/* * Helpers for integer and multimedia instructions. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "helper.h" #include "qemu/host-utils.h" uint64_t helper_umulh(uint64_t op1, uint64_t op2) { uint64_t tl, th; mulu64(&tl, &th, op1, op2); return th; } uint64_t helper_ctpop(uint64_t arg) { return ctpop64(arg); } uint64_t helper_ctlz(uint64_t arg) { return clz64(arg); } uint64_t helper_cttz(uint64_t arg) { return ctz64(arg); } static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) { uint64_t mask; mask = 0; mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; return op & ~mask; } uint64_t helper_zap(uint64_t val, uint64_t mask) { return byte_zap(val, mask); } uint64_t helper_zapnot(uint64_t val, uint64_t mask) { return byte_zap(val, ~mask); } uint64_t helper_cmpbge(uint64_t op1, uint64_t op2) { uint8_t opa, opb, res; int i; res = 0; for (i = 0; i < 8; i++) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); if (opa >= opb) { res |= 1 << i; } } return res; } uint64_t helper_minub8(uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_minsb8(uint64_t op1, uint64_t op2) { uint64_t res = 0; int8_t opa, opb; uint8_t opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_minuw4(uint64_t op1, uint64_t op2) { uint64_t res = 0; uint16_t opa, opb, opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_minsw4(uint64_t op1, uint64_t op2) { uint64_t res = 0; int16_t opa, opb; uint16_t opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_maxub8(uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_maxsb8(uint64_t op1, uint64_t op2) { uint64_t res = 0; int8_t opa, opb; uint8_t opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_maxuw4(uint64_t op1, uint64_t op2) { uint64_t res = 0; uint16_t opa, opb, opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_maxsw4(uint64_t op1, uint64_t op2) { uint64_t res = 0; int16_t opa, opb; uint16_t opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_perr(uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); if (opa >= opb) { opr = opa - opb; } else { opr = opb - opa; } res += opr; } return res; } uint64_t helper_pklb(uint64_t op1) { return (op1 & 0xff) | ((op1 >> 24) & 0xff00); } uint64_t helper_pkwb(uint64_t op1) { return ((op1 & 0xff) | ((op1 >> 8) & 0xff00) | ((op1 >> 16) & 0xff0000) | ((op1 >> 24) & 0xff000000)); } uint64_t helper_unpkbl(uint64_t op1) { return (op1 & 0xff) | ((op1 & 0xff00) << 24); } uint64_t helper_unpkbw(uint64_t op1) { return ((op1 & 0xff) | ((op1 & 0xff00) << 8) | ((op1 & 0xff0000) << 16) | ((op1 & 0xff000000) << 24)); } uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 += op2; if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return op1; } uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 = (uint32_t)(op1 + op2); if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return op1; } uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { uint64_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return res; } uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { uint32_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return res; } uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { int64_t res = (int64_t)op1 * (int64_t)op2; if (unlikely((int32_t)res != res)) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return (int64_t)((int32_t)res); } uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) { uint64_t tl, th; muls64(&tl, &th, op1, op2); /* If th != 0 && th != -1, then we had an overflow */ if (unlikely((th + 1) > 1)) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return tl; }