/* * Routines common to user and system emulation of load/store. * * Copyright (c) 2022 Linaro, Ltd. * * SPDX-License-Identifier: GPL-2.0-or-later * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "host/load-extract-al16-al8.h" #include "host/store-insert-al16.h" #ifdef CONFIG_ATOMIC64 # define HAVE_al8 true #else # define HAVE_al8 false #endif #define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8) /** * required_atomicity: * * Return the lg2 bytes of atomicity required by @memop for @p. * If the operation must be split into two operations to be * examined separately for atomicity, return -lg2. */ static int required_atomicity(CPUState *cpu, uintptr_t p, MemOp memop) { MemOp atom = memop & MO_ATOM_MASK; MemOp size = memop & MO_SIZE; MemOp half = size ? size - 1 : 0; unsigned tmp; int atmax; switch (atom) { case MO_ATOM_NONE: atmax = MO_8; break; case MO_ATOM_IFALIGN_PAIR: size = half; /* fall through */ case MO_ATOM_IFALIGN: tmp = (1 << size) - 1; atmax = p & tmp ? MO_8 : size; break; case MO_ATOM_WITHIN16: tmp = p & 15; atmax = (tmp + (1 << size) <= 16 ? size : MO_8); break; case MO_ATOM_WITHIN16_PAIR: tmp = p & 15; if (tmp + (1 << size) <= 16) { atmax = size; } else if (tmp + (1 << half) == 16) { /* * The pair exactly straddles the boundary. * Both halves are naturally aligned and atomic. */ atmax = half; } else { /* * One of the pair crosses the boundary, and is non-atomic. * The other of the pair does not cross, and is atomic. */ atmax = -half; } break; case MO_ATOM_SUBALIGN: /* * Examine the alignment of p to determine if there are subobjects * that must be aligned. Note that we only really need ctz4() -- * any more sigificant bits are discarded by the immediately * following comparison. */ tmp = ctz32(p); atmax = MIN(size, tmp); break; default: g_assert_not_reached(); } /* * Here we have the architectural atomicity of the operation. * However, when executing in a serial context, we need no extra * host atomicity in order to avoid racing. This reduction * avoids looping with cpu_loop_exit_atomic. */ if (cpu_in_serial_context(cpu)) { return MO_8; } return atmax; } /** * load_atomic2: * @pv: host address * * Atomically load 2 aligned bytes from @pv. */ static inline uint16_t load_atomic2(void *pv) { uint16_t *p = __builtin_assume_aligned(pv, 2); return qatomic_read(p); } /** * load_atomic4: * @pv: host address * * Atomically load 4 aligned bytes from @pv. */ static inline uint32_t load_atomic4(void *pv) { uint32_t *p = __builtin_assume_aligned(pv, 4); return qatomic_read(p); } /** * load_atomic8: * @pv: host address * * Atomically load 8 aligned bytes from @pv. */ static inline uint64_t load_atomic8(void *pv) { uint64_t *p = __builtin_assume_aligned(pv, 8); qemu_build_assert(HAVE_al8); return qatomic_read__nocheck(p); } /** * load_atomic8_or_exit: * @cpu: generic cpu state * @ra: host unwind address * @pv: host address * * Atomically load 8 aligned bytes from @pv. * If this is not possible, longjmp out to restart serially. */ static uint64_t load_atomic8_or_exit(CPUState *cpu, uintptr_t ra, void *pv) { if (HAVE_al8) { return load_atomic8(pv); } #ifdef CONFIG_USER_ONLY /* * If the page is not writable, then assume the value is immutable * and requires no locking. This ignores the case of MAP_SHARED with * another process, because the fallback start_exclusive solution * provides no protection across processes. */ WITH_MMAP_LOCK_GUARD() { if (!page_check_range(h2g(pv), 8, PAGE_WRITE_ORG)) { uint64_t *p = __builtin_assume_aligned(pv, 8); return *p; } } #endif /* Ultimate fallback: re-execute in serial context. */ cpu_loop_exit_atomic(cpu, ra); } /** * load_atomic16_or_exit: * @cpu: generic cpu state * @ra: host unwind address * @pv: host address * * Atomically load 16 aligned bytes from @pv. * If this is not possible, longjmp out to restart serially. */ static Int128 load_atomic16_or_exit(CPUState *cpu, uintptr_t ra, void *pv) { Int128 *p = __builtin_assume_aligned(pv, 16); if (HAVE_ATOMIC128_RO) { return atomic16_read_ro(p); } /* * We can only use cmpxchg to emulate a load if the page is writable. * If the page is not writable, then assume the value is immutable * and requires no locking. This ignores the case of MAP_SHARED with * another process, because the fallback start_exclusive solution * provides no protection across processes. * * In system mode all guest pages are writable. For user mode, * we must take mmap_lock so that the query remains valid until * the write is complete -- tests/tcg/multiarch/munmap-pthread.c * is an example that can race. */ WITH_MMAP_LOCK_GUARD() { #ifdef CONFIG_USER_ONLY if (!page_check_range(h2g(p), 16, PAGE_WRITE_ORG)) { return *p; } #endif if (HAVE_ATOMIC128_RW) { return atomic16_read_rw(p); } } /* Ultimate fallback: re-execute in serial context. */ cpu_loop_exit_atomic(cpu, ra); } /** * load_atom_extract_al4x2: * @pv: host address * * Load 4 bytes from @p, from two sequential atomic 4-byte loads. */ static uint32_t load_atom_extract_al4x2(void *pv) { uintptr_t pi = (uintptr_t)pv; int sh = (pi & 3) * 8; uint32_t a, b; pv = (void *)(pi & ~3); a = load_atomic4(pv); b = load_atomic4(pv + 4); if (HOST_BIG_ENDIAN) { return (a << sh) | (b >> (-sh & 31)); } else { return (a >> sh) | (b << (-sh & 31)); } } /** * load_atom_extract_al8x2: * @pv: host address * * Load 8 bytes from @p, from two sequential atomic 8-byte loads. */ static uint64_t load_atom_extract_al8x2(void *pv) { uintptr_t pi = (uintptr_t)pv; int sh = (pi & 7) * 8; uint64_t a, b; pv = (void *)(pi & ~7); a = load_atomic8(pv); b = load_atomic8(pv + 8); if (HOST_BIG_ENDIAN) { return (a << sh) | (b >> (-sh & 63)); } else { return (a >> sh) | (b << (-sh & 63)); } } /** * load_atom_extract_al8_or_exit: * @cpu: generic cpu state * @ra: host unwind address * @pv: host address * @s: object size in bytes, @s <= 4. * * Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does * not cross an 8-byte boundary. This means that we can perform an atomic * 8-byte load and extract. * The value is returned in the low bits of a uint32_t. */ static uint32_t load_atom_extract_al8_or_exit(CPUState *cpu, uintptr_t ra, void *pv, int s) { uintptr_t pi = (uintptr_t)pv; int o = pi & 7; int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8; pv = (void *)(pi & ~7); return load_atomic8_or_exit(cpu, ra, pv) >> shr; } /** * load_atom_extract_al16_or_exit: * @cpu: generic cpu state * @ra: host unwind address * @p: host address * @s: object size in bytes, @s <= 8. * * Atomically load @s bytes from @p, when p % 16 < 8 * and p % 16 + s > 8. I.e. does not cross a 16-byte * boundary, but *does* cross an 8-byte boundary. * This is the slow version, so we must have eliminated * any faster load_atom_extract_al8_or_exit case. * * If this is not possible, longjmp out to restart serially. */ static uint64_t load_atom_extract_al16_or_exit(CPUState *cpu, uintptr_t ra, void *pv, int s) { uintptr_t pi = (uintptr_t)pv; int o = pi & 7; int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8; Int128 r; /* * Note constraints above: p & 8 must be clear. * Provoke SIGBUS if possible otherwise. */ pv = (void *)(pi & ~7); r = load_atomic16_or_exit(cpu, ra, pv); r = int128_urshift(r, shr); return int128_getlo(r); } /** * load_atom_4_by_2: * @pv: host address * * Load 4 bytes from @pv, with two 2-byte atomic loads. */ static inline uint32_t load_atom_4_by_2(void *pv) { uint32_t a = load_atomic2(pv); uint32_t b = load_atomic2(pv + 2); if (HOST_BIG_ENDIAN) { return (a << 16) | b; } else { return (b << 16) | a; } } /** * load_atom_8_by_2: * @pv: host address * * Load 8 bytes from @pv, with four 2-byte atomic loads. */ static inline uint64_t load_atom_8_by_2(void *pv) { uint32_t a = load_atom_4_by_2(pv); uint32_t b = load_atom_4_by_2(pv + 4); if (HOST_BIG_ENDIAN) { return ((uint64_t)a << 32) | b; } else { return ((uint64_t)b << 32) | a; } } /** * load_atom_8_by_4: * @pv: host address * * Load 8 bytes from @pv, with two 4-byte atomic loads. */ static inline uint64_t load_atom_8_by_4(void *pv) { uint32_t a = load_atomic4(pv); uint32_t b = load_atomic4(pv + 4); if (HOST_BIG_ENDIAN) { return ((uint64_t)a << 32) | b; } else { return ((uint64_t)b << 32) | a; } } /** * load_atom_8_by_8_or_4: * @pv: host address * * Load 8 bytes from aligned @pv, with at least 4-byte atomicity. */ static inline uint64_t load_atom_8_by_8_or_4(void *pv) { if (HAVE_al8_fast) { return load_atomic8(pv); } else { return load_atom_8_by_4(pv); } } /** * load_atom_2: * @p: host address * @memop: the full memory op * * Load 2 bytes from @p, honoring the atomicity of @memop. */ static uint16_t load_atom_2(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop) { uintptr_t pi = (uintptr_t)pv; int atmax; if (likely((pi & 1) == 0)) { return load_atomic2(pv); } if (HAVE_ATOMIC128_RO) { intptr_t left_in_page = -(pi | TARGET_PAGE_MASK); if (likely(left_in_page > 8)) { return load_atom_extract_al16_or_al8(pv, 2); } } atmax = required_atomicity(cpu, pi, memop); switch (atmax) { case MO_8: return lduw_he_p(pv); case MO_16: /* The only case remaining is MO_ATOM_WITHIN16. */ if (!HAVE_al8_fast && (pi & 3) == 1) { /* Big or little endian, we want the middle two bytes. */ return load_atomic4(pv - 1) >> 8; } if ((pi & 15) != 7) { return load_atom_extract_al8_or_exit(cpu, ra, pv, 2); } return load_atom_extract_al16_or_exit(cpu, ra, pv, 2); default: g_assert_not_reached(); } } /** * load_atom_4: * @p: host address * @memop: the full memory op * * Load 4 bytes from @p, honoring the atomicity of @memop. */ static uint32_t load_atom_4(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop) { uintptr_t pi = (uintptr_t)pv; int atmax; if (likely((pi & 3) == 0)) { return load_atomic4(pv); } if (HAVE_ATOMIC128_RO) { intptr_t left_in_page = -(pi | TARGET_PAGE_MASK); if (likely(left_in_page > 8)) { return load_atom_extract_al16_or_al8(pv, 4); } } atmax = required_atomicity(cpu, pi, memop); switch (atmax) { case MO_8: case MO_16: case -MO_16: /* * For MO_ATOM_IFALIGN, this is more atomicity than required, * but it's trivially supported on all hosts, better than 4 * individual byte loads (when the host requires alignment), * and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0. */ return load_atom_extract_al4x2(pv); case MO_32: if (!(pi & 4)) { return load_atom_extract_al8_or_exit(cpu, ra, pv, 4); } return load_atom_extract_al16_or_exit(cpu, ra, pv, 4); default: g_assert_not_reached(); } } /** * load_atom_8: * @p: host address * @memop: the full memory op * * Load 8 bytes from @p, honoring the atomicity of @memop. */ static uint64_t load_atom_8(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop) { uintptr_t pi = (uintptr_t)pv; int atmax; /* * If the host does not support 8-byte atomics, wait until we have * examined the atomicity parameters below. */ if (HAVE_al8 && likely((pi & 7) == 0)) { return load_atomic8(pv); } if (HAVE_ATOMIC128_RO) { return load_atom_extract_al16_or_al8(pv, 8); } atmax = required_atomicity(cpu, pi, memop); if (atmax == MO_64) { if (!HAVE_al8 && (pi & 7) == 0) { load_atomic8_or_exit(cpu, ra, pv); } return load_atom_extract_al16_or_exit(cpu, ra, pv, 8); } if (HAVE_al8_fast) { return load_atom_extract_al8x2(pv); } switch (atmax) { case MO_8: return ldq_he_p(pv); case MO_16: return load_atom_8_by_2(pv); case MO_32: return load_atom_8_by_4(pv); case -MO_32: if (HAVE_al8) { return load_atom_extract_al8x2(pv); } cpu_loop_exit_atomic(cpu, ra); default: g_assert_not_reached(); } } /** * load_atom_16: * @p: host address * @memop: the full memory op * * Load 16 bytes from @p, honoring the atomicity of @memop. */ static Int128 load_atom_16(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop) { uintptr_t pi = (uintptr_t)pv; int atmax; Int128 r; uint64_t a, b; /* * If the host does not support 16-byte atomics, wait until we have * examined the atomicity parameters below. */ if (HAVE_ATOMIC128_RO && likely((pi & 15) == 0)) { return atomic16_read_ro(pv); } atmax = required_atomicity(cpu, pi, memop); switch (atmax) { case MO_8: memcpy(&r, pv, 16); return r; case MO_16: a = load_atom_8_by_2(pv); b = load_atom_8_by_2(pv + 8); break; case MO_32: a = load_atom_8_by_4(pv); b = load_atom_8_by_4(pv + 8); break; case MO_64: if (!HAVE_al8) { cpu_loop_exit_atomic(cpu, ra); } a = load_atomic8(pv); b = load_atomic8(pv + 8); break; case -MO_64: if (!HAVE_al8) { cpu_loop_exit_atomic(cpu, ra); } a = load_atom_extract_al8x2(pv); b = load_atom_extract_al8x2(pv + 8); break; case MO_128: return load_atomic16_or_exit(cpu, ra, pv); default: g_assert_not_reached(); } return int128_make128(HOST_BIG_ENDIAN ? b : a, HOST_BIG_ENDIAN ? a : b); } /** * store_atomic2: * @pv: host address * @val: value to store * * Atomically store 2 aligned bytes to @pv. */ static inline void store_atomic2(void *pv, uint16_t val) { uint16_t *p = __builtin_assume_aligned(pv, 2); qatomic_set(p, val); } /** * store_atomic4: * @pv: host address * @val: value to store * * Atomically store 4 aligned bytes to @pv. */ static inline void store_atomic4(void *pv, uint32_t val) { uint32_t *p = __builtin_assume_aligned(pv, 4); qatomic_set(p, val); } /** * store_atomic8: * @pv: host address * @val: value to store * * Atomically store 8 aligned bytes to @pv. */ static inline void store_atomic8(void *pv, uint64_t val) { uint64_t *p = __builtin_assume_aligned(pv, 8); qemu_build_assert(HAVE_al8); qatomic_set__nocheck(p, val); } /** * store_atom_4x2 */ static inline void store_atom_4_by_2(void *pv, uint32_t val) { store_atomic2(pv, val >> (HOST_BIG_ENDIAN ? 16 : 0)); store_atomic2(pv + 2, val >> (HOST_BIG_ENDIAN ? 0 : 16)); } /** * store_atom_8_by_2 */ static inline void store_atom_8_by_2(void *pv, uint64_t val) { store_atom_4_by_2(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0)); store_atom_4_by_2(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32)); } /** * store_atom_8_by_4 */ static inline void store_atom_8_by_4(void *pv, uint64_t val) { store_atomic4(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0)); store_atomic4(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32)); } /** * store_atom_insert_al4: * @p: host address * @val: shifted value to store * @msk: mask for value to store * * Atomically store @val to @p, masked by @msk. */ static void store_atom_insert_al4(uint32_t *p, uint32_t val, uint32_t msk) { uint32_t old, new; p = __builtin_assume_aligned(p, 4); old = qatomic_read(p); do { new = (old & ~msk) | val; } while (!__atomic_compare_exchange_n(p, &old, new, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)); } /** * store_atom_insert_al8: * @p: host address * @val: shifted value to store * @msk: mask for value to store * * Atomically store @val to @p masked by @msk. */ static void store_atom_insert_al8(uint64_t *p, uint64_t val, uint64_t msk) { uint64_t old, new; qemu_build_assert(HAVE_al8); p = __builtin_assume_aligned(p, 8); old = qatomic_read__nocheck(p); do { new = (old & ~msk) | val; } while (!__atomic_compare_exchange_n(p, &old, new, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)); } /** * store_bytes_leN: * @pv: host address * @size: number of bytes to store * @val_le: data to store * * Store @size bytes at @p. The bytes to store are extracted in little-endian order * from @val_le; return the bytes of @val_le beyond @size that have not been stored. */ static uint64_t store_bytes_leN(void *pv, int size, uint64_t val_le) { uint8_t *p = pv; for (int i = 0; i < size; i++, val_le >>= 8) { p[i] = val_le; } return val_le; } /** * store_parts_leN * @pv: host address * @size: number of bytes to store * @val_le: data to store * * As store_bytes_leN, but atomically on each aligned part. */ G_GNUC_UNUSED static uint64_t store_parts_leN(void *pv, int size, uint64_t val_le) { do { int n; /* Find minimum of alignment and size */ switch (((uintptr_t)pv | size) & 7) { case 4: store_atomic4(pv, le32_to_cpu(val_le)); val_le >>= 32; n = 4; break; case 2: case 6: store_atomic2(pv, le16_to_cpu(val_le)); val_le >>= 16; n = 2; break; default: *(uint8_t *)pv = val_le; val_le >>= 8; n = 1; break; case 0: g_assert_not_reached(); } pv += n; size -= n; } while (size != 0); return val_le; } /** * store_whole_le4 * @pv: host address * @size: number of bytes to store * @val_le: data to store * * As store_bytes_leN, but atomically as a whole. * Four aligned bytes are guaranteed to cover the store. */ static uint64_t store_whole_le4(void *pv, int size, uint64_t val_le) { int sz = size * 8; int o = (uintptr_t)pv & 3; int sh = o * 8; uint32_t m = MAKE_64BIT_MASK(0, sz); uint32_t v; if (HOST_BIG_ENDIAN) { v = bswap32(val_le) >> sh; m = bswap32(m) >> sh; } else { v = val_le << sh; m <<= sh; } store_atom_insert_al4(pv - o, v, m); return val_le >> sz; } /** * store_whole_le8 * @pv: host address * @size: number of bytes to store * @val_le: data to store * * As store_bytes_leN, but atomically as a whole. * Eight aligned bytes are guaranteed to cover the store. */ static uint64_t store_whole_le8(void *pv, int size, uint64_t val_le) { int sz = size * 8; int o = (uintptr_t)pv & 7; int sh = o * 8; uint64_t m = MAKE_64BIT_MASK(0, sz); uint64_t v; qemu_build_assert(HAVE_al8); if (HOST_BIG_ENDIAN) { v = bswap64(val_le) >> sh; m = bswap64(m) >> sh; } else { v = val_le << sh; m <<= sh; } store_atom_insert_al8(pv - o, v, m); return val_le >> sz; } /** * store_whole_le16 * @pv: host address * @size: number of bytes to store * @val_le: data to store * * As store_bytes_leN, but atomically as a whole. * 16 aligned bytes are guaranteed to cover the store. */ static uint64_t store_whole_le16(void *pv, int size, Int128 val_le) { int sz = size * 8; int o = (uintptr_t)pv & 15; int sh = o * 8; Int128 m, v; qemu_build_assert(HAVE_ATOMIC128_RW); /* Like MAKE_64BIT_MASK(0, sz), but larger. */ if (sz <= 64) { m = int128_make64(MAKE_64BIT_MASK(0, sz)); } else { m = int128_make128(-1, MAKE_64BIT_MASK(0, sz - 64)); } if (HOST_BIG_ENDIAN) { v = int128_urshift(bswap128(val_le), sh); m = int128_urshift(bswap128(m), sh); } else { v = int128_lshift(val_le, sh); m = int128_lshift(m, sh); } store_atom_insert_al16(pv - o, v, m); if (sz <= 64) { return 0; } return int128_gethi(val_le) >> (sz - 64); } /** * store_atom_2: * @p: host address * @val: the value to store * @memop: the full memory op * * Store 2 bytes to @p, honoring the atomicity of @memop. */ static void store_atom_2(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop, uint16_t val) { uintptr_t pi = (uintptr_t)pv; int atmax; if (likely((pi & 1) == 0)) { store_atomic2(pv, val); return; } atmax = required_atomicity(cpu, pi, memop); if (atmax == MO_8) { stw_he_p(pv, val); return; } /* * The only case remaining is MO_ATOM_WITHIN16. * Big or little endian, we want the middle two bytes in each test. */ if ((pi & 3) == 1) { store_atom_insert_al4(pv - 1, (uint32_t)val << 8, MAKE_64BIT_MASK(8, 16)); return; } else if ((pi & 7) == 3) { if (HAVE_al8) { store_atom_insert_al8(pv - 3, (uint64_t)val << 24, MAKE_64BIT_MASK(24, 16)); return; } } else if ((pi & 15) == 7) { if (HAVE_ATOMIC128_RW) { Int128 v = int128_lshift(int128_make64(val), 56); Int128 m = int128_lshift(int128_make64(0xffff), 56); store_atom_insert_al16(pv - 7, v, m); return; } } else { g_assert_not_reached(); } cpu_loop_exit_atomic(cpu, ra); } /** * store_atom_4: * @p: host address * @val: the value to store * @memop: the full memory op * * Store 4 bytes to @p, honoring the atomicity of @memop. */ static void store_atom_4(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop, uint32_t val) { uintptr_t pi = (uintptr_t)pv; int atmax; if (likely((pi & 3) == 0)) { store_atomic4(pv, val); return; } atmax = required_atomicity(cpu, pi, memop); switch (atmax) { case MO_8: stl_he_p(pv, val); return; case MO_16: store_atom_4_by_2(pv, val); return; case -MO_16: { uint32_t val_le = cpu_to_le32(val); int s2 = pi & 3; int s1 = 4 - s2; switch (s2) { case 1: val_le = store_whole_le4(pv, s1, val_le); *(uint8_t *)(pv + 3) = val_le; break; case 3: *(uint8_t *)pv = val_le; store_whole_le4(pv + 1, s2, val_le >> 8); break; case 0: /* aligned */ case 2: /* atmax MO_16 */ default: g_assert_not_reached(); } } return; case MO_32: if ((pi & 7) < 4) { if (HAVE_al8) { store_whole_le8(pv, 4, cpu_to_le32(val)); return; } } else { if (HAVE_ATOMIC128_RW) { store_whole_le16(pv, 4, int128_make64(cpu_to_le32(val))); return; } } cpu_loop_exit_atomic(cpu, ra); default: g_assert_not_reached(); } } /** * store_atom_8: * @p: host address * @val: the value to store * @memop: the full memory op * * Store 8 bytes to @p, honoring the atomicity of @memop. */ static void store_atom_8(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop, uint64_t val) { uintptr_t pi = (uintptr_t)pv; int atmax; if (HAVE_al8 && likely((pi & 7) == 0)) { store_atomic8(pv, val); return; } atmax = required_atomicity(cpu, pi, memop); switch (atmax) { case MO_8: stq_he_p(pv, val); return; case MO_16: store_atom_8_by_2(pv, val); return; case MO_32: store_atom_8_by_4(pv, val); return; case -MO_32: if (HAVE_al8) { uint64_t val_le = cpu_to_le64(val); int s2 = pi & 7; int s1 = 8 - s2; switch (s2) { case 1 ... 3: val_le = store_whole_le8(pv, s1, val_le); store_bytes_leN(pv + s1, s2, val_le); break; case 5 ... 7: val_le = store_bytes_leN(pv, s1, val_le); store_whole_le8(pv + s1, s2, val_le); break; case 0: /* aligned */ case 4: /* atmax MO_32 */ default: g_assert_not_reached(); } return; } break; case MO_64: if (HAVE_ATOMIC128_RW) { store_whole_le16(pv, 8, int128_make64(cpu_to_le64(val))); return; } break; default: g_assert_not_reached(); } cpu_loop_exit_atomic(cpu, ra); } /** * store_atom_16: * @p: host address * @val: the value to store * @memop: the full memory op * * Store 16 bytes to @p, honoring the atomicity of @memop. */ static void store_atom_16(CPUState *cpu, uintptr_t ra, void *pv, MemOp memop, Int128 val) { uintptr_t pi = (uintptr_t)pv; uint64_t a, b; int atmax; if (HAVE_ATOMIC128_RW && likely((pi & 15) == 0)) { atomic16_set(pv, val); return; } atmax = required_atomicity(cpu, pi, memop); a = HOST_BIG_ENDIAN ? int128_gethi(val) : int128_getlo(val); b = HOST_BIG_ENDIAN ? int128_getlo(val) : int128_gethi(val); switch (atmax) { case MO_8: memcpy(pv, &val, 16); return; case MO_16: store_atom_8_by_2(pv, a); store_atom_8_by_2(pv + 8, b); return; case MO_32: store_atom_8_by_4(pv, a); store_atom_8_by_4(pv + 8, b); return; case MO_64: if (HAVE_al8) { store_atomic8(pv, a); store_atomic8(pv + 8, b); return; } break; case -MO_64: if (HAVE_ATOMIC128_RW) { uint64_t val_le; int s2 = pi & 15; int s1 = 16 - s2; if (HOST_BIG_ENDIAN) { val = bswap128(val); } switch (s2) { case 1 ... 7: val_le = store_whole_le16(pv, s1, val); store_bytes_leN(pv + s1, s2, val_le); break; case 9 ... 15: store_bytes_leN(pv, s1, int128_getlo(val)); val = int128_urshift(val, s1 * 8); store_whole_le16(pv + s1, s2, val); break; case 0: /* aligned */ case 8: /* atmax MO_64 */ default: g_assert_not_reached(); } return; } break; case MO_128: if (HAVE_ATOMIC128_RW) { atomic16_set(pv, val); return; } break; default: g_assert_not_reached(); } cpu_loop_exit_atomic(cpu, ra); }