/* * Virtio Support * * Copyright IBM, Corp. 2007 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "trace.h" #include "qemu-error.h" #include "virtio.h" /* The alignment to use between consumer and producer parts of vring. * x86 pagesize again. */ #define VIRTIO_PCI_VRING_ALIGN 4096 /* QEMU doesn't strictly need write barriers since everything runs in * lock-step. We'll leave the calls to wmb() in though to make it obvious for * KVM or if kqemu gets SMP support. * In any case, we must prevent the compiler from reordering the code. * TODO: we likely need some rmb()/mb() as well. */ #define wmb() __asm__ __volatile__("": : :"memory") typedef struct VRingDesc { uint64_t addr; uint32_t len; uint16_t flags; uint16_t next; } VRingDesc; typedef struct VRingAvail { uint16_t flags; uint16_t idx; uint16_t ring[0]; } VRingAvail; typedef struct VRingUsedElem { uint32_t id; uint32_t len; } VRingUsedElem; typedef struct VRingUsed { uint16_t flags; uint16_t idx; VRingUsedElem ring[0]; } VRingUsed; typedef struct VRing { unsigned int num; target_phys_addr_t desc; target_phys_addr_t avail; target_phys_addr_t used; } VRing; struct VirtQueue { VRing vring; target_phys_addr_t pa; uint16_t last_avail_idx; /* Last used index value we have signalled on */ uint16_t signalled_used; /* Last used index value we have signalled on */ bool signalled_used_valid; /* Notification enabled? */ bool notification; int inuse; uint16_t vector; void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq); VirtIODevice *vdev; EventNotifier guest_notifier; EventNotifier host_notifier; }; /* virt queue functions */ static void virtqueue_init(VirtQueue *vq) { target_phys_addr_t pa = vq->pa; vq->vring.desc = pa; vq->vring.avail = pa + vq->vring.num * sizeof(VRingDesc); vq->vring.used = vring_align(vq->vring.avail + offsetof(VRingAvail, ring[vq->vring.num]), VIRTIO_PCI_VRING_ALIGN); } static inline uint64_t vring_desc_addr(target_phys_addr_t desc_pa, int i) { target_phys_addr_t pa; pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, addr); return ldq_phys(pa); } static inline uint32_t vring_desc_len(target_phys_addr_t desc_pa, int i) { target_phys_addr_t pa; pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, len); return ldl_phys(pa); } static inline uint16_t vring_desc_flags(target_phys_addr_t desc_pa, int i) { target_phys_addr_t pa; pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, flags); return lduw_phys(pa); } static inline uint16_t vring_desc_next(target_phys_addr_t desc_pa, int i) { target_phys_addr_t pa; pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, next); return lduw_phys(pa); } static inline uint16_t vring_avail_flags(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, flags); return lduw_phys(pa); } static inline uint16_t vring_avail_idx(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, idx); return lduw_phys(pa); } static inline uint16_t vring_avail_ring(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, ring[i]); return lduw_phys(pa); } static inline uint16_t vring_used_event(VirtQueue *vq) { return vring_avail_ring(vq, vq->vring.num); } static inline void vring_used_ring_id(VirtQueue *vq, int i, uint32_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, ring[i].id); stl_phys(pa, val); } static inline void vring_used_ring_len(VirtQueue *vq, int i, uint32_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, ring[i].len); stl_phys(pa, val); } static uint16_t vring_used_idx(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, idx); return lduw_phys(pa); } static inline void vring_used_idx_set(VirtQueue *vq, uint16_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, idx); stw_phys(pa, val); } static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, flags); stw_phys(pa, lduw_phys(pa) | mask); } static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, flags); stw_phys(pa, lduw_phys(pa) & ~mask); } static inline void vring_avail_event(VirtQueue *vq, uint16_t val) { target_phys_addr_t pa; if (!vq->notification) { return; } pa = vq->vring.used + offsetof(VRingUsed, ring[vq->vring.num]); stw_phys(pa, val); } void virtio_queue_set_notification(VirtQueue *vq, int enable) { vq->notification = enable; if (vq->vdev->guest_features & (1 << VIRTIO_RING_F_EVENT_IDX)) { vring_avail_event(vq, vring_avail_idx(vq)); } else if (enable) { vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY); } else { vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY); } } int virtio_queue_ready(VirtQueue *vq) { return vq->vring.avail != 0; } int virtio_queue_empty(VirtQueue *vq) { return vring_avail_idx(vq) == vq->last_avail_idx; } void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len, unsigned int idx) { unsigned int offset; int i; trace_virtqueue_fill(vq, elem, len, idx); offset = 0; for (i = 0; i < elem->in_num; i++) { size_t size = MIN(len - offset, elem->in_sg[i].iov_len); cpu_physical_memory_unmap(elem->in_sg[i].iov_base, elem->in_sg[i].iov_len, 1, size); offset += elem->in_sg[i].iov_len; } for (i = 0; i < elem->out_num; i++) cpu_physical_memory_unmap(elem->out_sg[i].iov_base, elem->out_sg[i].iov_len, 0, elem->out_sg[i].iov_len); idx = (idx + vring_used_idx(vq)) % vq->vring.num; /* Get a pointer to the next entry in the used ring. */ vring_used_ring_id(vq, idx, elem->index); vring_used_ring_len(vq, idx, len); } void virtqueue_flush(VirtQueue *vq, unsigned int count) { uint16_t old, new; /* Make sure buffer is written before we update index. */ wmb(); trace_virtqueue_flush(vq, count); old = vring_used_idx(vq); new = old + count; vring_used_idx_set(vq, new); vq->inuse -= count; if (unlikely((int16_t)(new - vq->signalled_used) < (uint16_t)(new - old))) vq->signalled_used_valid = false; } void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { virtqueue_fill(vq, elem, len, 0); virtqueue_flush(vq, 1); } static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx) { uint16_t num_heads = vring_avail_idx(vq) - idx; /* Check it isn't doing very strange things with descriptor numbers. */ if (num_heads > vq->vring.num) { error_report("Guest moved used index from %u to %u", idx, vring_avail_idx(vq)); exit(1); } return num_heads; } static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx) { unsigned int head; /* Grab the next descriptor number they're advertising, and increment * the index we've seen. */ head = vring_avail_ring(vq, idx % vq->vring.num); /* If their number is silly, that's a fatal mistake. */ if (head >= vq->vring.num) { error_report("Guest says index %u is available", head); exit(1); } return head; } static unsigned virtqueue_next_desc(target_phys_addr_t desc_pa, unsigned int i, unsigned int max) { unsigned int next; /* If this descriptor says it doesn't chain, we're done. */ if (!(vring_desc_flags(desc_pa, i) & VRING_DESC_F_NEXT)) return max; /* Check they're not leading us off end of descriptors. */ next = vring_desc_next(desc_pa, i); /* Make sure compiler knows to grab that: we don't want it changing! */ wmb(); if (next >= max) { error_report("Desc next is %u", next); exit(1); } return next; } int virtqueue_avail_bytes(VirtQueue *vq, int in_bytes, int out_bytes) { unsigned int idx; int total_bufs, in_total, out_total; idx = vq->last_avail_idx; total_bufs = in_total = out_total = 0; while (virtqueue_num_heads(vq, idx)) { unsigned int max, num_bufs, indirect = 0; target_phys_addr_t desc_pa; int i; max = vq->vring.num; num_bufs = total_bufs; i = virtqueue_get_head(vq, idx++); desc_pa = vq->vring.desc; if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) { if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) { error_report("Invalid size for indirect buffer table"); exit(1); } /* If we've got too many, that implies a descriptor loop. */ if (num_bufs >= max) { error_report("Looped descriptor"); exit(1); } /* loop over the indirect descriptor table */ indirect = 1; max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc); num_bufs = i = 0; desc_pa = vring_desc_addr(desc_pa, i); } do { /* If we've got too many, that implies a descriptor loop. */ if (++num_bufs > max) { error_report("Looped descriptor"); exit(1); } if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) { if (in_bytes > 0 && (in_total += vring_desc_len(desc_pa, i)) >= in_bytes) return 1; } else { if (out_bytes > 0 && (out_total += vring_desc_len(desc_pa, i)) >= out_bytes) return 1; } } while ((i = virtqueue_next_desc(desc_pa, i, max)) != max); if (!indirect) total_bufs = num_bufs; else total_bufs++; } return 0; } void virtqueue_map_sg(struct iovec *sg, target_phys_addr_t *addr, size_t num_sg, int is_write) { unsigned int i; target_phys_addr_t len; for (i = 0; i < num_sg; i++) { len = sg[i].iov_len; sg[i].iov_base = cpu_physical_memory_map(addr[i], &len, is_write); if (sg[i].iov_base == NULL || len != sg[i].iov_len) { error_report("virtio: trying to map MMIO memory"); exit(1); } } } int virtqueue_pop(VirtQueue *vq, VirtQueueElement *elem) { unsigned int i, head, max; target_phys_addr_t desc_pa = vq->vring.desc; if (!virtqueue_num_heads(vq, vq->last_avail_idx)) return 0; /* When we start there are none of either input nor output. */ elem->out_num = elem->in_num = 0; max = vq->vring.num; i = head = virtqueue_get_head(vq, vq->last_avail_idx++); if (vq->vdev->guest_features & (1 << VIRTIO_RING_F_EVENT_IDX)) { vring_avail_event(vq, vring_avail_idx(vq)); } if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) { if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) { error_report("Invalid size for indirect buffer table"); exit(1); } /* loop over the indirect descriptor table */ max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc); desc_pa = vring_desc_addr(desc_pa, i); i = 0; } /* Collect all the descriptors */ do { struct iovec *sg; if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) { elem->in_addr[elem->in_num] = vring_desc_addr(desc_pa, i); sg = &elem->in_sg[elem->in_num++]; } else { elem->out_addr[elem->out_num] = vring_desc_addr(desc_pa, i); sg = &elem->out_sg[elem->out_num++]; } sg->iov_len = vring_desc_len(desc_pa, i); /* If we've got too many, that implies a descriptor loop. */ if ((elem->in_num + elem->out_num) > max) { error_report("Looped descriptor"); exit(1); } } while ((i = virtqueue_next_desc(desc_pa, i, max)) != max); /* Now map what we have collected */ virtqueue_map_sg(elem->in_sg, elem->in_addr, elem->in_num, 1); virtqueue_map_sg(elem->out_sg, elem->out_addr, elem->out_num, 0); elem->index = head; vq->inuse++; trace_virtqueue_pop(vq, elem, elem->in_num, elem->out_num); return elem->in_num + elem->out_num; } /* virtio device */ static void virtio_notify_vector(VirtIODevice *vdev, uint16_t vector) { if (vdev->binding->notify) { vdev->binding->notify(vdev->binding_opaque, vector); } } void virtio_update_irq(VirtIODevice *vdev) { virtio_notify_vector(vdev, VIRTIO_NO_VECTOR); } void virtio_reset(void *opaque) { VirtIODevice *vdev = opaque; int i; virtio_set_status(vdev, 0); if (vdev->reset) vdev->reset(vdev); vdev->guest_features = 0; vdev->queue_sel = 0; vdev->status = 0; vdev->isr = 0; vdev->config_vector = VIRTIO_NO_VECTOR; virtio_notify_vector(vdev, vdev->config_vector); for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { vdev->vq[i].vring.desc = 0; vdev->vq[i].vring.avail = 0; vdev->vq[i].vring.used = 0; vdev->vq[i].last_avail_idx = 0; vdev->vq[i].pa = 0; vdev->vq[i].vector = VIRTIO_NO_VECTOR; vdev->vq[i].signalled_used = 0; vdev->vq[i].signalled_used_valid = false; vdev->vq[i].notification = true; } } uint32_t virtio_config_readb(VirtIODevice *vdev, uint32_t addr) { uint8_t val; vdev->get_config(vdev, vdev->config); if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } uint32_t virtio_config_readw(VirtIODevice *vdev, uint32_t addr) { uint16_t val; vdev->get_config(vdev, vdev->config); if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } uint32_t virtio_config_readl(VirtIODevice *vdev, uint32_t addr) { uint32_t val; vdev->get_config(vdev, vdev->config); if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } void virtio_config_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data) { uint8_t val = data; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data) { uint16_t val = data; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } void virtio_config_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data) { uint32_t val = data; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } void virtio_queue_set_addr(VirtIODevice *vdev, int n, target_phys_addr_t addr) { vdev->vq[n].pa = addr; virtqueue_init(&vdev->vq[n]); } target_phys_addr_t virtio_queue_get_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].pa; } int virtio_queue_get_num(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.num; } void virtio_queue_notify_vq(VirtQueue *vq) { if (vq->vring.desc) { VirtIODevice *vdev = vq->vdev; trace_virtio_queue_notify(vdev, vq - vdev->vq, vq); vq->handle_output(vdev, vq); } } void virtio_queue_notify(VirtIODevice *vdev, int n) { virtio_queue_notify_vq(&vdev->vq[n]); } uint16_t virtio_queue_vector(VirtIODevice *vdev, int n) { return n < VIRTIO_PCI_QUEUE_MAX ? vdev->vq[n].vector : VIRTIO_NO_VECTOR; } void virtio_queue_set_vector(VirtIODevice *vdev, int n, uint16_t vector) { if (n < VIRTIO_PCI_QUEUE_MAX) vdev->vq[n].vector = vector; } VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size, void (*handle_output)(VirtIODevice *, VirtQueue *)) { int i; for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } if (i == VIRTIO_PCI_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE) abort(); vdev->vq[i].vring.num = queue_size; vdev->vq[i].handle_output = handle_output; return &vdev->vq[i]; } void virtio_irq(VirtQueue *vq) { trace_virtio_irq(vq); vq->vdev->isr |= 0x01; virtio_notify_vector(vq->vdev, vq->vector); } /* Assuming a given event_idx value from the other size, if * we have just incremented index from old to new_idx, * should we trigger an event? */ static inline int vring_need_event(uint16_t event, uint16_t new, uint16_t old) { /* Note: Xen has similar logic for notification hold-off * in include/xen/interface/io/ring.h with req_event and req_prod * corresponding to event_idx + 1 and new respectively. * Note also that req_event and req_prod in Xen start at 1, * event indexes in virtio start at 0. */ return (uint16_t)(new - event - 1) < (uint16_t)(new - old); } static bool vring_notify(VirtIODevice *vdev, VirtQueue *vq) { uint16_t old, new; bool v; /* Always notify when queue is empty (when feature acknowledge) */ if (((vdev->guest_features & (1 << VIRTIO_F_NOTIFY_ON_EMPTY)) && !vq->inuse && vring_avail_idx(vq) == vq->last_avail_idx)) { return true; } if (!(vdev->guest_features & (1 << VIRTIO_RING_F_EVENT_IDX))) { return !(vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT); } v = vq->signalled_used_valid; vq->signalled_used_valid = true; old = vq->signalled_used; new = vq->signalled_used = vring_used_idx(vq); return !v || vring_need_event(vring_used_event(vq), new, old); } void virtio_notify(VirtIODevice *vdev, VirtQueue *vq) { if (!vring_notify(vdev, vq)) { return; } trace_virtio_notify(vdev, vq); vdev->isr |= 0x01; virtio_notify_vector(vdev, vq->vector); } void virtio_notify_config(VirtIODevice *vdev) { if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK)) return; vdev->isr |= 0x03; virtio_notify_vector(vdev, vdev->config_vector); } void virtio_save(VirtIODevice *vdev, QEMUFile *f) { int i; if (vdev->binding->save_config) vdev->binding->save_config(vdev->binding_opaque, f); qemu_put_8s(f, &vdev->status); qemu_put_8s(f, &vdev->isr); qemu_put_be16s(f, &vdev->queue_sel); qemu_put_be32s(f, &vdev->guest_features); qemu_put_be32(f, vdev->config_len); qemu_put_buffer(f, vdev->config, vdev->config_len); for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } qemu_put_be32(f, i); for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; qemu_put_be32(f, vdev->vq[i].vring.num); qemu_put_be64(f, vdev->vq[i].pa); qemu_put_be16s(f, &vdev->vq[i].last_avail_idx); if (vdev->binding->save_queue) vdev->binding->save_queue(vdev->binding_opaque, i, f); } } int virtio_load(VirtIODevice *vdev, QEMUFile *f) { int num, i, ret; uint32_t features; uint32_t supported_features = vdev->binding->get_features(vdev->binding_opaque); if (vdev->binding->load_config) { ret = vdev->binding->load_config(vdev->binding_opaque, f); if (ret) return ret; } qemu_get_8s(f, &vdev->status); qemu_get_8s(f, &vdev->isr); qemu_get_be16s(f, &vdev->queue_sel); qemu_get_be32s(f, &features); if (features & ~supported_features) { error_report("Features 0x%x unsupported. Allowed features: 0x%x", features, supported_features); return -1; } if (vdev->set_features) vdev->set_features(vdev, features); vdev->guest_features = features; vdev->config_len = qemu_get_be32(f); qemu_get_buffer(f, vdev->config, vdev->config_len); num = qemu_get_be32(f); for (i = 0; i < num; i++) { vdev->vq[i].vring.num = qemu_get_be32(f); vdev->vq[i].pa = qemu_get_be64(f); qemu_get_be16s(f, &vdev->vq[i].last_avail_idx); vdev->vq[i].signalled_used_valid = false; vdev->vq[i].notification = true; if (vdev->vq[i].pa) { uint16_t nheads; virtqueue_init(&vdev->vq[i]); nheads = vring_avail_idx(&vdev->vq[i]) - vdev->vq[i].last_avail_idx; /* Check it isn't doing very strange things with descriptor numbers. */ if (nheads > vdev->vq[i].vring.num) { error_report("VQ %d size 0x%x Guest index 0x%x " "inconsistent with Host index 0x%x: delta 0x%x\n", i, vdev->vq[i].vring.num, vring_avail_idx(&vdev->vq[i]), vdev->vq[i].last_avail_idx, nheads); return -1; } } else if (vdev->vq[i].last_avail_idx) { error_report("VQ %d address 0x0 " "inconsistent with Host index 0x%x\n", i, vdev->vq[i].last_avail_idx); return -1; } if (vdev->binding->load_queue) { ret = vdev->binding->load_queue(vdev->binding_opaque, i, f); if (ret) return ret; } } virtio_notify_vector(vdev, VIRTIO_NO_VECTOR); return 0; } void virtio_cleanup(VirtIODevice *vdev) { qemu_del_vm_change_state_handler(vdev->vmstate); if (vdev->config) qemu_free(vdev->config); qemu_free(vdev->vq); } static void virtio_vmstate_change(void *opaque, int running, int reason) { VirtIODevice *vdev = opaque; bool backend_run = running && (vdev->status & VIRTIO_CONFIG_S_DRIVER_OK); vdev->vm_running = running; if (backend_run) { virtio_set_status(vdev, vdev->status); } if (vdev->binding->vmstate_change) { vdev->binding->vmstate_change(vdev->binding_opaque, backend_run); } if (!backend_run) { virtio_set_status(vdev, vdev->status); } } VirtIODevice *virtio_common_init(const char *name, uint16_t device_id, size_t config_size, size_t struct_size) { VirtIODevice *vdev; int i; vdev = qemu_mallocz(struct_size); vdev->device_id = device_id; vdev->status = 0; vdev->isr = 0; vdev->queue_sel = 0; vdev->config_vector = VIRTIO_NO_VECTOR; vdev->vq = qemu_mallocz(sizeof(VirtQueue) * VIRTIO_PCI_QUEUE_MAX); vdev->vm_running = vm_running; for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { vdev->vq[i].vector = VIRTIO_NO_VECTOR; vdev->vq[i].vdev = vdev; } vdev->name = name; vdev->config_len = config_size; if (vdev->config_len) vdev->config = qemu_mallocz(config_size); else vdev->config = NULL; vdev->vmstate = qemu_add_vm_change_state_handler(virtio_vmstate_change, vdev); return vdev; } void virtio_bind_device(VirtIODevice *vdev, const VirtIOBindings *binding, void *opaque) { vdev->binding = binding; vdev->binding_opaque = opaque; } target_phys_addr_t virtio_queue_get_desc_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.desc; } target_phys_addr_t virtio_queue_get_avail_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.avail; } target_phys_addr_t virtio_queue_get_used_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.used; } target_phys_addr_t virtio_queue_get_ring_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.desc; } target_phys_addr_t virtio_queue_get_desc_size(VirtIODevice *vdev, int n) { return sizeof(VRingDesc) * vdev->vq[n].vring.num; } target_phys_addr_t virtio_queue_get_avail_size(VirtIODevice *vdev, int n) { return offsetof(VRingAvail, ring) + sizeof(uint64_t) * vdev->vq[n].vring.num; } target_phys_addr_t virtio_queue_get_used_size(VirtIODevice *vdev, int n) { return offsetof(VRingUsed, ring) + sizeof(VRingUsedElem) * vdev->vq[n].vring.num; } target_phys_addr_t virtio_queue_get_ring_size(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.used - vdev->vq[n].vring.desc + virtio_queue_get_used_size(vdev, n); } uint16_t virtio_queue_get_last_avail_idx(VirtIODevice *vdev, int n) { return vdev->vq[n].last_avail_idx; } void virtio_queue_set_last_avail_idx(VirtIODevice *vdev, int n, uint16_t idx) { vdev->vq[n].last_avail_idx = idx; } VirtQueue *virtio_get_queue(VirtIODevice *vdev, int n) { return vdev->vq + n; } EventNotifier *virtio_queue_get_guest_notifier(VirtQueue *vq) { return &vq->guest_notifier; } EventNotifier *virtio_queue_get_host_notifier(VirtQueue *vq) { return &vq->host_notifier; }