/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/i386/x86.h" #include "hw/i386/pc.h" #include "hw/char/serial.h" #include "hw/char/parallel.h" #include "hw/i386/topology.h" #include "hw/i386/fw_cfg.h" #include "hw/i386/vmport.h" #include "sysemu/cpus.h" #include "hw/block/fdc.h" #include "hw/ide/internal.h" #include "hw/ide/isa.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bus.h" #include "hw/pci-bridge/pci_expander_bridge.h" #include "hw/nvram/fw_cfg.h" #include "hw/timer/hpet.h" #include "hw/firmware/smbios.h" #include "hw/loader.h" #include "elf.h" #include "migration/vmstate.h" #include "multiboot.h" #include "hw/rtc/mc146818rtc.h" #include "hw/intc/i8259.h" #include "hw/intc/ioapic.h" #include "hw/timer/i8254.h" #include "hw/input/i8042.h" #include "hw/irq.h" #include "hw/audio/pcspk.h" #include "hw/pci/msi.h" #include "hw/sysbus.h" #include "sysemu/sysemu.h" #include "sysemu/tcg.h" #include "sysemu/numa.h" #include "sysemu/kvm.h" #include "sysemu/xen.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "kvm/kvm_i386.h" #include "hw/xen/xen.h" #include "hw/xen/start_info.h" #include "ui/qemu-spice.h" #include "exec/memory.h" #include "qemu/bitmap.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "qemu/option.h" #include "qemu/cutils.h" #include "hw/acpi/acpi.h" #include "hw/acpi/cpu_hotplug.h" #include "acpi-build.h" #include "hw/mem/pc-dimm.h" #include "hw/mem/nvdimm.h" #include "hw/cxl/cxl.h" #include "hw/cxl/cxl_host.h" #include "qapi/error.h" #include "qapi/qapi-visit-common.h" #include "qapi/qapi-visit-machine.h" #include "qapi/visitor.h" #include "hw/core/cpu.h" #include "hw/usb.h" #include "hw/i386/intel_iommu.h" #include "hw/net/ne2000-isa.h" #include "standard-headers/asm-x86/bootparam.h" #include "hw/virtio/virtio-iommu.h" #include "hw/virtio/virtio-md-pci.h" #include "hw/i386/kvm/xen_overlay.h" #include "hw/i386/kvm/xen_evtchn.h" #include "hw/i386/kvm/xen_gnttab.h" #include "hw/i386/kvm/xen_xenstore.h" #include "sysemu/replay.h" #include "target/i386/cpu.h" #include "e820_memory_layout.h" #include "fw_cfg.h" #include "trace.h" #include CONFIG_DEVICES #ifdef CONFIG_XEN_EMU #include "hw/xen/xen-legacy-backend.h" #include "hw/xen/xen-bus.h" #endif /* * Helper for setting model-id for CPU models that changed model-id * depending on QEMU versions up to QEMU 2.4. */ #define PC_CPU_MODEL_IDS(v) \ { "qemu32-" TYPE_X86_CPU, "model-id", "QEMU Virtual CPU version " v, },\ { "qemu64-" TYPE_X86_CPU, "model-id", "QEMU Virtual CPU version " v, },\ { "athlon-" TYPE_X86_CPU, "model-id", "QEMU Virtual CPU version " v, }, GlobalProperty pc_compat_8_1[] = {}; const size_t pc_compat_8_1_len = G_N_ELEMENTS(pc_compat_8_1); GlobalProperty pc_compat_8_0[] = { { "virtio-mem", "unplugged-inaccessible", "auto" }, }; const size_t pc_compat_8_0_len = G_N_ELEMENTS(pc_compat_8_0); GlobalProperty pc_compat_7_2[] = { { "ICH9-LPC", "noreboot", "true" }, }; const size_t pc_compat_7_2_len = G_N_ELEMENTS(pc_compat_7_2); GlobalProperty pc_compat_7_1[] = {}; const size_t pc_compat_7_1_len = G_N_ELEMENTS(pc_compat_7_1); GlobalProperty pc_compat_7_0[] = {}; const size_t pc_compat_7_0_len = G_N_ELEMENTS(pc_compat_7_0); GlobalProperty pc_compat_6_2[] = { { "virtio-mem", "unplugged-inaccessible", "off" }, }; const size_t pc_compat_6_2_len = G_N_ELEMENTS(pc_compat_6_2); GlobalProperty pc_compat_6_1[] = { { TYPE_X86_CPU, "hv-version-id-build", "0x1bbc" }, { TYPE_X86_CPU, "hv-version-id-major", "0x0006" }, { TYPE_X86_CPU, "hv-version-id-minor", "0x0001" }, { "ICH9-LPC", "x-keep-pci-slot-hpc", "false" }, }; const size_t pc_compat_6_1_len = G_N_ELEMENTS(pc_compat_6_1); GlobalProperty pc_compat_6_0[] = { { "qemu64" "-" TYPE_X86_CPU, "family", "6" }, { "qemu64" "-" TYPE_X86_CPU, "model", "6" }, { "qemu64" "-" TYPE_X86_CPU, "stepping", "3" }, { TYPE_X86_CPU, "x-vendor-cpuid-only", "off" }, { "ICH9-LPC", ACPI_PM_PROP_ACPI_PCIHP_BRIDGE, "off" }, { "ICH9-LPC", "x-keep-pci-slot-hpc", "true" }, }; const size_t pc_compat_6_0_len = G_N_ELEMENTS(pc_compat_6_0); GlobalProperty pc_compat_5_2[] = { { "ICH9-LPC", "x-smi-cpu-hotunplug", "off" }, }; const size_t pc_compat_5_2_len = G_N_ELEMENTS(pc_compat_5_2); GlobalProperty pc_compat_5_1[] = { { "ICH9-LPC", "x-smi-cpu-hotplug", "off" }, { TYPE_X86_CPU, "kvm-msi-ext-dest-id", "off" }, }; const size_t pc_compat_5_1_len = G_N_ELEMENTS(pc_compat_5_1); GlobalProperty pc_compat_5_0[] = { }; const size_t pc_compat_5_0_len = G_N_ELEMENTS(pc_compat_5_0); GlobalProperty pc_compat_4_2[] = { { "mch", "smbase-smram", "off" }, }; const size_t pc_compat_4_2_len = G_N_ELEMENTS(pc_compat_4_2); GlobalProperty pc_compat_4_1[] = {}; const size_t pc_compat_4_1_len = G_N_ELEMENTS(pc_compat_4_1); GlobalProperty pc_compat_4_0[] = {}; const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0); GlobalProperty pc_compat_3_1[] = { { "intel-iommu", "dma-drain", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "EPYC" "-" TYPE_X86_CPU, "npt", "off" }, { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" }, { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" }, { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" }, }; const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); GlobalProperty pc_compat_3_0[] = { { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" }, { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" }, { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" }, }; const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); GlobalProperty pc_compat_2_12[] = { { TYPE_X86_CPU, "legacy-cache", "on" }, { TYPE_X86_CPU, "topoext", "off" }, { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, }; const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); GlobalProperty pc_compat_2_11[] = { { TYPE_X86_CPU, "x-migrate-smi-count", "off" }, { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" }, }; const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); GlobalProperty pc_compat_2_10[] = { { TYPE_X86_CPU, "x-hv-max-vps", "0x40" }, { "i440FX-pcihost", "x-pci-hole64-fix", "off" }, { "q35-pcihost", "x-pci-hole64-fix", "off" }, }; const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); GlobalProperty pc_compat_2_9[] = { { "mch", "extended-tseg-mbytes", "0" }, }; const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); GlobalProperty pc_compat_2_8[] = { { TYPE_X86_CPU, "tcg-cpuid", "off" }, { "kvmclock", "x-mach-use-reliable-get-clock", "off" }, { "ICH9-LPC", "x-smi-broadcast", "off" }, { TYPE_X86_CPU, "vmware-cpuid-freq", "off" }, { "Haswell-" TYPE_X86_CPU, "stepping", "1" }, }; const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); GlobalProperty pc_compat_2_7[] = { { TYPE_X86_CPU, "l3-cache", "off" }, { TYPE_X86_CPU, "full-cpuid-auto-level", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" }, { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" }, { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" }, { "isa-pcspk", "migrate", "off" }, }; const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7); GlobalProperty pc_compat_2_6[] = { { TYPE_X86_CPU, "cpuid-0xb", "off" }, { "vmxnet3", "romfile", "" }, { TYPE_X86_CPU, "fill-mtrr-mask", "off" }, { "apic-common", "legacy-instance-id", "on", } }; const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6); GlobalProperty pc_compat_2_5[] = {}; const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5); GlobalProperty pc_compat_2_4[] = { PC_CPU_MODEL_IDS("2.4.0") { "Haswell-" TYPE_X86_CPU, "abm", "off" }, { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" }, { "Broadwell-" TYPE_X86_CPU, "abm", "off" }, { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" }, { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" }, { TYPE_X86_CPU, "check", "off" }, { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" }, { "qemu64" "-" TYPE_X86_CPU, "abm", "on" }, { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" }, { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" }, { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", } }; const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4); GlobalProperty pc_compat_2_3[] = { PC_CPU_MODEL_IDS("2.3.0") { TYPE_X86_CPU, "arat", "off" }, { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" }, { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" }, { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" }, { "n270" "-" TYPE_X86_CPU, "min-level", "5" }, { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" }, { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" }, { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" }, { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { TYPE_X86_CPU, "kvm-no-smi-migration", "on" }, }; const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3); GlobalProperty pc_compat_2_2[] = { PC_CPU_MODEL_IDS("2.2.0") { "kvm64" "-" TYPE_X86_CPU, "vme", "off" }, { "kvm32" "-" TYPE_X86_CPU, "vme", "off" }, { "Conroe" "-" TYPE_X86_CPU, "vme", "off" }, { "Penryn" "-" TYPE_X86_CPU, "vme", "off" }, { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" }, { "Westmere" "-" TYPE_X86_CPU, "vme", "off" }, { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" }, { "Haswell" "-" TYPE_X86_CPU, "vme", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" }, { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" }, { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" }, }; const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2); GlobalProperty pc_compat_2_1[] = { PC_CPU_MODEL_IDS("2.1.0") { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" }, { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" }, }; const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1); GlobalProperty pc_compat_2_0[] = { PC_CPU_MODEL_IDS("2.0.0") { "virtio-scsi-pci", "any_layout", "off" }, { "PIIX4_PM", "memory-hotplug-support", "off" }, { "apic", "version", "0x11" }, { "nec-usb-xhci", "superspeed-ports-first", "off" }, { "nec-usb-xhci", "force-pcie-endcap", "on" }, { "pci-serial", "prog_if", "0" }, { "pci-serial-2x", "prog_if", "0" }, { "pci-serial-4x", "prog_if", "0" }, { "virtio-net-pci", "guest_announce", "off" }, { "ICH9-LPC", "memory-hotplug-support", "off" }, }; const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0); GlobalProperty pc_compat_1_7[] = { PC_CPU_MODEL_IDS("1.7.0") { TYPE_USB_DEVICE, "msos-desc", "no" }, { "PIIX4_PM", ACPI_PM_PROP_ACPI_PCIHP_BRIDGE, "off" }, { "hpet", HPET_INTCAP, "4" }, }; const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7); GlobalProperty pc_compat_1_6[] = { PC_CPU_MODEL_IDS("1.6.0") { "e1000", "mitigation", "off" }, { "qemu64-" TYPE_X86_CPU, "model", "2" }, { "qemu32-" TYPE_X86_CPU, "model", "3" }, { "i440FX-pcihost", "short_root_bus", "1" }, { "q35-pcihost", "short_root_bus", "1" }, }; const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6); GlobalProperty pc_compat_1_5[] = { PC_CPU_MODEL_IDS("1.5.0") { "Conroe-" TYPE_X86_CPU, "model", "2" }, { "Conroe-" TYPE_X86_CPU, "min-level", "2" }, { "Penryn-" TYPE_X86_CPU, "model", "2" }, { "Penryn-" TYPE_X86_CPU, "min-level", "2" }, { "Nehalem-" TYPE_X86_CPU, "model", "2" }, { "Nehalem-" TYPE_X86_CPU, "min-level", "2" }, { "virtio-net-pci", "any_layout", "off" }, { TYPE_X86_CPU, "pmu", "on" }, { "i440FX-pcihost", "short_root_bus", "0" }, { "q35-pcihost", "short_root_bus", "0" }, }; const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5); GlobalProperty pc_compat_1_4[] = { PC_CPU_MODEL_IDS("1.4.0") { "scsi-hd", "discard_granularity", "0" }, { "scsi-cd", "discard_granularity", "0" }, { "ide-hd", "discard_granularity", "0" }, { "ide-cd", "discard_granularity", "0" }, { "virtio-blk-pci", "discard_granularity", "0" }, /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */ { "virtio-serial-pci", "vectors", "0xFFFFFFFF" }, { "virtio-net-pci", "ctrl_guest_offloads", "off" }, { "e1000", "romfile", "pxe-e1000.rom" }, { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" }, { "pcnet", "romfile", "pxe-pcnet.rom" }, { "rtl8139", "romfile", "pxe-rtl8139.rom" }, { "virtio-net-pci", "romfile", "pxe-virtio.rom" }, { "486-" TYPE_X86_CPU, "model", "0" }, { "n270" "-" TYPE_X86_CPU, "movbe", "off" }, { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" }, }; const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4); GSIState *pc_gsi_create(qemu_irq **irqs, bool pci_enabled) { GSIState *s; s = g_new0(GSIState, 1); if (kvm_ioapic_in_kernel()) { kvm_pc_setup_irq_routing(pci_enabled); } *irqs = qemu_allocate_irqs(gsi_handler, s, IOAPIC_NUM_PINS); return s; } static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { } static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* MS-DOS compatibility mode FPU exception support */ static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { if (tcg_enabled()) { cpu_set_ignne(); } } static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 static void cmos_init_hd(MC146818RtcState *s, int type_ofs, int info_ofs, int16_t cylinders, int8_t heads, int8_t sectors) { mc146818rtc_set_cmos_data(s, type_ofs, 47); mc146818rtc_set_cmos_data(s, info_ofs, cylinders); mc146818rtc_set_cmos_data(s, info_ofs + 1, cylinders >> 8); mc146818rtc_set_cmos_data(s, info_ofs + 2, heads); mc146818rtc_set_cmos_data(s, info_ofs + 3, 0xff); mc146818rtc_set_cmos_data(s, info_ofs + 4, 0xff); mc146818rtc_set_cmos_data(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); mc146818rtc_set_cmos_data(s, info_ofs + 6, cylinders); mc146818rtc_set_cmos_data(s, info_ofs + 7, cylinders >> 8); mc146818rtc_set_cmos_data(s, info_ofs + 8, sectors); } /* convert boot_device letter to something recognizable by the bios */ static int boot_device2nibble(char boot_device) { switch(boot_device) { case 'a': case 'b': return 0x01; /* floppy boot */ case 'c': return 0x02; /* hard drive boot */ case 'd': return 0x03; /* CD-ROM boot */ case 'n': return 0x04; /* Network boot */ } return 0; } static void set_boot_dev(MC146818RtcState *s, const char *boot_device, Error **errp) { #define PC_MAX_BOOT_DEVICES 3 int nbds, bds[3] = { 0, }; int i; nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { error_setg(errp, "Too many boot devices for PC"); return; } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { error_setg(errp, "Invalid boot device for PC: '%c'", boot_device[i]); return; } } mc146818rtc_set_cmos_data(s, 0x3d, (bds[1] << 4) | bds[0]); mc146818rtc_set_cmos_data(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); } static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) { set_boot_dev(opaque, boot_device, errp); } static void pc_cmos_init_floppy(MC146818RtcState *rtc_state, ISADevice *floppy) { int val, nb, i; FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, FLOPPY_DRIVE_TYPE_NONE }; /* floppy type */ if (floppy) { for (i = 0; i < 2; i++) { fd_type[i] = isa_fdc_get_drive_type(floppy, i); } } val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | cmos_get_fd_drive_type(fd_type[1]); mc146818rtc_set_cmos_data(rtc_state, 0x10, val); val = mc146818rtc_get_cmos_data(rtc_state, REG_EQUIPMENT_BYTE); nb = 0; if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { nb++; } if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { nb++; } switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } mc146818rtc_set_cmos_data(rtc_state, REG_EQUIPMENT_BYTE, val); } typedef struct pc_cmos_init_late_arg { MC146818RtcState *rtc_state; BusState *idebus[2]; } pc_cmos_init_late_arg; typedef struct check_fdc_state { ISADevice *floppy; bool multiple; } CheckFdcState; static int check_fdc(Object *obj, void *opaque) { CheckFdcState *state = opaque; Object *fdc; uint32_t iobase; Error *local_err = NULL; fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); if (!fdc) { return 0; } iobase = object_property_get_uint(obj, "iobase", &local_err); if (local_err || iobase != 0x3f0) { error_free(local_err); return 0; } if (state->floppy) { state->multiple = true; } else { state->floppy = ISA_DEVICE(obj); } return 0; } static const char * const fdc_container_path[] = { "/unattached", "/peripheral", "/peripheral-anon" }; /* * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers * and ACPI objects. */ static ISADevice *pc_find_fdc0(void) { int i; Object *container; CheckFdcState state = { 0 }; for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { container = container_get(qdev_get_machine(), fdc_container_path[i]); object_child_foreach(container, check_fdc, &state); } if (state.multiple) { warn_report("multiple floppy disk controllers with " "iobase=0x3f0 have been found"); error_printf("the one being picked for CMOS setup might not reflect " "your intent"); } return state.floppy; } static void pc_cmos_init_late(void *opaque) { pc_cmos_init_late_arg *arg = opaque; MC146818RtcState *s = arg->rtc_state; int16_t cylinders; int8_t heads, sectors; int val; int i, trans; val = 0; if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); val |= 0xf0; } if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); val |= 0x0f; } mc146818rtc_set_cmos_data(s, 0x12, val); val = 0; for (i = 0; i < 4; i++) { /* NOTE: ide_get_geometry() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ if (arg->idebus[i / 2] && ide_get_geometry(arg->idebus[i / 2], i % 2, &cylinders, &heads, §ors) >= 0) { trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; assert((trans & ~3) == 0); val |= trans << (i * 2); } } mc146818rtc_set_cmos_data(s, 0x39, val); pc_cmos_init_floppy(s, pc_find_fdc0()); qemu_unregister_reset(pc_cmos_init_late, opaque); } void pc_cmos_init(PCMachineState *pcms, BusState *idebus0, BusState *idebus1, ISADevice *rtc) { int val; static pc_cmos_init_late_arg arg; X86MachineState *x86ms = X86_MACHINE(pcms); MC146818RtcState *s = MC146818_RTC(rtc); /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ /* base memory (first MiB) */ val = MIN(x86ms->below_4g_mem_size / KiB, 640); mc146818rtc_set_cmos_data(s, 0x15, val); mc146818rtc_set_cmos_data(s, 0x16, val >> 8); /* extended memory (next 64MiB) */ if (x86ms->below_4g_mem_size > 1 * MiB) { val = (x86ms->below_4g_mem_size - 1 * MiB) / KiB; } else { val = 0; } if (val > 65535) val = 65535; mc146818rtc_set_cmos_data(s, 0x17, val); mc146818rtc_set_cmos_data(s, 0x18, val >> 8); mc146818rtc_set_cmos_data(s, 0x30, val); mc146818rtc_set_cmos_data(s, 0x31, val >> 8); /* memory between 16MiB and 4GiB */ if (x86ms->below_4g_mem_size > 16 * MiB) { val = (x86ms->below_4g_mem_size - 16 * MiB) / (64 * KiB); } else { val = 0; } if (val > 65535) val = 65535; mc146818rtc_set_cmos_data(s, 0x34, val); mc146818rtc_set_cmos_data(s, 0x35, val >> 8); /* memory above 4GiB */ val = x86ms->above_4g_mem_size / 65536; mc146818rtc_set_cmos_data(s, 0x5b, val); mc146818rtc_set_cmos_data(s, 0x5c, val >> 8); mc146818rtc_set_cmos_data(s, 0x5d, val >> 16); object_property_add_link(OBJECT(pcms), "rtc_state", TYPE_ISA_DEVICE, (Object **)&x86ms->rtc, object_property_allow_set_link, OBJ_PROP_LINK_STRONG); object_property_set_link(OBJECT(pcms), "rtc_state", OBJECT(s), &error_abort); set_boot_dev(s, MACHINE(pcms)->boot_config.order, &error_fatal); val = 0; val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ mc146818rtc_set_cmos_data(s, REG_EQUIPMENT_BYTE, val); /* hard drives and FDC */ arg.rtc_state = s; arg.idebus[0] = idebus0; arg.idebus[1] = idebus1; qemu_register_reset(pc_cmos_init_late, &arg); } static void handle_a20_line_change(void *opaque, int irq, int level) { X86CPU *cpu = opaque; /* XXX: send to all CPUs ? */ /* XXX: add logic to handle multiple A20 line sources */ x86_cpu_set_a20(cpu, level); } #define NE2000_NB_MAX 6 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; static void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(bus, ne2000_io[nb_ne2k], ne2000_irq[nb_ne2k], nd); nb_ne2k++; } void pc_acpi_smi_interrupt(void *opaque, int irq, int level) { X86CPU *cpu = opaque; if (level) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } } static void pc_machine_done(Notifier *notifier, void *data) { PCMachineState *pcms = container_of(notifier, PCMachineState, machine_done); X86MachineState *x86ms = X86_MACHINE(pcms); cxl_hook_up_pxb_registers(pcms->bus, &pcms->cxl_devices_state, &error_fatal); if (pcms->cxl_devices_state.is_enabled) { cxl_fmws_link_targets(&pcms->cxl_devices_state, &error_fatal); } /* set the number of CPUs */ x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); fw_cfg_add_extra_pci_roots(pcms->bus, x86ms->fw_cfg); acpi_setup(); if (x86ms->fw_cfg) { fw_cfg_build_smbios(MACHINE(pcms), x86ms->fw_cfg); fw_cfg_build_feature_control(MACHINE(pcms), x86ms->fw_cfg); /* update FW_CFG_NB_CPUS to account for -device added CPUs */ fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); } } void pc_guest_info_init(PCMachineState *pcms) { X86MachineState *x86ms = X86_MACHINE(pcms); x86ms->apic_xrupt_override = true; pcms->machine_done.notify = pc_machine_done; qemu_add_machine_init_done_notifier(&pcms->machine_done); } /* setup pci memory address space mapping into system address space */ void pc_pci_as_mapping_init(MemoryRegion *system_memory, MemoryRegion *pci_address_space) { /* Set to lower priority than RAM */ memory_region_add_subregion_overlap(system_memory, 0x0, pci_address_space, -1); } void xen_load_linux(PCMachineState *pcms) { int i; FWCfgState *fw_cfg; PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); X86MachineState *x86ms = X86_MACHINE(pcms); assert(MACHINE(pcms)->kernel_filename != NULL); fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); rom_set_fw(fw_cfg); x86_load_linux(x86ms, fw_cfg, pcmc->acpi_data_size, pcmc->pvh_enabled); for (i = 0; i < nb_option_roms; i++) { assert(!strcmp(option_rom[i].name, "linuxboot.bin") || !strcmp(option_rom[i].name, "linuxboot_dma.bin") || !strcmp(option_rom[i].name, "pvh.bin") || !strcmp(option_rom[i].name, "multiboot.bin") || !strcmp(option_rom[i].name, "multiboot_dma.bin")); rom_add_option(option_rom[i].name, option_rom[i].bootindex); } x86ms->fw_cfg = fw_cfg; } #define PC_ROM_MIN_VGA 0xc0000 #define PC_ROM_MIN_OPTION 0xc8000 #define PC_ROM_MAX 0xe0000 #define PC_ROM_ALIGN 0x800 #define PC_ROM_SIZE (PC_ROM_MAX - PC_ROM_MIN_VGA) static hwaddr pc_above_4g_end(PCMachineState *pcms) { X86MachineState *x86ms = X86_MACHINE(pcms); if (pcms->sgx_epc.size != 0) { return sgx_epc_above_4g_end(&pcms->sgx_epc); } return x86ms->above_4g_mem_start + x86ms->above_4g_mem_size; } static void pc_get_device_memory_range(PCMachineState *pcms, hwaddr *base, ram_addr_t *device_mem_size) { PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); MachineState *machine = MACHINE(pcms); ram_addr_t size; hwaddr addr; size = machine->maxram_size - machine->ram_size; addr = ROUND_UP(pc_above_4g_end(pcms), 1 * GiB); if (pcmc->enforce_aligned_dimm) { /* size device region assuming 1G page max alignment per slot */ size += (1 * GiB) * machine->ram_slots; } *base = addr; *device_mem_size = size; } static uint64_t pc_get_cxl_range_start(PCMachineState *pcms) { PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); hwaddr cxl_base; ram_addr_t size; if (pcmc->has_reserved_memory) { pc_get_device_memory_range(pcms, &cxl_base, &size); cxl_base += size; } else { cxl_base = pc_above_4g_end(pcms); } return cxl_base; } static uint64_t pc_get_cxl_range_end(PCMachineState *pcms) { uint64_t start = pc_get_cxl_range_start(pcms) + MiB; if (pcms->cxl_devices_state.fixed_windows) { GList *it; start = ROUND_UP(start, 256 * MiB); for (it = pcms->cxl_devices_state.fixed_windows; it; it = it->next) { CXLFixedWindow *fw = it->data; start += fw->size; } } return start; } static hwaddr pc_max_used_gpa(PCMachineState *pcms, uint64_t pci_hole64_size) { X86CPU *cpu = X86_CPU(first_cpu); /* 32-bit systems don't have hole64 thus return max CPU address */ if (cpu->phys_bits <= 32) { return ((hwaddr)1 << cpu->phys_bits) - 1; } return pc_pci_hole64_start() + pci_hole64_size - 1; } /* * AMD systems with an IOMMU have an additional hole close to the * 1Tb, which are special GPAs that cannot be DMA mapped. Depending * on kernel version, VFIO may or may not let you DMA map those ranges. * Starting Linux v5.4 we validate it, and can't create guests on AMD machines * with certain memory sizes. It's also wrong to use those IOVA ranges * in detriment of leading to IOMMU INVALID_DEVICE_REQUEST or worse. * The ranges reserved for Hyper-Transport are: * * FD_0000_0000h - FF_FFFF_FFFFh * * The ranges represent the following: * * Base Address Top Address Use * * FD_0000_0000h FD_F7FF_FFFFh Reserved interrupt address space * FD_F800_0000h FD_F8FF_FFFFh Interrupt/EOI IntCtl * FD_F900_0000h FD_F90F_FFFFh Legacy PIC IACK * FD_F910_0000h FD_F91F_FFFFh System Management * FD_F920_0000h FD_FAFF_FFFFh Reserved Page Tables * FD_FB00_0000h FD_FBFF_FFFFh Address Translation * FD_FC00_0000h FD_FDFF_FFFFh I/O Space * FD_FE00_0000h FD_FFFF_FFFFh Configuration * FE_0000_0000h FE_1FFF_FFFFh Extended Configuration/Device Messages * FE_2000_0000h FF_FFFF_FFFFh Reserved * * See AMD IOMMU spec, section 2.1.2 "IOMMU Logical Topology", * Table 3: Special Address Controls (GPA) for more information. */ #define AMD_HT_START 0xfd00000000UL #define AMD_HT_END 0xffffffffffUL #define AMD_ABOVE_1TB_START (AMD_HT_END + 1) #define AMD_HT_SIZE (AMD_ABOVE_1TB_START - AMD_HT_START) void pc_memory_init(PCMachineState *pcms, MemoryRegion *system_memory, MemoryRegion *rom_memory, uint64_t pci_hole64_size) { int linux_boot, i; MemoryRegion *option_rom_mr; MemoryRegion *ram_below_4g, *ram_above_4g; FWCfgState *fw_cfg; MachineState *machine = MACHINE(pcms); MachineClass *mc = MACHINE_GET_CLASS(machine); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); X86MachineState *x86ms = X86_MACHINE(pcms); hwaddr maxphysaddr, maxusedaddr; hwaddr cxl_base, cxl_resv_end = 0; X86CPU *cpu = X86_CPU(first_cpu); assert(machine->ram_size == x86ms->below_4g_mem_size + x86ms->above_4g_mem_size); linux_boot = (machine->kernel_filename != NULL); /* * The HyperTransport range close to the 1T boundary is unique to AMD * hosts with IOMMUs enabled. Restrict the ram-above-4g relocation * to above 1T to AMD vCPUs only. @enforce_amd_1tb_hole is only false in * older machine types (<= 7.0) for compatibility purposes. */ if (IS_AMD_CPU(&cpu->env) && pcmc->enforce_amd_1tb_hole) { /* Bail out if max possible address does not cross HT range */ if (pc_max_used_gpa(pcms, pci_hole64_size) >= AMD_HT_START) { x86ms->above_4g_mem_start = AMD_ABOVE_1TB_START; } /* * Advertise the HT region if address space covers the reserved * region or if we relocate. */ if (cpu->phys_bits >= 40) { e820_add_entry(AMD_HT_START, AMD_HT_SIZE, E820_RESERVED); } } /* * phys-bits is required to be appropriately configured * to make sure max used GPA is reachable. */ maxusedaddr = pc_max_used_gpa(pcms, pci_hole64_size); maxphysaddr = ((hwaddr)1 << cpu->phys_bits) - 1; if (maxphysaddr < maxusedaddr) { error_report("Address space limit 0x%"PRIx64" < 0x%"PRIx64 " phys-bits too low (%u)", maxphysaddr, maxusedaddr, cpu->phys_bits); exit(EXIT_FAILURE); } /* * Split single memory region and use aliases to address portions of it, * done for backwards compatibility with older qemus. */ ram_below_4g = g_malloc(sizeof(*ram_below_4g)); memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", machine->ram, 0, x86ms->below_4g_mem_size); memory_region_add_subregion(system_memory, 0, ram_below_4g); e820_add_entry(0, x86ms->below_4g_mem_size, E820_RAM); if (x86ms->above_4g_mem_size > 0) { ram_above_4g = g_malloc(sizeof(*ram_above_4g)); memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", machine->ram, x86ms->below_4g_mem_size, x86ms->above_4g_mem_size); memory_region_add_subregion(system_memory, x86ms->above_4g_mem_start, ram_above_4g); e820_add_entry(x86ms->above_4g_mem_start, x86ms->above_4g_mem_size, E820_RAM); } if (pcms->sgx_epc.size != 0) { e820_add_entry(pcms->sgx_epc.base, pcms->sgx_epc.size, E820_RESERVED); } if (!pcmc->has_reserved_memory && (machine->ram_slots || (machine->maxram_size > machine->ram_size))) { error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", mc->name); exit(EXIT_FAILURE); } /* initialize device memory address space */ if (pcmc->has_reserved_memory && (machine->ram_size < machine->maxram_size)) { ram_addr_t device_mem_size; hwaddr device_mem_base; if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { error_report("unsupported amount of memory slots: %"PRIu64, machine->ram_slots); exit(EXIT_FAILURE); } if (QEMU_ALIGN_UP(machine->maxram_size, TARGET_PAGE_SIZE) != machine->maxram_size) { error_report("maximum memory size must by aligned to multiple of " "%d bytes", TARGET_PAGE_SIZE); exit(EXIT_FAILURE); } pc_get_device_memory_range(pcms, &device_mem_base, &device_mem_size); if (device_mem_base + device_mem_size < device_mem_size) { error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, machine->maxram_size); exit(EXIT_FAILURE); } machine_memory_devices_init(machine, device_mem_base, device_mem_size); } if (pcms->cxl_devices_state.is_enabled) { MemoryRegion *mr = &pcms->cxl_devices_state.host_mr; hwaddr cxl_size = MiB; cxl_base = pc_get_cxl_range_start(pcms); memory_region_init(mr, OBJECT(machine), "cxl_host_reg", cxl_size); memory_region_add_subregion(system_memory, cxl_base, mr); cxl_resv_end = cxl_base + cxl_size; if (pcms->cxl_devices_state.fixed_windows) { hwaddr cxl_fmw_base; GList *it; cxl_fmw_base = ROUND_UP(cxl_base + cxl_size, 256 * MiB); for (it = pcms->cxl_devices_state.fixed_windows; it; it = it->next) { CXLFixedWindow *fw = it->data; fw->base = cxl_fmw_base; memory_region_init_io(&fw->mr, OBJECT(machine), &cfmws_ops, fw, "cxl-fixed-memory-region", fw->size); memory_region_add_subregion(system_memory, fw->base, &fw->mr); cxl_fmw_base += fw->size; cxl_resv_end = cxl_fmw_base; } } } /* Initialize PC system firmware */ pc_system_firmware_init(pcms, rom_memory); option_rom_mr = g_malloc(sizeof(*option_rom_mr)); memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, &error_fatal); if (pcmc->pci_enabled) { memory_region_set_readonly(option_rom_mr, true); } memory_region_add_subregion_overlap(rom_memory, PC_ROM_MIN_VGA, option_rom_mr, 1); fw_cfg = fw_cfg_arch_create(machine, x86ms->boot_cpus, x86ms->apic_id_limit); rom_set_fw(fw_cfg); if (machine->device_memory) { uint64_t *val = g_malloc(sizeof(*val)); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); uint64_t res_mem_end = machine->device_memory->base; if (!pcmc->broken_reserved_end) { res_mem_end += memory_region_size(&machine->device_memory->mr); } if (pcms->cxl_devices_state.is_enabled) { res_mem_end = cxl_resv_end; } *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); } if (linux_boot) { x86_load_linux(x86ms, fw_cfg, pcmc->acpi_data_size, pcmc->pvh_enabled); } for (i = 0; i < nb_option_roms; i++) { rom_add_option(option_rom[i].name, option_rom[i].bootindex); } x86ms->fw_cfg = fw_cfg; /* Init default IOAPIC address space */ x86ms->ioapic_as = &address_space_memory; /* Init ACPI memory hotplug IO base address */ pcms->memhp_io_base = ACPI_MEMORY_HOTPLUG_BASE; } /* * The 64bit pci hole starts after "above 4G RAM" and * potentially the space reserved for memory hotplug. */ uint64_t pc_pci_hole64_start(void) { PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); MachineState *ms = MACHINE(pcms); uint64_t hole64_start = 0; ram_addr_t size = 0; if (pcms->cxl_devices_state.is_enabled) { hole64_start = pc_get_cxl_range_end(pcms); } else if (pcmc->has_reserved_memory && (ms->ram_size < ms->maxram_size)) { pc_get_device_memory_range(pcms, &hole64_start, &size); if (!pcmc->broken_reserved_end) { hole64_start += size; } } else { hole64_start = pc_above_4g_end(pcms); } return ROUND_UP(hole64_start, 1 * GiB); } DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) { DeviceState *dev = NULL; rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); if (pci_bus) { PCIDevice *pcidev = pci_vga_init(pci_bus); dev = pcidev ? &pcidev->qdev : NULL; } else if (isa_bus) { ISADevice *isadev = isa_vga_init(isa_bus); dev = isadev ? DEVICE(isadev) : NULL; } rom_reset_order_override(); return dev; } static const MemoryRegionOps ioport80_io_ops = { .write = ioport80_write, .read = ioport80_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; static const MemoryRegionOps ioportF0_io_ops = { .write = ioportF0_write, .read = ioportF0_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool create_i8042, bool no_vmport) { int i; DriveInfo *fd[MAX_FD]; qemu_irq *a20_line; ISADevice *fdc, *i8042, *port92, *vmmouse; serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); for (i = 0; i < MAX_FD; i++) { fd[i] = drive_get(IF_FLOPPY, 0, i); create_fdctrl |= !!fd[i]; } if (create_fdctrl) { fdc = isa_new(TYPE_ISA_FDC); if (fdc) { isa_realize_and_unref(fdc, isa_bus, &error_fatal); isa_fdc_init_drives(fdc, fd); } } if (!create_i8042) { return; } i8042 = isa_create_simple(isa_bus, TYPE_I8042); if (!no_vmport) { isa_create_simple(isa_bus, TYPE_VMPORT); vmmouse = isa_try_new("vmmouse"); } else { vmmouse = NULL; } if (vmmouse) { object_property_set_link(OBJECT(vmmouse), TYPE_I8042, OBJECT(i8042), &error_abort); isa_realize_and_unref(vmmouse, isa_bus, &error_fatal); } port92 = isa_create_simple(isa_bus, TYPE_PORT92); a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); i8042_setup_a20_line(i8042, a20_line[0]); qdev_connect_gpio_out_named(DEVICE(port92), PORT92_A20_LINE, 0, a20_line[1]); g_free(a20_line); } void pc_basic_device_init(struct PCMachineState *pcms, ISABus *isa_bus, qemu_irq *gsi, ISADevice *rtc_state, bool create_fdctrl, uint32_t hpet_irqs) { int i; DeviceState *hpet = NULL; int pit_isa_irq = 0; qemu_irq pit_alt_irq = NULL; qemu_irq rtc_irq = NULL; ISADevice *pit = NULL; MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); X86MachineState *x86ms = X86_MACHINE(pcms); memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); /* * Check if an HPET shall be created. * * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT * when the HPET wants to take over. Thus we have to disable the latter. */ if (pcms->hpet_enabled && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { hpet = qdev_try_new(TYPE_HPET); if (!hpet) { error_report("couldn't create HPET device"); exit(1); } /* * For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 and * earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, IRQ8 and * IRQ2. */ uint8_t compat = object_property_get_uint(OBJECT(hpet), HPET_INTCAP, NULL); if (!compat) { qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); } sysbus_realize_and_unref(SYS_BUS_DEVICE(hpet), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); for (i = 0; i < IOAPIC_NUM_PINS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); } pit_isa_irq = -1; pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); } if (rtc_irq) { qdev_connect_gpio_out(DEVICE(rtc_state), 0, rtc_irq); } else { uint32_t irq = object_property_get_uint(OBJECT(rtc_state), "irq", &error_fatal); isa_connect_gpio_out(rtc_state, 0, irq); } object_property_add_alias(OBJECT(pcms), "rtc-time", OBJECT(rtc_state), "date"); #ifdef CONFIG_XEN_EMU if (xen_mode == XEN_EMULATE) { xen_overlay_create(); xen_evtchn_create(IOAPIC_NUM_PINS, gsi); xen_gnttab_create(); xen_xenstore_create(); if (pcms->bus) { pci_create_simple(pcms->bus, -1, "xen-platform"); } xen_bus_init(); xen_be_init(); } #endif qemu_register_boot_set(pc_boot_set, rtc_state); if (!xen_enabled() && (x86ms->pit == ON_OFF_AUTO_AUTO || x86ms->pit == ON_OFF_AUTO_ON)) { if (kvm_pit_in_kernel()) { pit = kvm_pit_init(isa_bus, 0x40); } else { pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); } if (hpet) { /* connect PIT to output control line of the HPET */ qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); } pcspk_init(pcms->pcspk, isa_bus, pit); } /* Super I/O */ pc_superio_init(isa_bus, create_fdctrl, pcms->i8042_enabled, pcms->vmport != ON_OFF_AUTO_ON); } void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) { MachineClass *mc = MACHINE_CLASS(pcmc); int i; rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; const char *model = nd->model ? nd->model : mc->default_nic; if (g_str_equal(model, "ne2k_isa")) { pc_init_ne2k_isa(isa_bus, nd); } else { pci_nic_init_nofail(nd, pci_bus, model, NULL); } } rom_reset_order_override(); } void pc_i8259_create(ISABus *isa_bus, qemu_irq *i8259_irqs) { qemu_irq *i8259; if (kvm_pic_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { i8259 = i8259_init(isa_bus, x86_allocate_cpu_irq()); } for (size_t i = 0; i < ISA_NUM_IRQS; i++) { i8259_irqs[i] = i8259[i]; } g_free(i8259); } static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { const PCMachineState *pcms = PC_MACHINE(hotplug_dev); const X86MachineState *x86ms = X86_MACHINE(hotplug_dev); const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); const MachineState *ms = MACHINE(hotplug_dev); const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); const uint64_t legacy_align = TARGET_PAGE_SIZE; Error *local_err = NULL; /* * When -no-acpi is used with Q35 machine type, no ACPI is built, * but pcms->acpi_dev is still created. Check !acpi_enabled in * addition to cover this case. */ if (!x86ms->acpi_dev || !x86_machine_is_acpi_enabled(x86ms)) { error_setg(errp, "memory hotplug is not enabled: missing acpi device or acpi disabled"); return; } if (is_nvdimm && !ms->nvdimms_state->is_enabled) { error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); return; } hotplug_handler_pre_plug(x86ms->acpi_dev, dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); } static void pc_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PCMachineState *pcms = PC_MACHINE(hotplug_dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); MachineState *ms = MACHINE(hotplug_dev); bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms)); if (is_nvdimm) { nvdimm_plug(ms->nvdimms_state); } hotplug_handler_plug(x86ms->acpi_dev, dev, &error_abort); } static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { X86MachineState *x86ms = X86_MACHINE(hotplug_dev); /* * When -no-acpi is used with Q35 machine type, no ACPI is built, * but pcms->acpi_dev is still created. Check !acpi_enabled in * addition to cover this case. */ if (!x86ms->acpi_dev || !x86_machine_is_acpi_enabled(x86ms)) { error_setg(errp, "memory hotplug is not enabled: missing acpi device or acpi disabled"); return; } if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { error_setg(errp, "nvdimm device hot unplug is not supported yet."); return; } hotplug_handler_unplug_request(x86ms->acpi_dev, dev, errp); } static void pc_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PCMachineState *pcms = PC_MACHINE(hotplug_dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); Error *local_err = NULL; hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); if (local_err) { goto out; } pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); qdev_unrealize(dev); out: error_propagate(errp, local_err); } static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_pre_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { x86_cpu_pre_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { /* Declare the APIC range as the reserved MSI region */ char *resv_prop_str = g_strdup_printf("0xfee00000:0xfeefffff:%d", VIRTIO_IOMMU_RESV_MEM_T_MSI); object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp); object_property_set_str(OBJECT(dev), "reserved-regions[0]", resv_prop_str, errp); g_free(resv_prop_str); } if (object_dynamic_cast(OBJECT(dev), TYPE_X86_IOMMU_DEVICE) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { PCMachineState *pcms = PC_MACHINE(hotplug_dev); if (pcms->iommu) { error_setg(errp, "QEMU does not support multiple vIOMMUs " "for x86 yet."); return; } pcms->iommu = dev; } } static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { x86_cpu_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } } static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_unplug_request(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { x86_cpu_unplug_request_cb(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else { error_setg(errp, "acpi: device unplug request for not supported device" " type: %s", object_get_typename(OBJECT(dev))); } } static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_unplug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { x86_cpu_unplug_cb(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else { error_setg(errp, "acpi: device unplug for not supported device" " type: %s", object_get_typename(OBJECT(dev))); } } static HotplugHandler *pc_get_hotplug_handler(MachineState *machine, DeviceState *dev) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || object_dynamic_cast(OBJECT(dev), TYPE_CPU) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI) || object_dynamic_cast(OBJECT(dev), TYPE_X86_IOMMU_DEVICE)) { return HOTPLUG_HANDLER(machine); } return NULL; } static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); OnOffAuto vmport = pcms->vmport; visit_type_OnOffAuto(v, name, &vmport, errp); } static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); visit_type_OnOffAuto(v, name, &pcms->vmport, errp); } static bool pc_machine_get_smbus(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->smbus_enabled; } static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->smbus_enabled = value; } static bool pc_machine_get_sata(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->sata_enabled; } static void pc_machine_set_sata(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->sata_enabled = value; } static bool pc_machine_get_hpet(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->hpet_enabled; } static void pc_machine_set_hpet(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->hpet_enabled = value; } static bool pc_machine_get_i8042(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->i8042_enabled; } static void pc_machine_set_i8042(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->i8042_enabled = value; } static bool pc_machine_get_default_bus_bypass_iommu(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->default_bus_bypass_iommu; } static void pc_machine_set_default_bus_bypass_iommu(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->default_bus_bypass_iommu = value; } static void pc_machine_get_smbios_ep(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); SmbiosEntryPointType smbios_entry_point_type = pcms->smbios_entry_point_type; visit_type_SmbiosEntryPointType(v, name, &smbios_entry_point_type, errp); } static void pc_machine_set_smbios_ep(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); visit_type_SmbiosEntryPointType(v, name, &pcms->smbios_entry_point_type, errp); } static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); uint64_t value = pcms->max_ram_below_4g; visit_type_size(v, name, &value, errp); } static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); uint64_t value; if (!visit_type_size(v, name, &value, errp)) { return; } if (value > 4 * GiB) { error_setg(errp, "Machine option 'max-ram-below-4g=%"PRIu64 "' expects size less than or equal to 4G", value); return; } if (value < 1 * MiB) { warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," "BIOS may not work with less than 1MiB", value); } pcms->max_ram_below_4g = value; } static void pc_machine_get_max_fw_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); uint64_t value = pcms->max_fw_size; visit_type_size(v, name, &value, errp); } static void pc_machine_set_max_fw_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); uint64_t value; if (!visit_type_size(v, name, &value, errp)) { return; } /* * We don't have a theoretically justifiable exact lower bound on the base * address of any flash mapping. In practice, the IO-APIC MMIO range is * [0xFEE00000..0xFEE01000] -- see IO_APIC_DEFAULT_ADDRESS --, leaving free * only 18MiB-4KiB below 4GiB. For now, restrict the cumulative mapping to * 16MiB in size. */ if (value > 16 * MiB) { error_setg(errp, "User specified max allowed firmware size %" PRIu64 " is " "greater than 16MiB. If combined firmware size exceeds " "16MiB the system may not boot, or experience intermittent" "stability issues.", value); return; } pcms->max_fw_size = value; } static void pc_machine_initfn(Object *obj) { PCMachineState *pcms = PC_MACHINE(obj); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); #ifdef CONFIG_VMPORT pcms->vmport = ON_OFF_AUTO_AUTO; #else pcms->vmport = ON_OFF_AUTO_OFF; #endif /* CONFIG_VMPORT */ pcms->max_ram_below_4g = 0; /* use default */ pcms->smbios_entry_point_type = pcmc->default_smbios_ep_type; /* acpi build is enabled by default if machine supports it */ pcms->acpi_build_enabled = pcmc->has_acpi_build; pcms->smbus_enabled = true; pcms->sata_enabled = true; pcms->i8042_enabled = true; pcms->max_fw_size = 8 * MiB; #ifdef CONFIG_HPET pcms->hpet_enabled = true; #endif pcms->default_bus_bypass_iommu = false; pc_system_flash_create(pcms); pcms->pcspk = isa_new(TYPE_PC_SPEAKER); object_property_add_alias(OBJECT(pcms), "pcspk-audiodev", OBJECT(pcms->pcspk), "audiodev"); cxl_machine_init(obj, &pcms->cxl_devices_state); } int pc_machine_kvm_type(MachineState *machine, const char *kvm_type) { return 0; } static void pc_machine_reset(MachineState *machine, ShutdownCause reason) { CPUState *cs; X86CPU *cpu; qemu_devices_reset(reason); /* Reset APIC after devices have been reset to cancel * any changes that qemu_devices_reset() might have done. */ CPU_FOREACH(cs) { cpu = X86_CPU(cs); x86_cpu_after_reset(cpu); } } static void pc_machine_wakeup(MachineState *machine) { cpu_synchronize_all_states(); pc_machine_reset(machine, SHUTDOWN_CAUSE_NONE); cpu_synchronize_all_post_reset(); } static bool pc_hotplug_allowed(MachineState *ms, DeviceState *dev, Error **errp) { X86IOMMUState *iommu = x86_iommu_get_default(); IntelIOMMUState *intel_iommu; if (iommu && object_dynamic_cast((Object *)iommu, TYPE_INTEL_IOMMU_DEVICE) && object_dynamic_cast((Object *)dev, "vfio-pci")) { intel_iommu = INTEL_IOMMU_DEVICE(iommu); if (!intel_iommu->caching_mode) { error_setg(errp, "Device assignment is not allowed without " "enabling caching-mode=on for Intel IOMMU."); return false; } } return true; } static void pc_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); pcmc->pci_enabled = true; pcmc->has_acpi_build = true; pcmc->rsdp_in_ram = true; pcmc->smbios_defaults = true; pcmc->smbios_uuid_encoded = true; pcmc->gigabyte_align = true; pcmc->has_reserved_memory = true; pcmc->kvmclock_enabled = true; pcmc->enforce_aligned_dimm = true; pcmc->enforce_amd_1tb_hole = true; /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported * to be used at the moment, 32K should be enough for a while. */ pcmc->acpi_data_size = 0x20000 + 0x8000; pcmc->pvh_enabled = true; pcmc->kvmclock_create_always = true; pcmc->resizable_acpi_blob = true; assert(!mc->get_hotplug_handler); mc->get_hotplug_handler = pc_get_hotplug_handler; mc->hotplug_allowed = pc_hotplug_allowed; mc->cpu_index_to_instance_props = x86_cpu_index_to_props; mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; mc->auto_enable_numa_with_memhp = true; mc->auto_enable_numa_with_memdev = true; mc->has_hotpluggable_cpus = true; mc->default_boot_order = "cad"; mc->block_default_type = IF_IDE; mc->max_cpus = 255; mc->reset = pc_machine_reset; mc->wakeup = pc_machine_wakeup; hc->pre_plug = pc_machine_device_pre_plug_cb; hc->plug = pc_machine_device_plug_cb; hc->unplug_request = pc_machine_device_unplug_request_cb; hc->unplug = pc_machine_device_unplug_cb; mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; mc->nvdimm_supported = true; mc->smp_props.dies_supported = true; mc->default_ram_id = "pc.ram"; pcmc->default_smbios_ep_type = SMBIOS_ENTRY_POINT_TYPE_64; object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, NULL, NULL); object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "Maximum ram below the 4G boundary (32bit boundary)"); object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", pc_machine_get_vmport, pc_machine_set_vmport, NULL, NULL); object_class_property_set_description(oc, PC_MACHINE_VMPORT, "Enable vmport (pc & q35)"); object_class_property_add_bool(oc, PC_MACHINE_SMBUS, pc_machine_get_smbus, pc_machine_set_smbus); object_class_property_set_description(oc, PC_MACHINE_SMBUS, "Enable/disable system management bus"); object_class_property_add_bool(oc, PC_MACHINE_SATA, pc_machine_get_sata, pc_machine_set_sata); object_class_property_set_description(oc, PC_MACHINE_SATA, "Enable/disable Serial ATA bus"); object_class_property_add_bool(oc, "hpet", pc_machine_get_hpet, pc_machine_set_hpet); object_class_property_set_description(oc, "hpet", "Enable/disable high precision event timer emulation"); object_class_property_add_bool(oc, PC_MACHINE_I8042, pc_machine_get_i8042, pc_machine_set_i8042); object_class_property_add_bool(oc, "default-bus-bypass-iommu", pc_machine_get_default_bus_bypass_iommu, pc_machine_set_default_bus_bypass_iommu); object_class_property_add(oc, PC_MACHINE_MAX_FW_SIZE, "size", pc_machine_get_max_fw_size, pc_machine_set_max_fw_size, NULL, NULL); object_class_property_set_description(oc, PC_MACHINE_MAX_FW_SIZE, "Maximum combined firmware size"); object_class_property_add(oc, PC_MACHINE_SMBIOS_EP, "str", pc_machine_get_smbios_ep, pc_machine_set_smbios_ep, NULL, NULL); object_class_property_set_description(oc, PC_MACHINE_SMBIOS_EP, "SMBIOS Entry Point type [32, 64]"); } static const TypeInfo pc_machine_info = { .name = TYPE_PC_MACHINE, .parent = TYPE_X86_MACHINE, .abstract = true, .instance_size = sizeof(PCMachineState), .instance_init = pc_machine_initfn, .class_size = sizeof(PCMachineClass), .class_init = pc_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } }, }; static void pc_machine_register_types(void) { type_register_static(&pc_machine_info); } type_init(pc_machine_register_types)