, starting from Rn. Rm specifies a point where * the count wraps back around to 0. The updated offset is written back * to Rn. */ if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) { return false; } if (!fn || a->rm == 13 || a->rm == 15) { /* * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE; * Rm == 13 is VIWDUP, VDWDUP. */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qd = mve_qreg_ptr(a->qd); rn = load_reg(s, a->rn); rm = load_reg(s, a->rm); fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm)); store_reg(s, a->rn, rn); tcg_temp_free_ptr(qd); tcg_temp_free_i32(rm); mve_update_eci(s); return true; } static bool trans_VIDUP(DisasContext *s, arg_vidup *a) { static MVEGenVIDUPFn * const fns[] = { gen_helper_mve_vidupb, gen_helper_mve_viduph, gen_helper_mve_vidupw, NULL, }; return do_vidup(s, a, fns[a->size]); } static bool trans_VDDUP(DisasContext *s, arg_vidup *a) { static MVEGenVIDUPFn * const fns[] = { gen_helper_mve_vidupb, gen_helper_mve_viduph, gen_helper_mve_vidupw, NULL, }; /* VDDUP is just like VIDUP but with a negative immediate */ a->imm = -a->imm; return do_vidup(s, a, fns[a->size]); } static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a) { static MVEGenVIWDUPFn * const fns[] = { gen_helper_mve_viwdupb, gen_helper_mve_viwduph, gen_helper_mve_viwdupw, NULL, }; return do_viwdup(s, a, fns[a->size]); } static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a) { static MVEGenVIWDUPFn * const fns[] = { gen_helper_mve_vdwdupb, gen_helper_mve_vdwduph, gen_helper_mve_vdwdupw, NULL, }; return do_viwdup(s, a, fns[a->size]); } static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn) { TCGv_ptr qn, qm; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || !fn) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qn = mve_qreg_ptr(a->qn); qm = mve_qreg_ptr(a->qm); fn(cpu_env, qn, qm); tcg_temp_free_ptr(qn); tcg_temp_free_ptr(qm); if (a->mask) { /* VPT */ gen_vpst(s, a->mask); } mve_update_eci(s); return true; } static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a, MVEGenScalarCmpFn *fn) { TCGv_ptr qn; TCGv_i32 rm; if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) { return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qn = mve_qreg_ptr(a->qn); if (a->rm == 15) { /* Encoding Rm=0b1111 means "constant zero" */ rm = tcg_constant_i32(0); } else { rm = load_reg(s, a->rm); } fn(cpu_env, qn, rm); tcg_temp_free_ptr(qn); tcg_temp_free_i32(rm); if (a->mask) { /* VPT */ gen_vpst(s, a->mask); } mve_update_eci(s); return true; } #define DO_VCMP(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_vcmp *a) \ { \ static MVEGenCmpFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_vcmp(s, a, fns[a->size]); \ } \ static bool trans_##INSN##_scalar(DisasContext *s, \ arg_vcmp_scalar *a) \ { \ static MVEGenScalarCmpFn * const fns[] = { \ gen_helper_mve_##FN##_scalarb, \ gen_helper_mve_##FN##_scalarh, \ gen_helper_mve_##FN##_scalarw, \ NULL, \ }; \ return do_vcmp_scalar(s, a, fns[a->size]); \ } DO_VCMP(VCMPEQ, vcmpeq) DO_VCMP(VCMPNE, vcmpne) DO_VCMP(VCMPCS, vcmpcs) DO_VCMP(VCMPHI, vcmphi) DO_VCMP(VCMPGE, vcmpge) DO_VCMP(VCMPLT, vcmplt) DO_VCMP(VCMPGT, vcmpgt) DO_VCMP(VCMPLE, vcmple) static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn) { /* * MIN/MAX operations across a vector: compute the min or * max of the initial value in a general purpose register * and all the elements in the vector, and store it back * into the general purpose register. */ TCGv_ptr qm; TCGv_i32 rda; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) || !fn || a->rda == 13 || a->rda == 15) { /* Rda cases are UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qm = mve_qreg_ptr(a->qm); rda = load_reg(s, a->rda); fn(rda, cpu_env, qm, rda); store_reg(s, a->rda, rda); tcg_temp_free_ptr(qm); mve_update_eci(s); return true; } #define DO_VMAXV(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_vmaxv *a) \ { \ static MVEGenVADDVFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_vmaxv(s, a, fns[a->size]); \ } DO_VMAXV(VMAXV_S, vmaxvs) DO_VMAXV(VMAXV_U, vmaxvu) DO_VMAXV(VMAXAV, vmaxav) DO_VMAXV(VMINV_S, vminvs) DO_VMAXV(VMINV_U, vminvu) DO_VMAXV(VMINAV, vminav) static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn) { /* Absolute difference accumulated across vector */ TCGv_ptr qn, qm; TCGv_i32 rda; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm | a->qn) || !fn || a->rda == 13 || a->rda == 15) { /* Rda cases are UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } qm = mve_qreg_ptr(a->qm); qn = mve_qreg_ptr(a->qn); rda = load_reg(s, a->rda); fn(rda, cpu_env, qn, qm, rda); store_reg(s, a->rda, rda); tcg_temp_free_ptr(qm); tcg_temp_free_ptr(qn); mve_update_eci(s); return true; } #define DO_VABAV(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_vabav *a) \ { \ static MVEGenVABAVFn * const fns[] = { \ gen_helper_mve_##FN##b, \ gen_helper_mve_##FN##h, \ gen_helper_mve_##FN##w, \ NULL, \ }; \ return do_vabav(s, a, fns[a->size]); \ } DO_VABAV(VABAV_S, vabavs) DO_VABAV(VABAV_U, vabavu) static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a) { /* * VMOV two 32-bit vector lanes to two general-purpose registers. * This insn is not predicated but it is subject to beat-wise * execution if it is not in an IT block. For us this means * only that if PSR.ECI says we should not be executing the beat * corresponding to the lane of the vector register being accessed * then we should skip perfoming the move, and that we need to do * the usual check for bad ECI state and advance of ECI state. * (If PSR.ECI is non-zero then we cannot be in an IT block.) */ TCGv_i32 tmp; int vd; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 || a->rt == a->rt2) { /* Rt/Rt2 cases are UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } /* Convert Qreg index to Dreg for read_neon_element32() etc */ vd = a->qd * 2; if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { tmp = tcg_temp_new_i32(); read_neon_element32(tmp, vd, a->idx, MO_32); store_reg(s, a->rt, tmp); } if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { tmp = tcg_temp_new_i32(); read_neon_element32(tmp, vd + 1, a->idx, MO_32); store_reg(s, a->rt2, tmp); } mve_update_and_store_eci(s); return true; } static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a) { /* * VMOV two general-purpose registers to two 32-bit vector lanes. * This insn is not predicated but it is subject to beat-wise * execution if it is not in an IT block. For us this means * only that if PSR.ECI says we should not be executing the beat * corresponding to the lane of the vector register being accessed * then we should skip perfoming the move, and that we need to do * the usual check for bad ECI state and advance of ECI state. * (If PSR.ECI is non-zero then we cannot be in an IT block.) */ TCGv_i32 tmp; int vd; if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) || a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) { /* Rt/Rt2 cases are UNPREDICTABLE */ return false; } if (!mve_eci_check(s) || !vfp_access_check(s)) { return true; } /* Convert Qreg idx to Dreg for read_neon_element32() etc */ vd = a->qd * 2; if (!mve_skip_vmov(s, vd, a->idx, MO_32)) { tmp = load_reg(s, a->rt); write_neon_element32(tmp, vd, a->idx, MO_32); tcg_temp_free_i32(tmp); } if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) { tmp = load_reg(s, a->rt2); write_neon_element32(tmp, vd + 1, a->idx, MO_32); tcg_temp_free_i32(tmp); } mve_update_and_store_eci(s); return true; }