/* * QEMU AHCI Emulation * * Copyright (c) 2010 qiaochong@loongson.cn * Copyright (c) 2010 Roland Elek * Copyright (c) 2010 Sebastian Herbszt * Copyright (c) 2010 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * * * lspci dump of a ICH-9 real device in IDE mode (hopefully close enough): * * 00:1f.2 SATA controller [0106]: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA AHCI Controller [8086:2922] (rev 02) (prog-if 01 [AHCI 1.0]) * Subsystem: Intel Corporation 82801IR/IO/IH (ICH9R/DO/DH) 6 port SATA AHCI Controller [8086:2922] * Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ * Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- SERR- * Capabilities: [b0] Vendor Specific Information * Kernel driver in use: ahci * Kernel modules: ahci * 00: 86 80 22 29 07 04 b0 02 02 01 06 01 00 00 00 00 * 10: 01 d0 00 00 01 cc 00 00 81 c8 00 00 01 c8 00 00 * 20: 81 c4 00 00 00 90 bf fe 00 00 00 00 86 80 22 29 * 30: 00 00 00 00 80 00 00 00 00 00 00 00 0f 02 00 00 * 40: 00 80 00 80 00 00 00 00 00 00 00 00 00 00 00 00 * 50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 70: 01 a8 03 40 08 00 00 00 00 00 00 00 00 00 00 00 * 80: 05 70 09 00 0c f0 e0 fe d9 41 00 00 00 00 00 00 * 90: 40 00 0f 82 93 01 00 00 00 00 00 00 00 00 00 00 * a0: ac 00 00 00 0a 00 12 00 12 b0 10 00 48 00 00 00 * b0: 09 00 06 20 00 00 00 00 00 00 00 00 00 00 00 00 * c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * f0: 00 00 00 00 00 00 00 00 86 0f 02 00 00 00 00 00 * */ #include #include #include #include #include "monitor.h" #include "dma.h" #include "cpu-common.h" #include "blockdev.h" #include "internal.h" #include /* #define DEBUG_AHCI */ #ifdef DEBUG_AHCI #define DPRINTF(port, fmt, ...) \ do { fprintf(stderr, "ahci: %s: [%d] ", __FUNCTION__, port); \ fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(port, fmt, ...) do {} while(0) #endif #define AHCI_PCI_BAR 5 #define AHCI_MAX_PORTS 32 #define AHCI_MAX_SG 168 /* hardware max is 64K */ #define AHCI_DMA_BOUNDARY 0xffffffff #define AHCI_USE_CLUSTERING 0 #define AHCI_MAX_CMDS 32 #define AHCI_CMD_SZ 32 #define AHCI_CMD_SLOT_SZ (AHCI_MAX_CMDS * AHCI_CMD_SZ) #define AHCI_RX_FIS_SZ 256 #define AHCI_CMD_TBL_CDB 0x40 #define AHCI_CMD_TBL_HDR_SZ 0x80 #define AHCI_CMD_TBL_SZ (AHCI_CMD_TBL_HDR_SZ + (AHCI_MAX_SG * 16)) #define AHCI_CMD_TBL_AR_SZ (AHCI_CMD_TBL_SZ * AHCI_MAX_CMDS) #define AHCI_PORT_PRIV_DMA_SZ (AHCI_CMD_SLOT_SZ + AHCI_CMD_TBL_AR_SZ + \ AHCI_RX_FIS_SZ) #define AHCI_IRQ_ON_SG (1 << 31) #define AHCI_CMD_ATAPI (1 << 5) #define AHCI_CMD_WRITE (1 << 6) #define AHCI_CMD_PREFETCH (1 << 7) #define AHCI_CMD_RESET (1 << 8) #define AHCI_CMD_CLR_BUSY (1 << 10) #define RX_FIS_D2H_REG 0x40 /* offset of D2H Register FIS data */ #define RX_FIS_SDB 0x58 /* offset of SDB FIS data */ #define RX_FIS_UNK 0x60 /* offset of Unknown FIS data */ /* global controller registers */ #define HOST_CAP 0x00 /* host capabilities */ #define HOST_CTL 0x04 /* global host control */ #define HOST_IRQ_STAT 0x08 /* interrupt status */ #define HOST_PORTS_IMPL 0x0c /* bitmap of implemented ports */ #define HOST_VERSION 0x10 /* AHCI spec. version compliancy */ /* HOST_CTL bits */ #define HOST_CTL_RESET (1 << 0) /* reset controller; self-clear */ #define HOST_CTL_IRQ_EN (1 << 1) /* global IRQ enable */ #define HOST_CTL_AHCI_EN (1 << 31) /* AHCI enabled */ /* HOST_CAP bits */ #define HOST_CAP_SSC (1 << 14) /* Slumber capable */ #define HOST_CAP_AHCI (1 << 18) /* AHCI only */ #define HOST_CAP_CLO (1 << 24) /* Command List Override support */ #define HOST_CAP_SSS (1 << 27) /* Staggered Spin-up */ #define HOST_CAP_NCQ (1 << 30) /* Native Command Queueing */ #define HOST_CAP_64 (1 << 31) /* PCI DAC (64-bit DMA) support */ /* registers for each SATA port */ #define PORT_LST_ADDR 0x00 /* command list DMA addr */ #define PORT_LST_ADDR_HI 0x04 /* command list DMA addr hi */ #define PORT_FIS_ADDR 0x08 /* FIS rx buf addr */ #define PORT_FIS_ADDR_HI 0x0c /* FIS rx buf addr hi */ #define PORT_IRQ_STAT 0x10 /* interrupt status */ #define PORT_IRQ_MASK 0x14 /* interrupt enable/disable mask */ #define PORT_CMD 0x18 /* port command */ #define PORT_TFDATA 0x20 /* taskfile data */ #define PORT_SIG 0x24 /* device TF signature */ #define PORT_SCR_STAT 0x28 /* SATA phy register: SStatus */ #define PORT_SCR_CTL 0x2c /* SATA phy register: SControl */ #define PORT_SCR_ERR 0x30 /* SATA phy register: SError */ #define PORT_SCR_ACT 0x34 /* SATA phy register: SActive */ #define PORT_CMD_ISSUE 0x38 /* command issue */ #define PORT_RESERVED 0x3c /* reserved */ /* PORT_IRQ_{STAT,MASK} bits */ #define PORT_IRQ_COLD_PRES (1 << 31) /* cold presence detect */ #define PORT_IRQ_TF_ERR (1 << 30) /* task file error */ #define PORT_IRQ_HBUS_ERR (1 << 29) /* host bus fatal error */ #define PORT_IRQ_HBUS_DATA_ERR (1 << 28) /* host bus data error */ #define PORT_IRQ_IF_ERR (1 << 27) /* interface fatal error */ #define PORT_IRQ_IF_NONFATAL (1 << 26) /* interface non-fatal error */ #define PORT_IRQ_OVERFLOW (1 << 24) /* xfer exhausted available S/G */ #define PORT_IRQ_BAD_PMP (1 << 23) /* incorrect port multiplier */ #define PORT_IRQ_PHYRDY (1 << 22) /* PhyRdy changed */ #define PORT_IRQ_DEV_ILCK (1 << 7) /* device interlock */ #define PORT_IRQ_CONNECT (1 << 6) /* port connect change status */ #define PORT_IRQ_SG_DONE (1 << 5) /* descriptor processed */ #define PORT_IRQ_UNK_FIS (1 << 4) /* unknown FIS rx'd */ #define PORT_IRQ_SDB_FIS (1 << 3) /* Set Device Bits FIS rx'd */ #define PORT_IRQ_DMAS_FIS (1 << 2) /* DMA Setup FIS rx'd */ #define PORT_IRQ_PIOS_FIS (1 << 1) /* PIO Setup FIS rx'd */ #define PORT_IRQ_D2H_REG_FIS (1 << 0) /* D2H Register FIS rx'd */ #define PORT_IRQ_FREEZE (PORT_IRQ_HBUS_ERR | PORT_IRQ_IF_ERR | \ PORT_IRQ_CONNECT | PORT_IRQ_PHYRDY | \ PORT_IRQ_UNK_FIS) #define PORT_IRQ_ERROR (PORT_IRQ_FREEZE | PORT_IRQ_TF_ERR | \ PORT_IRQ_HBUS_DATA_ERR) #define DEF_PORT_IRQ (PORT_IRQ_ERROR | PORT_IRQ_SG_DONE | \ PORT_IRQ_SDB_FIS | PORT_IRQ_DMAS_FIS | \ PORT_IRQ_PIOS_FIS | PORT_IRQ_D2H_REG_FIS) /* PORT_CMD bits */ #define PORT_CMD_ATAPI (1 << 24) /* Device is ATAPI */ #define PORT_CMD_LIST_ON (1 << 15) /* cmd list DMA engine running */ #define PORT_CMD_FIS_ON (1 << 14) /* FIS DMA engine running */ #define PORT_CMD_FIS_RX (1 << 4) /* Enable FIS receive DMA engine */ #define PORT_CMD_CLO (1 << 3) /* Command list override */ #define PORT_CMD_POWER_ON (1 << 2) /* Power up device */ #define PORT_CMD_SPIN_UP (1 << 1) /* Spin up device */ #define PORT_CMD_START (1 << 0) /* Enable port DMA engine */ #define PORT_CMD_ICC_MASK (0xf << 28) /* i/f ICC state mask */ #define PORT_CMD_ICC_ACTIVE (0x1 << 28) /* Put i/f in active state */ #define PORT_CMD_ICC_PARTIAL (0x2 << 28) /* Put i/f in partial state */ #define PORT_CMD_ICC_SLUMBER (0x6 << 28) /* Put i/f in slumber state */ #define PORT_IRQ_STAT_DHRS (1 << 0) /* Device to Host Register FIS */ #define PORT_IRQ_STAT_PSS (1 << 1) /* PIO Setup FIS */ #define PORT_IRQ_STAT_DSS (1 << 2) /* DMA Setup FIS */ #define PORT_IRQ_STAT_SDBS (1 << 3) /* Set Device Bits */ #define PORT_IRQ_STAT_UFS (1 << 4) /* Unknown FIS */ #define PORT_IRQ_STAT_DPS (1 << 5) /* Descriptor Processed */ #define PORT_IRQ_STAT_PCS (1 << 6) /* Port Connect Change Status */ #define PORT_IRQ_STAT_DMPS (1 << 7) /* Device Mechanical Presence Status */ #define PORT_IRQ_STAT_PRCS (1 << 22) /* File Ready Status */ #define PORT_IRQ_STAT_IPMS (1 << 23) /* Incorrect Port Multiplier Status */ #define PORT_IRQ_STAT_OFS (1 << 24) /* Overflow Status */ #define PORT_IRQ_STAT_INFS (1 << 26) /* Interface Non-Fatal Error Status */ #define PORT_IRQ_STAT_IFS (1 << 27) /* Interface Fatal Error */ #define PORT_IRQ_STAT_HBDS (1 << 28) /* Host Bus Data Error Status */ #define PORT_IRQ_STAT_HBFS (1 << 29) /* Host Bus Fatal Error Status */ #define PORT_IRQ_STAT_TFES (1 << 30) /* Task File Error Status */ #define PORT_IRQ_STAT_CPDS (1 << 31) /* Code Port Detect Status */ /* ap->flags bits */ #define AHCI_FLAG_NO_NCQ (1 << 24) #define AHCI_FLAG_IGN_IRQ_IF_ERR (1 << 25) /* ignore IRQ_IF_ERR */ #define AHCI_FLAG_HONOR_PI (1 << 26) /* honor PORTS_IMPL */ #define AHCI_FLAG_IGN_SERR_INTERNAL (1 << 27) /* ignore SERR_INTERNAL */ #define AHCI_FLAG_32BIT_ONLY (1 << 28) /* force 32bit */ #define ATA_SRST (1 << 2) /* software reset */ #define STATE_RUN 0 #define STATE_RESET 1 #define SATA_SCR_SSTATUS_DET_NODEV 0x0 #define SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP 0x3 #define SATA_SCR_SSTATUS_SPD_NODEV 0x00 #define SATA_SCR_SSTATUS_SPD_GEN1 0x10 #define SATA_SCR_SSTATUS_IPM_NODEV 0x000 #define SATA_SCR_SSTATUS_IPM_ACTIVE 0X100 #define AHCI_SCR_SCTL_DET 0xf #define SATA_FIS_TYPE_REGISTER_H2D 0x27 #define SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER 0x80 #define AHCI_CMD_HDR_CMD_FIS_LEN 0x1f #define AHCI_CMD_HDR_PRDT_LEN 16 #define SATA_SIGNATURE_CDROM 0xeb140000 #define SATA_SIGNATURE_DISK 0x00000101 #define AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR 0x20 /* Shouldn't this be 0x2c? */ #define SATA_PORTS 4 #define AHCI_PORT_REGS_START_ADDR 0x100 #define AHCI_PORT_REGS_END_ADDR (AHCI_PORT_REGS_START_ADDR + SATA_PORTS * 0x80) #define AHCI_PORT_ADDR_OFFSET_MASK 0x7f #define AHCI_NUM_COMMAND_SLOTS 31 #define AHCI_SUPPORTED_SPEED 20 #define AHCI_SUPPORTED_SPEED_GEN1 1 #define AHCI_VERSION_1_0 0x10000 #define AHCI_PROGMODE_MAJOR_REV_1 1 #define AHCI_COMMAND_TABLE_ACMD 0x40 #define IDE_FEATURE_DMA 1 #define READ_FPDMA_QUEUED 0x60 #define WRITE_FPDMA_QUEUED 0x61 #define RES_FIS_DSFIS 0x00 #define RES_FIS_PSFIS 0x20 #define RES_FIS_RFIS 0x40 #define RES_FIS_SDBFIS 0x58 #define RES_FIS_UFIS 0x60 typedef struct AHCIControlRegs { uint32_t cap; uint32_t ghc; uint32_t irqstatus; uint32_t impl; uint32_t version; } AHCIControlRegs; typedef struct AHCIPortRegs { uint32_t lst_addr; uint32_t lst_addr_hi; uint32_t fis_addr; uint32_t fis_addr_hi; uint32_t irq_stat; uint32_t irq_mask; uint32_t cmd; uint32_t unused0; uint32_t tfdata; uint32_t sig; uint32_t scr_stat; uint32_t scr_ctl; uint32_t scr_err; uint32_t scr_act; uint32_t cmd_issue; uint32_t reserved; } AHCIPortRegs; typedef struct AHCICmdHdr { uint32_t opts; uint32_t status; uint64_t tbl_addr; uint32_t reserved[4]; } __attribute__ ((packed)) AHCICmdHdr; typedef struct AHCI_SG { uint64_t addr; uint32_t reserved; uint32_t flags_size; } __attribute__ ((packed)) AHCI_SG; typedef struct AHCIDevice AHCIDevice; typedef struct NCQTransferState { AHCIDevice *drive; BlockDriverAIOCB *aiocb; QEMUSGList sglist; int is_read; uint16_t sector_count; uint64_t lba; uint8_t tag; int slot; int used; } NCQTransferState; struct AHCIDevice { IDEDMA dma; IDEBus port; int port_no; uint32_t port_state; uint32_t finished; AHCIPortRegs port_regs; struct AHCIState *hba; QEMUBH *check_bh; uint8_t *lst; uint8_t *res_fis; int dma_status; int done_atapi_packet; int busy_slot; BlockDriverCompletionFunc *dma_cb; AHCICmdHdr *cur_cmd; NCQTransferState ncq_tfs[AHCI_MAX_CMDS]; }; typedef struct AHCIState { AHCIDevice dev[SATA_PORTS]; AHCIControlRegs control_regs; int mem; qemu_irq irq; } AHCIState; typedef struct AHCIPCIState { PCIDevice card; AHCIState ahci; } AHCIPCIState; typedef struct NCQFrame { uint8_t fis_type; uint8_t c; uint8_t command; uint8_t sector_count_low; uint8_t lba0; uint8_t lba1; uint8_t lba2; uint8_t fua; uint8_t lba3; uint8_t lba4; uint8_t lba5; uint8_t sector_count_high; uint8_t tag; uint8_t reserved5; uint8_t reserved6; uint8_t control; uint8_t reserved7; uint8_t reserved8; uint8_t reserved9; uint8_t reserved10; } __attribute__ ((packed)) NCQFrame; static void check_cmd(AHCIState *s, int port); static int handle_cmd(AHCIState *s,int port,int slot); static void ahci_reset_port(AHCIState *s, int port); static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis); static uint32_t ahci_port_read(AHCIState *s, int port, int offset) { uint32_t val; AHCIPortRegs *pr; pr = &s->dev[port].port_regs; switch (offset) { case PORT_LST_ADDR: val = pr->lst_addr; break; case PORT_LST_ADDR_HI: val = pr->lst_addr_hi; break; case PORT_FIS_ADDR: val = pr->fis_addr; break; case PORT_FIS_ADDR_HI: val = pr->fis_addr_hi; break; case PORT_IRQ_STAT: val = pr->irq_stat; break; case PORT_IRQ_MASK: val = pr->irq_mask; break; case PORT_CMD: val = pr->cmd; break; case PORT_TFDATA: val = ((uint16_t)s->dev[port].port.ifs[0].error << 8) | s->dev[port].port.ifs[0].status; break; case PORT_SIG: val = pr->sig; break; case PORT_SCR_STAT: if (s->dev[port].port.ifs[0].bs) { val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; } else { val = SATA_SCR_SSTATUS_DET_NODEV; } break; case PORT_SCR_CTL: val = pr->scr_ctl; break; case PORT_SCR_ERR: val = pr->scr_err; break; case PORT_SCR_ACT: pr->scr_act &= ~s->dev[port].finished; s->dev[port].finished = 0; val = pr->scr_act; break; case PORT_CMD_ISSUE: val = pr->cmd_issue; break; case PORT_RESERVED: default: val = 0; } DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val); return val; } static void ahci_irq_raise(AHCIState *s, AHCIDevice *dev) { struct AHCIPCIState *d = container_of(s, AHCIPCIState, ahci); DPRINTF(0, "raise irq\n"); if (msi_enabled(&d->card)) { msi_notify(&d->card, 0); } else { qemu_irq_raise(s->irq); } } static void ahci_irq_lower(AHCIState *s, AHCIDevice *dev) { struct AHCIPCIState *d = container_of(s, AHCIPCIState, ahci); DPRINTF(0, "lower irq\n"); if (!msi_enabled(&d->card)) { qemu_irq_lower(s->irq); } } static void ahci_check_irq(AHCIState *s) { int i; DPRINTF(-1, "check irq %#x\n", s->control_regs.irqstatus); for (i = 0; i < SATA_PORTS; i++) { AHCIPortRegs *pr = &s->dev[i].port_regs; if (pr->irq_stat & pr->irq_mask) { s->control_regs.irqstatus |= (1 << i); } } if (s->control_regs.irqstatus && (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { ahci_irq_raise(s, NULL); } else { ahci_irq_lower(s, NULL); } } static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, int irq_type) { DPRINTF(d->port_no, "trigger irq %#x -> %x\n", irq_type, d->port_regs.irq_mask & irq_type); d->port_regs.irq_stat |= irq_type; ahci_check_irq(s); } static void map_page(uint8_t **ptr, uint64_t addr, uint32_t wanted) { target_phys_addr_t len = wanted; if (*ptr) { cpu_physical_memory_unmap(*ptr, 1, len, len); } *ptr = cpu_physical_memory_map(addr, &len, 1); if (len < wanted) { cpu_physical_memory_unmap(*ptr, 1, len, len); *ptr = NULL; } } static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) { AHCIPortRegs *pr = &s->dev[port].port_regs; DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val); switch (offset) { case PORT_LST_ADDR: pr->lst_addr = val; map_page(&s->dev[port].lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); s->dev[port].cur_cmd = NULL; break; case PORT_LST_ADDR_HI: pr->lst_addr_hi = val; map_page(&s->dev[port].lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); s->dev[port].cur_cmd = NULL; break; case PORT_FIS_ADDR: pr->fis_addr = val; map_page(&s->dev[port].res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); break; case PORT_FIS_ADDR_HI: pr->fis_addr_hi = val; map_page(&s->dev[port].res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); break; case PORT_IRQ_STAT: pr->irq_stat &= ~val; break; case PORT_IRQ_MASK: pr->irq_mask = val & 0xfdc000ff; ahci_check_irq(s); break; case PORT_CMD: pr->cmd = val & ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); if (pr->cmd & PORT_CMD_START) { pr->cmd |= PORT_CMD_LIST_ON; } if (pr->cmd & PORT_CMD_FIS_RX) { pr->cmd |= PORT_CMD_FIS_ON; } check_cmd(s, port); break; case PORT_TFDATA: s->dev[port].port.ifs[0].error = (val >> 8) & 0xff; s->dev[port].port.ifs[0].status = val & 0xff; break; case PORT_SIG: pr->sig = val; break; case PORT_SCR_STAT: pr->scr_stat = val; break; case PORT_SCR_CTL: if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && ((val & AHCI_SCR_SCTL_DET) == 0)) { ahci_reset_port(s, port); } pr->scr_ctl = val; break; case PORT_SCR_ERR: pr->scr_err &= ~val; break; case PORT_SCR_ACT: /* RW1 */ pr->scr_act |= val; break; case PORT_CMD_ISSUE: pr->cmd_issue |= val; check_cmd(s, port); break; default: break; } } static uint32_t ahci_mem_readl(void *ptr, target_phys_addr_t addr) { AHCIState *s = ptr; uint32_t val = 0; addr = addr & 0xfff; if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { switch (addr) { case HOST_CAP: val = s->control_regs.cap; break; case HOST_CTL: val = s->control_regs.ghc; break; case HOST_IRQ_STAT: val = s->control_regs.irqstatus; break; case HOST_PORTS_IMPL: val = s->control_regs.impl; break; case HOST_VERSION: val = s->control_regs.version; break; } DPRINTF(-1, "(addr 0x%08X), val 0x%08X\n", (unsigned) addr, val); } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < AHCI_PORT_REGS_END_ADDR)) { val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK); } return val; } static void ahci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val) { AHCIState *s = ptr; addr = addr & 0xfff; /* Only aligned reads are allowed on AHCI */ if (addr & 3) { fprintf(stderr, "ahci: Mis-aligned write to addr 0x" TARGET_FMT_plx "\n", addr); return; } if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { DPRINTF(-1, "(addr 0x%08X), val 0x%08X\n", (unsigned) addr, val); switch (addr) { case HOST_CAP: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_CTL: /* R/W */ if (val & HOST_CTL_RESET) { DPRINTF(-1, "HBA Reset\n"); /* FIXME reset? */ } else { s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; ahci_check_irq(s); } break; case HOST_IRQ_STAT: /* R/WC, RO */ s->control_regs.irqstatus &= ~val; ahci_check_irq(s); break; case HOST_PORTS_IMPL: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_VERSION: /* RO */ /* FIXME report write? */ break; default: DPRINTF(-1, "write to unknown register 0x%x\n", (unsigned)addr); } } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < AHCI_PORT_REGS_END_ADDR)) { ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK, val); } } static CPUReadMemoryFunc * const ahci_readfn[3]={ ahci_mem_readl, ahci_mem_readl, ahci_mem_readl }; static CPUWriteMemoryFunc * const ahci_writefn[3]={ ahci_mem_writel, ahci_mem_writel, ahci_mem_writel }; static void ahci_reg_init(AHCIState *s) { int i; s->control_regs.cap = (SATA_PORTS - 1) | (AHCI_NUM_COMMAND_SLOTS << 8) | (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | HOST_CAP_NCQ | HOST_CAP_AHCI; s->control_regs.impl = (1 << SATA_PORTS) - 1; s->control_regs.version = AHCI_VERSION_1_0; for (i = 0; i < SATA_PORTS; i++) { s->dev[i].port_state = STATE_RUN; } } static uint32_t read_from_sglist(uint8_t *buffer, uint32_t len, QEMUSGList *sglist) { uint32_t i = 0; uint32_t total = 0, once; ScatterGatherEntry *cur_prd; uint32_t sgcount; cur_prd = sglist->sg; sgcount = sglist->nsg; for (i = 0; len && sgcount; i++) { once = MIN(cur_prd->len, len); cpu_physical_memory_read(cur_prd->base, buffer, once); cur_prd++; sgcount--; len -= once; buffer += once; total += once; } return total; } static uint32_t write_to_sglist(uint8_t *buffer, uint32_t len, QEMUSGList *sglist) { uint32_t i = 0; uint32_t total = 0, once; ScatterGatherEntry *cur_prd; uint32_t sgcount; DPRINTF(-1, "total: 0x%x bytes\n", len); cur_prd = sglist->sg; sgcount = sglist->nsg; for (i = 0; len && sgcount; i++) { once = MIN(cur_prd->len, len); DPRINTF(-1, "write 0x%x bytes to 0x%lx\n", once, (long)cur_prd->base); cpu_physical_memory_write(cur_prd->base, buffer, once); cur_prd++; sgcount--; len -= once; buffer += once; total += once; } return total; } static void check_cmd(AHCIState *s, int port) { AHCIPortRegs *pr = &s->dev[port].port_regs; int slot; if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { if ((pr->cmd_issue & (1 << slot)) && !handle_cmd(s, port, slot)) { pr->cmd_issue &= ~(1 << slot); } } } } static void ahci_check_cmd_bh(void *opaque) { AHCIDevice *ad = opaque; qemu_bh_delete(ad->check_bh); ad->check_bh = NULL; if ((ad->busy_slot != -1) && !(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) { /* no longer busy */ ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot); ad->busy_slot = -1; } check_cmd(ad->hba, ad->port_no); } static void ahci_reset_port(AHCIState *s, int port) { AHCIDevice *d = &s->dev[port]; AHCIPortRegs *pr = &d->port_regs; IDEState *ide_state = &d->port.ifs[0]; uint8_t init_fis[0x20]; uint32_t tfd; int i; DPRINTF(port, "reset port\n"); ide_bus_reset(&d->port); ide_state->ncq_queues = AHCI_MAX_CMDS; pr->irq_stat = 0; pr->irq_mask = 0; pr->scr_stat = 0; pr->scr_ctl = 0; pr->scr_err = 0; pr->scr_act = 0; d->busy_slot = -1; ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->bs) { return; } /* reset ncq queue */ for (i = 0; i < AHCI_MAX_CMDS; i++) { NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; if (!ncq_tfs->used) { continue; } if (ncq_tfs->aiocb) { bdrv_aio_cancel(ncq_tfs->aiocb); ncq_tfs->aiocb = NULL; } qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } memset(init_fis, 0, sizeof(init_fis)); s->dev[port].port_state = STATE_RUN; if (!ide_state->bs) { s->dev[port].port_regs.sig = 0; tfd = (1 << 8) | SEEK_STAT | WRERR_STAT; } else if (ide_state->drive_kind == IDE_CD) { s->dev[port].port_regs.sig = SATA_SIGNATURE_CDROM; ide_state->lcyl = 0x14; ide_state->hcyl = 0xeb; DPRINTF(port, "set lcyl = %d\n", ide_state->lcyl); init_fis[5] = ide_state->lcyl; init_fis[6] = ide_state->hcyl; ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; } else { s->dev[port].port_regs.sig = SATA_SIGNATURE_DISK; ide_state->status = SEEK_STAT | WRERR_STAT; } ide_state->error = 1; init_fis[4] = 1; init_fis[12] = 1; ahci_write_fis_d2h(d, init_fis); } static void debug_print_fis(uint8_t *fis, int cmd_len) { #ifdef DEBUG_AHCI int i; fprintf(stderr, "fis:"); for (i = 0; i < cmd_len; i++) { if ((i & 0xf) == 0) { fprintf(stderr, "\n%02x:",i); } fprintf(stderr, "%02x ",fis[i]); } fprintf(stderr, "\n"); #endif } static void ahci_write_fis_sdb(AHCIState *s, int port, uint32_t finished) { AHCIPortRegs *pr = &s->dev[port].port_regs; IDEState *ide_state; uint8_t *sdb_fis; if (!s->dev[port].res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } sdb_fis = &s->dev[port].res_fis[RES_FIS_SDBFIS]; ide_state = &s->dev[port].port.ifs[0]; /* clear memory */ *(uint32_t*)sdb_fis = 0; /* write values */ sdb_fis[0] = ide_state->error; sdb_fis[2] = ide_state->status & 0x77; s->dev[port].finished |= finished; *(uint32_t*)(sdb_fis + 4) = cpu_to_le32(s->dev[port].finished); ahci_trigger_irq(s, &s->dev[port], PORT_IRQ_STAT_SDBS); } static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis) { AHCIPortRegs *pr = &ad->port_regs; uint8_t *d2h_fis; int i; target_phys_addr_t cmd_len = 0x80; int cmd_mapped = 0; if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } if (!cmd_fis) { /* map cmd_fis */ uint64_t tbl_addr = le64_to_cpu(ad->cur_cmd->tbl_addr); cmd_fis = cpu_physical_memory_map(tbl_addr, &cmd_len, 0); cmd_mapped = 1; } d2h_fis = &ad->res_fis[RES_FIS_RFIS]; d2h_fis[0] = 0x34; d2h_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0); d2h_fis[2] = ad->port.ifs[0].status; d2h_fis[3] = ad->port.ifs[0].error; d2h_fis[4] = cmd_fis[4]; d2h_fis[5] = cmd_fis[5]; d2h_fis[6] = cmd_fis[6]; d2h_fis[7] = cmd_fis[7]; d2h_fis[8] = cmd_fis[8]; d2h_fis[9] = cmd_fis[9]; d2h_fis[10] = cmd_fis[10]; d2h_fis[11] = cmd_fis[11]; d2h_fis[12] = cmd_fis[12]; d2h_fis[13] = cmd_fis[13]; for (i = 14; i < 0x20; i++) { d2h_fis[i] = 0; } if (d2h_fis[2] & ERR_STAT) { ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_TFES); } ahci_trigger_irq(ad->hba, ad, PORT_IRQ_D2H_REG_FIS); if (cmd_mapped) { cpu_physical_memory_unmap(cmd_fis, 0, cmd_len, cmd_len); } } static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist) { AHCICmdHdr *cmd = ad->cur_cmd; uint32_t opts = le32_to_cpu(cmd->opts); uint64_t prdt_addr = le64_to_cpu(cmd->tbl_addr) + 0x80; int sglist_alloc_hint = opts >> AHCI_CMD_HDR_PRDT_LEN; target_phys_addr_t prdt_len = (sglist_alloc_hint * sizeof(AHCI_SG)); target_phys_addr_t real_prdt_len = prdt_len; uint8_t *prdt; int i; int r = 0; if (!sglist_alloc_hint) { DPRINTF(ad->port_no, "no sg list given by guest: 0x%08x\n", opts); return -1; } /* map PRDT */ if (!(prdt = cpu_physical_memory_map(prdt_addr, &prdt_len, 0))){ DPRINTF(ad->port_no, "map failed\n"); return -1; } if (prdt_len < real_prdt_len) { DPRINTF(ad->port_no, "mapped less than expected\n"); r = -1; goto out; } /* Get entries in the PRDT, init a qemu sglist accordingly */ if (sglist_alloc_hint > 0) { AHCI_SG *tbl = (AHCI_SG *)prdt; qemu_sglist_init(sglist, sglist_alloc_hint); for (i = 0; i < sglist_alloc_hint; i++) { /* flags_size is zero-based */ qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), le32_to_cpu(tbl[i].flags_size) + 1); } } out: cpu_physical_memory_unmap(prdt, 0, prdt_len, prdt_len); return r; } static void ncq_cb(void *opaque, int ret) { NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; /* Clear bit for this tag in SActive */ ncq_tfs->drive->port_regs.scr_act &= ~(1 << ncq_tfs->tag); if (ret < 0) { /* error */ ide_state->error = ABRT_ERR; ide_state->status = READY_STAT | ERR_STAT; ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag); } else { ide_state->status = READY_STAT | SEEK_STAT; } ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, (1 << ncq_tfs->tag)); DPRINTF(ncq_tfs->drive->port_no, "NCQ transfer tag %d finished\n", ncq_tfs->tag); qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis, int slot) { NCQFrame *ncq_fis = (NCQFrame*)cmd_fis; uint8_t tag = ncq_fis->tag >> 3; NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[tag]; if (ncq_tfs->used) { /* error - already in use */ fprintf(stderr, "%s: tag %d already used\n", __FUNCTION__, tag); return; } ncq_tfs->used = 1; ncq_tfs->drive = &s->dev[port]; ncq_tfs->slot = slot; ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | ((uint64_t)ncq_fis->lba4 << 32) | ((uint64_t)ncq_fis->lba3 << 24) | ((uint64_t)ncq_fis->lba2 << 16) | ((uint64_t)ncq_fis->lba1 << 8) | (uint64_t)ncq_fis->lba0; /* Note: We calculate the sector count, but don't currently rely on it. * The total size of the DMA buffer tells us the transfer size instead. */ ncq_tfs->sector_count = ((uint16_t)ncq_fis->sector_count_high << 8) | ncq_fis->sector_count_low; DPRINTF(port, "NCQ transfer LBA from %ld to %ld, drive max %ld\n", ncq_tfs->lba, ncq_tfs->lba + ncq_tfs->sector_count - 2, s->dev[port].port.ifs[0].nb_sectors - 1); ahci_populate_sglist(&s->dev[port], &ncq_tfs->sglist); ncq_tfs->tag = tag; switch(ncq_fis->command) { case READ_FPDMA_QUEUED: DPRINTF(port, "NCQ reading %d sectors from LBA %ld, tag %d\n", ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag); ncq_tfs->is_read = 1; DPRINTF(port, "tag %d aio read %ld\n", ncq_tfs->tag, ncq_tfs->lba); ncq_tfs->aiocb = dma_bdrv_read(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->sglist, ncq_tfs->lba, ncq_cb, ncq_tfs); break; case WRITE_FPDMA_QUEUED: DPRINTF(port, "NCQ writing %d sectors to LBA %ld, tag %d\n", ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag); ncq_tfs->is_read = 0; DPRINTF(port, "tag %d aio write %ld\n", ncq_tfs->tag, ncq_tfs->lba); ncq_tfs->aiocb = dma_bdrv_write(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->sglist, ncq_tfs->lba, ncq_cb, ncq_tfs); break; default: DPRINTF(port, "error: tried to process non-NCQ command as NCQ\n"); qemu_sglist_destroy(&ncq_tfs->sglist); break; } } static int handle_cmd(AHCIState *s, int port, int slot) { IDEState *ide_state; AHCIPortRegs *pr; uint32_t opts; uint64_t tbl_addr; AHCICmdHdr *cmd; uint8_t *cmd_fis; target_phys_addr_t cmd_len; if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* Engine currently busy, try again later */ DPRINTF(port, "engine busy\n"); return -1; } pr = &s->dev[port].port_regs; cmd = &((AHCICmdHdr *)s->dev[port].lst)[slot]; if (!s->dev[port].lst) { DPRINTF(port, "error: lst not given but cmd handled"); return -1; } /* remember current slot handle for later */ s->dev[port].cur_cmd = cmd; opts = le32_to_cpu(cmd->opts); tbl_addr = le64_to_cpu(cmd->tbl_addr); cmd_len = 0x80; cmd_fis = cpu_physical_memory_map(tbl_addr, &cmd_len, 1); if (!cmd_fis) { DPRINTF(port, "error: guest passed us an invalid cmd fis\n"); return -1; } /* The device we are working for */ ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->bs) { DPRINTF(port, "error: guest accessed unused port"); goto out; } debug_print_fis(cmd_fis, 0x90); //debug_print_fis(cmd_fis, (opts & AHCI_CMD_HDR_CMD_FIS_LEN) * 4); switch (cmd_fis[0]) { case SATA_FIS_TYPE_REGISTER_H2D: break; default: DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x " "cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1], cmd_fis[2]); goto out; break; } switch (cmd_fis[1]) { case SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER: break; case 0: break; default: DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x " "cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1], cmd_fis[2]); goto out; break; } switch (s->dev[port].port_state) { case STATE_RUN: if (cmd_fis[15] & ATA_SRST) { s->dev[port].port_state = STATE_RESET; } break; case STATE_RESET: if (!(cmd_fis[15] & ATA_SRST)) { ahci_reset_port(s, port); } break; } if (cmd_fis[1] == SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER) { /* Check for NCQ command */ if ((cmd_fis[2] == READ_FPDMA_QUEUED) || (cmd_fis[2] == WRITE_FPDMA_QUEUED)) { process_ncq_command(s, port, cmd_fis, slot); goto out; } /* Decompose the FIS */ ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); ide_state->feature = cmd_fis[3]; if (!ide_state->nsector) { ide_state->nsector = 256; } if (ide_state->drive_kind != IDE_CD) { ide_set_sector(ide_state, (cmd_fis[6] << 16) | (cmd_fis[5] << 8) | cmd_fis[4]); } /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command * table to ide_state->io_buffer */ if (opts & AHCI_CMD_ATAPI) { memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); ide_state->lcyl = 0x14; ide_state->hcyl = 0xeb; debug_print_fis(ide_state->io_buffer, 0x10); ide_state->feature = IDE_FEATURE_DMA; s->dev[port].done_atapi_packet = 0; /* XXX send PIO setup FIS */ } ide_state->error = 0; /* Reset transferred byte counter */ cmd->status = 0; /* We're ready to process the command in FIS byte 2. */ ide_exec_cmd(&s->dev[port].port, cmd_fis[2]); if (s->dev[port].port.ifs[0].status & READY_STAT) { ahci_write_fis_d2h(&s->dev[port], cmd_fis); } } out: cpu_physical_memory_unmap(cmd_fis, 1, cmd_len, cmd_len); if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* async command, complete later */ s->dev[port].busy_slot = slot; return -1; } /* done handling the command */ return 0; } /* DMA dev <-> ram */ static int ahci_start_transfer(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint32_t size = (uint32_t)(s->data_end - s->data_ptr); /* write == ram -> device */ uint32_t opts = le32_to_cpu(ad->cur_cmd->opts); int is_write = opts & AHCI_CMD_WRITE; int is_atapi = opts & AHCI_CMD_ATAPI; int has_sglist = 0; if (is_atapi && !ad->done_atapi_packet) { /* already prepopulated iobuffer */ ad->done_atapi_packet = 1; goto out; } if (!ahci_populate_sglist(ad, &s->sg)) { has_sglist = 1; } DPRINTF(ad->port_no, "%sing %d bytes on %s w/%s sglist\n", is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata", has_sglist ? "" : "o"); if (is_write && has_sglist && (s->data_ptr < s->data_end)) { read_from_sglist(s->data_ptr, size, &s->sg); } if (!is_write && has_sglist && (s->data_ptr < s->data_end)) { write_to_sglist(s->data_ptr, size, &s->sg); } /* update number of transferred bytes */ ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + size); out: /* declare that we processed everything */ s->data_ptr = s->data_end; if (has_sglist) { qemu_sglist_destroy(&s->sg); } s->end_transfer_func(s); if (!(s->status & DRQ_STAT)) { /* done with DMA */ ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_DSS); } return 0; } static void ahci_start_dma(IDEDMA *dma, IDEState *s, BlockDriverCompletionFunc *dma_cb) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); DPRINTF(ad->port_no, "\n"); ad->dma_cb = dma_cb; ad->dma_status |= BM_STATUS_DMAING; dma_cb(s, 0); } static int ahci_dma_prepare_buf(IDEDMA *dma, int is_write) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; int i; ahci_populate_sglist(ad, &s->sg); s->io_buffer_size = 0; for (i = 0; i < s->sg.nsg; i++) { s->io_buffer_size += s->sg.sg[i].len; } DPRINTF(ad->port_no, "len=%#x\n", s->io_buffer_size); return s->io_buffer_size != 0; } static int ahci_dma_rw_buf(IDEDMA *dma, int is_write) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint8_t *p = s->io_buffer + s->io_buffer_index; int l = s->io_buffer_size - s->io_buffer_index; if (ahci_populate_sglist(ad, &s->sg)) { return 0; } if (is_write) { write_to_sglist(p, l, &s->sg); } else { read_from_sglist(p, l, &s->sg); } /* update number of transferred bytes */ ad->cur_cmd->status = cpu_to_le32(le32_to_cpu(ad->cur_cmd->status) + l); s->io_buffer_index += l; DPRINTF(ad->port_no, "len=%#x\n", l); return 1; } static int ahci_dma_set_unit(IDEDMA *dma, int unit) { /* only a single unit per link */ return 0; } static int ahci_dma_add_status(IDEDMA *dma, int status) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); ad->dma_status |= status; DPRINTF(ad->port_no, "set status: %x\n", status); if (status & BM_STATUS_INT) { ahci_trigger_irq(ad->hba, ad, PORT_IRQ_STAT_DSS); } return 0; } static int ahci_dma_set_inactive(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); DPRINTF(ad->port_no, "dma done\n"); /* update d2h status */ ahci_write_fis_d2h(ad, NULL); ad->dma_cb = NULL; /* maybe we still have something to process, check later */ ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad); qemu_bh_schedule(ad->check_bh); return 0; } static void ahci_irq_set(void *opaque, int n, int level) { } static void ahci_dma_restart_cb(void *opaque, int running, int reason) { } static int ahci_dma_reset(IDEDMA *dma) { return 0; } static const IDEDMAOps ahci_dma_ops = { .start_dma = ahci_start_dma, .start_transfer = ahci_start_transfer, .prepare_buf = ahci_dma_prepare_buf, .rw_buf = ahci_dma_rw_buf, .set_unit = ahci_dma_set_unit, .add_status = ahci_dma_add_status, .set_inactive = ahci_dma_set_inactive, .restart_cb = ahci_dma_restart_cb, .reset = ahci_dma_reset, }; static void ahci_init(AHCIState *s, DeviceState *qdev) { qemu_irq *irqs; int i; ahci_reg_init(s); s->mem = cpu_register_io_memory(ahci_readfn, ahci_writefn, s, DEVICE_LITTLE_ENDIAN); irqs = qemu_allocate_irqs(ahci_irq_set, s, SATA_PORTS); for (i = 0; i < SATA_PORTS; i++) { AHCIDevice *ad = &s->dev[i]; ide_bus_new(&ad->port, qdev, i); ide_init2(&ad->port, irqs[i]); ad->hba = s; ad->port_no = i; ad->port.dma = &ad->dma; ad->port.dma->ops = &ahci_dma_ops; ad->port_regs.cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; } } static void ahci_pci_map(PCIDevice *pci_dev, int region_num, pcibus_t addr, pcibus_t size, int type) { struct AHCIPCIState *d = (struct AHCIPCIState *)pci_dev; AHCIState *s = &d->ahci; cpu_register_physical_memory(addr, size, s->mem); } static void ahci_reset(void *opaque) { struct AHCIPCIState *d = opaque; int i; for (i = 0; i < SATA_PORTS; i++) { ahci_reset_port(&d->ahci, i); } } static int pci_ahci_init(PCIDevice *dev) { struct AHCIPCIState *d; d = DO_UPCAST(struct AHCIPCIState, card, dev); pci_config_set_vendor_id(d->card.config, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(d->card.config, PCI_DEVICE_ID_INTEL_82801IR); pci_config_set_class(d->card.config, PCI_CLASS_STORAGE_SATA); pci_config_set_revision(d->card.config, 0x02); pci_config_set_prog_interface(d->card.config, AHCI_PROGMODE_MAJOR_REV_1); d->card.config[PCI_CACHE_LINE_SIZE] = 0x08; /* Cache line size */ d->card.config[PCI_LATENCY_TIMER] = 0x00; /* Latency timer */ pci_config_set_interrupt_pin(d->card.config, 1); qemu_register_reset(ahci_reset, d); /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ pci_register_bar(&d->card, 5, 0x1000, PCI_BASE_ADDRESS_SPACE_MEMORY, ahci_pci_map); msi_init(dev, 0x50, 1, true, false); ahci_init(&d->ahci, &dev->qdev); d->ahci.irq = d->card.irq[0]; return 0; } static int pci_ahci_uninit(PCIDevice *dev) { struct AHCIPCIState *d; d = DO_UPCAST(struct AHCIPCIState, card, dev); if (msi_enabled(dev)) { msi_uninit(dev); } qemu_unregister_reset(ahci_reset, d); return 0; } static void pci_ahci_write_config(PCIDevice *pci, uint32_t addr, uint32_t val, int len) { pci_default_write_config(pci, addr, val, len); msi_write_config(pci, addr, val, len); } static PCIDeviceInfo ahci_info = { .qdev.name = "ahci", .qdev.size = sizeof(AHCIPCIState), .init = pci_ahci_init, .exit = pci_ahci_uninit, .config_write = pci_ahci_write_config, }; static void ahci_pci_register_devices(void) { pci_qdev_register(&ahci_info); } device_init(ahci_pci_register_devices)