/*
* QEMU PowerPC PowerNV machine model
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "sysemu/cpus.h"
#include "hw/hw.h"
#include "target/ppc/cpu.h"
#include "qemu/log.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_core.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/cutils.h"
#include "qapi/visitor.h"
#include "monitor/monitor.h"
#include "hw/intc/intc.h"
#include "hw/ipmi/ipmi.h"
#include "hw/ppc/xics.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/isa/isa.h"
#include "hw/char/serial.h"
#include "hw/timer/mc146818rtc.h"
#include
#define FDT_MAX_SIZE 0x00100000
#define FW_FILE_NAME "skiboot.lid"
#define FW_LOAD_ADDR 0x0
#define FW_MAX_SIZE 0x00400000
#define KERNEL_LOAD_ADDR 0x20000000
#define INITRD_LOAD_ADDR 0x40000000
/*
* On Power Systems E880 (POWER8), the max cpus (threads) should be :
* 4 * 4 sockets * 12 cores * 8 threads = 1536
* Let's make it 2^11
*/
#define MAX_CPUS 2048
/*
* Memory nodes are created by hostboot, one for each range of memory
* that has a different "affinity". In practice, it means one range
* per chip.
*/
static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start,
hwaddr size)
{
char *mem_name;
uint64_t mem_reg_property[2];
int off;
mem_reg_property[0] = cpu_to_be64(start);
mem_reg_property[1] = cpu_to_be64(size);
mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
off = fdt_add_subnode(fdt, 0, mem_name);
g_free(mem_name);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
}
static int get_cpus_node(void *fdt)
{
int cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0) {
cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
"cpus");
if (cpus_offset) {
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
}
}
_FDT(cpus_offset);
return cpus_offset;
}
/*
* The PowerNV cores (and threads) need to use real HW ids and not an
* incremental index like it has been done on other platforms. This HW
* id is stored in the CPU PIR, it is used to create cpu nodes in the
* device tree, used in XSCOM to address cores and in interrupt
* servers.
*/
static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt)
{
CPUState *cs = CPU(DEVICE(pc->threads));
DeviceClass *dc = DEVICE_GET_CLASS(cs);
PowerPCCPU *cpu = POWERPC_CPU(cs);
int smt_threads = CPU_CORE(pc)->nr_threads;
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
uint32_t servers_prop[smt_threads];
int i;
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = PNV_TIMEBASE_FREQ;
uint32_t cpufreq = 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
const uint8_t pa_features[] = { 24, 0,
0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
int offset;
char *nodename;
int cpus_offset = get_cpus_node(fdt);
nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
_FDT(offset);
g_free(nodename);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
_FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
pcc->l1_dcache_size)));
} else {
error_report("Warning: Unknown L1 dcache size for cpu");
}
if (pcc->l1_icache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
pcc->l1_icache_size)));
} else {
error_report("Warning: Unknown L1 icache size for cpu");
}
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
if (env->spr_cb[SPR_PURR].oea_read) {
_FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
}
if (env->mmu_model & POWERPC_MMU_1TSEG) {
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VMX/VSX (vector extensions) if available
* 0 / no property == no vector extensions
* 1 == VMX / Altivec available
* 2 == VSX available */
if (env->insns_flags & PPC_ALTIVEC) {
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (env->insns_flags2 & PPC2_DFP) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
}
page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
pa_features, sizeof(pa_features))));
/* Build interrupt servers properties */
for (i = 0; i < smt_threads; i++) {
servers_prop[i] = cpu_to_be32(pc->pir + i);
}
_FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(servers_prop))));
}
static void powernv_populate_icp(PnvChip *chip, void *fdt, uint32_t pir,
uint32_t nr_threads)
{
uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
char *name;
const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
uint32_t irange[2], i, rsize;
uint64_t *reg;
int offset;
irange[0] = cpu_to_be32(pir);
irange[1] = cpu_to_be32(nr_threads);
rsize = sizeof(uint64_t) * 2 * nr_threads;
reg = g_malloc(rsize);
for (i = 0; i < nr_threads; i++) {
reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
reg[i * 2 + 1] = cpu_to_be64(0x1000);
}
name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
offset = fdt_add_subnode(fdt, 0, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
_FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
_FDT((fdt_setprop_string(fdt, offset, "device_type",
"PowerPC-External-Interrupt-Presentation")));
_FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
_FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
irange, sizeof(irange))));
_FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
g_free(reg);
}
static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt)
{
char *name;
int offset;
name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
(uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
offset = fdt_path_offset(fdt, name);
g_free(name);
return offset;
}
static void powernv_populate_chip(PnvChip *chip, void *fdt)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
char *typename = pnv_core_typename(pcc->cpu_model);
size_t typesize = object_type_get_instance_size(typename);
int i;
pnv_xscom_populate(chip, fdt, 0);
/* The default LPC bus of a multichip system is on chip 0. It's
* recognized by the firmware (skiboot) using a "primary"
* property.
*/
if (chip->chip_id == 0x0) {
int lpc_offset = pnv_chip_lpc_offset(chip, fdt);
_FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0)));
}
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
powernv_create_core_node(chip, pnv_core, fdt);
/* Interrupt Control Presenters (ICP). One per core. */
powernv_populate_icp(chip, fdt, pnv_core->pir,
CPU_CORE(pnv_core)->nr_threads);
}
if (chip->ram_size) {
powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start,
chip->ram_size);
}
g_free(typename);
}
static void powernv_populate_rtc(ISADevice *d, void *fdt, int lpc_off)
{
uint32_t io_base = d->ioport_id;
uint32_t io_regs[] = {
cpu_to_be32(1),
cpu_to_be32(io_base),
cpu_to_be32(2)
};
char *name;
int node;
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
}
static void powernv_populate_serial(ISADevice *d, void *fdt, int lpc_off)
{
const char compatible[] = "ns16550\0pnpPNP,501";
uint32_t io_base = d->ioport_id;
uint32_t io_regs[] = {
cpu_to_be32(1),
cpu_to_be32(io_base),
cpu_to_be32(8)
};
char *name;
int node;
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop(fdt, node, "compatible", compatible,
sizeof(compatible))));
_FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
_FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
_FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
_FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
fdt_get_phandle(fdt, lpc_off))));
/* This is needed by Linux */
_FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
}
static void powernv_populate_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
{
const char compatible[] = "bt\0ipmi-bt";
uint32_t io_base;
uint32_t io_regs[] = {
cpu_to_be32(1),
0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
cpu_to_be32(3)
};
uint32_t irq;
char *name;
int node;
io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
io_regs[1] = cpu_to_be32(io_base);
irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop(fdt, node, "compatible", compatible,
sizeof(compatible))));
/* Mark it as reserved to avoid Linux trying to claim it */
_FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
_FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
_FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
fdt_get_phandle(fdt, lpc_off))));
}
typedef struct ForeachPopulateArgs {
void *fdt;
int offset;
} ForeachPopulateArgs;
static int powernv_populate_isa_device(DeviceState *dev, void *opaque)
{
ForeachPopulateArgs *args = opaque;
ISADevice *d = ISA_DEVICE(dev);
if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
powernv_populate_rtc(d, args->fdt, args->offset);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
powernv_populate_serial(d, args->fdt, args->offset);
} else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
powernv_populate_ipmi_bt(d, args->fdt, args->offset);
} else {
error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
d->ioport_id);
}
return 0;
}
static void powernv_populate_isa(ISABus *bus, void *fdt, int lpc_offset)
{
ForeachPopulateArgs args = {
.fdt = fdt,
.offset = lpc_offset,
};
/* ISA devices are not necessarily parented to the ISA bus so we
* can not use object_child_foreach() */
qbus_walk_children(BUS(bus), powernv_populate_isa_device,
NULL, NULL, NULL, &args);
}
static void *powernv_create_fdt(MachineState *machine)
{
const char plat_compat[] = "qemu,powernv\0ibm,powernv";
PnvMachineState *pnv = POWERNV_MACHINE(machine);
void *fdt;
char *buf;
int off;
int i;
int lpc_offset;
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
/* Root node */
_FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
_FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
_FDT((fdt_setprop_string(fdt, 0, "model",
"IBM PowerNV (emulated by qemu)")));
_FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
sizeof(plat_compat))));
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
_FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
if (qemu_uuid_set) {
_FDT((fdt_property_string(fdt, "system-id", buf)));
}
g_free(buf);
off = fdt_add_subnode(fdt, 0, "chosen");
if (machine->kernel_cmdline) {
_FDT((fdt_setprop_string(fdt, off, "bootargs",
machine->kernel_cmdline)));
}
if (pnv->initrd_size) {
uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
_FDT((fdt_setprop(fdt, off, "linux,initrd-start",
&start_prop, sizeof(start_prop))));
_FDT((fdt_setprop(fdt, off, "linux,initrd-end",
&end_prop, sizeof(end_prop))));
}
/* Populate device tree for each chip */
for (i = 0; i < pnv->num_chips; i++) {
powernv_populate_chip(pnv->chips[i], fdt);
}
/* Populate ISA devices on chip 0 */
lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt);
powernv_populate_isa(pnv->isa_bus, fdt, lpc_offset);
if (pnv->bmc) {
pnv_bmc_populate_sensors(pnv->bmc, fdt);
}
return fdt;
}
static void pnv_powerdown_notify(Notifier *n, void *opaque)
{
PnvMachineState *pnv = POWERNV_MACHINE(qdev_get_machine());
if (pnv->bmc) {
pnv_bmc_powerdown(pnv->bmc);
}
}
static void ppc_powernv_reset(void)
{
MachineState *machine = MACHINE(qdev_get_machine());
PnvMachineState *pnv = POWERNV_MACHINE(machine);
void *fdt;
Object *obj;
qemu_devices_reset();
/* OpenPOWER systems have a BMC, which can be defined on the
* command line with:
*
* -device ipmi-bmc-sim,id=bmc0
*
* This is the internal simulator but it could also be an external
* BMC.
*/
obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
if (obj) {
pnv->bmc = IPMI_BMC(obj);
}
fdt = powernv_create_fdt(machine);
/* Pack resulting tree */
_FDT((fdt_pack(fdt)));
cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
}
static ISABus *pnv_isa_create(PnvChip *chip)
{
PnvLpcController *lpc = &chip->lpc;
ISABus *isa_bus;
qemu_irq *irqs;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
/* let isa_bus_new() create its own bridge on SysBus otherwise
* devices speficied on the command line won't find the bus and
* will fail to create.
*/
isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
&error_fatal);
irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS);
isa_bus_irqs(isa_bus, irqs);
return isa_bus;
}
static void ppc_powernv_init(MachineState *machine)
{
PnvMachineState *pnv = POWERNV_MACHINE(machine);
MemoryRegion *ram;
char *fw_filename;
long fw_size;
int i;
char *chip_typename;
/* allocate RAM */
if (machine->ram_size < (1 * G_BYTE)) {
error_report("Warning: skiboot may not work with < 1GB of RAM");
}
ram = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram",
machine->ram_size);
memory_region_add_subregion(get_system_memory(), 0, ram);
/* load skiboot firmware */
if (bios_name == NULL) {
bios_name = FW_FILE_NAME;
}
fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
if (fw_size < 0) {
error_report("Could not load OPAL '%s'", fw_filename);
exit(1);
}
g_free(fw_filename);
/* load kernel */
if (machine->kernel_filename) {
long kernel_size;
kernel_size = load_image_targphys(machine->kernel_filename,
KERNEL_LOAD_ADDR, 0x2000000);
if (kernel_size < 0) {
error_report("Could not load kernel '%s'",
machine->kernel_filename);
exit(1);
}
}
/* load initrd */
if (machine->initrd_filename) {
pnv->initrd_base = INITRD_LOAD_ADDR;
pnv->initrd_size = load_image_targphys(machine->initrd_filename,
pnv->initrd_base, 0x10000000); /* 128MB max */
if (pnv->initrd_size < 0) {
error_report("Could not load initial ram disk '%s'",
machine->initrd_filename);
exit(1);
}
}
/* We need some cpu model to instantiate the PnvChip class */
if (machine->cpu_model == NULL) {
machine->cpu_model = "POWER8";
}
/* Create the processor chips */
chip_typename = g_strdup_printf(TYPE_PNV_CHIP "-%s", machine->cpu_model);
if (!object_class_by_name(chip_typename)) {
error_report("invalid CPU model '%s' for %s machine",
machine->cpu_model, MACHINE_GET_CLASS(machine)->name);
exit(1);
}
pnv->chips = g_new0(PnvChip *, pnv->num_chips);
for (i = 0; i < pnv->num_chips; i++) {
char chip_name[32];
Object *chip = object_new(chip_typename);
pnv->chips[i] = PNV_CHIP(chip);
/* TODO: put all the memory in one node on chip 0 until we find a
* way to specify different ranges for each chip
*/
if (i == 0) {
object_property_set_int(chip, machine->ram_size, "ram-size",
&error_fatal);
}
snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
&error_fatal);
object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
object_property_set_bool(chip, true, "realized", &error_fatal);
}
g_free(chip_typename);
/* Instantiate ISA bus on chip 0 */
pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
/* Create serial port */
serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
/* Create an RTC ISA device too */
rtc_init(pnv->isa_bus, 2000, NULL);
/* OpenPOWER systems use a IPMI SEL Event message to notify the
* host to powerdown */
pnv->powerdown_notifier.notify = pnv_powerdown_notify;
qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
}
/*
* 0:21 Reserved - Read as zeros
* 22:24 Chip ID
* 25:28 Core number
* 29:31 Thread ID
*/
static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
{
return (chip->chip_id << 7) | (core_id << 3);
}
/*
* 0:48 Reserved - Read as zeroes
* 49:52 Node ID
* 53:55 Chip ID
* 56 Reserved - Read as zero
* 57:61 Core number
* 62:63 Thread ID
*
* We only care about the lower bits. uint32_t is fine for the moment.
*/
static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
{
return (chip->chip_id << 8) | (core_id << 2);
}
/* Allowed core identifiers on a POWER8 Processor Chip :
*
*
* EX1 - Venice only
* EX2 - Venice only
* EX3 - Venice only
* EX4
* EX5
* EX6
*
* EX9 - Venice only
* EX10 - Venice only
* EX11 - Venice only
* EX12
* EX13
* EX14
*
*/
#define POWER8E_CORE_MASK (0x7070ull)
#define POWER8_CORE_MASK (0x7e7eull)
/*
* POWER9 has 24 cores, ids starting at 0x20
*/
#define POWER9_CORE_MASK (0xffffff00000000ull)
static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->cpu_model = "POWER8E";
k->chip_type = PNV_CHIP_POWER8E;
k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
k->cores_mask = POWER8E_CORE_MASK;
k->core_pir = pnv_chip_core_pir_p8;
k->xscom_base = 0x003fc0000000000ull;
k->xscom_core_base = 0x10000000ull;
dc->desc = "PowerNV Chip POWER8E";
}
static const TypeInfo pnv_chip_power8e_info = {
.name = TYPE_PNV_CHIP_POWER8E,
.parent = TYPE_PNV_CHIP,
.instance_size = sizeof(PnvChip),
.class_init = pnv_chip_power8e_class_init,
};
static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->cpu_model = "POWER8";
k->chip_type = PNV_CHIP_POWER8;
k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
k->cores_mask = POWER8_CORE_MASK;
k->core_pir = pnv_chip_core_pir_p8;
k->xscom_base = 0x003fc0000000000ull;
k->xscom_core_base = 0x10000000ull;
dc->desc = "PowerNV Chip POWER8";
}
static const TypeInfo pnv_chip_power8_info = {
.name = TYPE_PNV_CHIP_POWER8,
.parent = TYPE_PNV_CHIP,
.instance_size = sizeof(PnvChip),
.class_init = pnv_chip_power8_class_init,
};
static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->cpu_model = "POWER8NVL";
k->chip_type = PNV_CHIP_POWER8NVL;
k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
k->cores_mask = POWER8_CORE_MASK;
k->core_pir = pnv_chip_core_pir_p8;
k->xscom_base = 0x003fc0000000000ull;
k->xscom_core_base = 0x10000000ull;
dc->desc = "PowerNV Chip POWER8NVL";
}
static const TypeInfo pnv_chip_power8nvl_info = {
.name = TYPE_PNV_CHIP_POWER8NVL,
.parent = TYPE_PNV_CHIP,
.instance_size = sizeof(PnvChip),
.class_init = pnv_chip_power8nvl_class_init,
};
static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->cpu_model = "POWER9";
k->chip_type = PNV_CHIP_POWER9;
k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */
k->cores_mask = POWER9_CORE_MASK;
k->core_pir = pnv_chip_core_pir_p9;
k->xscom_base = 0x00603fc00000000ull;
k->xscom_core_base = 0x0ull;
dc->desc = "PowerNV Chip POWER9";
}
static const TypeInfo pnv_chip_power9_info = {
.name = TYPE_PNV_CHIP_POWER9,
.parent = TYPE_PNV_CHIP,
.instance_size = sizeof(PnvChip),
.class_init = pnv_chip_power9_class_init,
};
static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
int cores_max;
/*
* No custom mask for this chip, let's use the default one from *
* the chip class
*/
if (!chip->cores_mask) {
chip->cores_mask = pcc->cores_mask;
}
/* filter alien core ids ! some are reserved */
if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
chip->cores_mask);
return;
}
chip->cores_mask &= pcc->cores_mask;
/* now that we have a sane layout, let check the number of cores */
cores_max = ctpop64(chip->cores_mask);
if (chip->nr_cores > cores_max) {
error_setg(errp, "warning: too many cores for chip ! Limit is %d",
cores_max);
return;
}
}
static void pnv_chip_init(Object *obj)
{
PnvChip *chip = PNV_CHIP(obj);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
chip->xscom_base = pcc->xscom_base;
object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI);
object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL);
object_property_add_const_link(OBJECT(&chip->psi), "xics",
OBJECT(qdev_get_machine()), &error_abort);
object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC);
object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL);
object_property_add_const_link(OBJECT(&chip->occ), "psi",
OBJECT(&chip->psi), &error_abort);
/* The LPC controller needs PSI to generate interrupts */
object_property_add_const_link(OBJECT(&chip->lpc), "psi",
OBJECT(&chip->psi), &error_abort);
}
static void pnv_chip_icp_realize(PnvChip *chip, Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
char *typename = pnv_core_typename(pcc->cpu_model);
size_t typesize = object_type_get_instance_size(typename);
int i, j;
char *name;
XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
name = g_strdup_printf("icp-%x", chip->chip_id);
memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio);
g_free(name);
sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
/* Map the ICP registers for each thread */
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
int core_hwid = CPU_CORE(pnv_core)->core_id;
for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio);
}
}
g_free(typename);
}
static void pnv_chip_realize(DeviceState *dev, Error **errp)
{
PnvChip *chip = PNV_CHIP(dev);
Error *error = NULL;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
char *typename = pnv_core_typename(pcc->cpu_model);
size_t typesize = object_type_get_instance_size(typename);
int i, core_hwid;
if (!object_class_by_name(typename)) {
error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
return;
}
/* XSCOM bridge */
pnv_xscom_realize(chip, &error);
if (error) {
error_propagate(errp, error);
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
/* Cores */
pnv_chip_core_sanitize(chip, &error);
if (error) {
error_propagate(errp, error);
return;
}
chip->cores = g_malloc0(typesize * chip->nr_cores);
for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
&& (i < chip->nr_cores); core_hwid++) {
char core_name[32];
void *pnv_core = chip->cores + i * typesize;
if (!(chip->cores_mask & (1ull << core_hwid))) {
continue;
}
object_initialize(pnv_core, typesize, typename);
snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
&error_fatal);
object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
&error_fatal);
object_property_set_int(OBJECT(pnv_core), core_hwid,
CPU_CORE_PROP_CORE_ID, &error_fatal);
object_property_set_int(OBJECT(pnv_core),
pcc->core_pir(chip, core_hwid),
"pir", &error_fatal);
object_property_add_const_link(OBJECT(pnv_core), "xics",
qdev_get_machine(), &error_fatal);
object_property_set_bool(OBJECT(pnv_core), true, "realized",
&error_fatal);
object_unref(OBJECT(pnv_core));
/* Each core has an XSCOM MMIO region */
pnv_xscom_add_subregion(chip,
PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base,
core_hwid),
&PNV_CORE(pnv_core)->xscom_regs);
i++;
}
g_free(typename);
/* Create LPC controller */
object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
&error_fatal);
pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
/* Interrupt Management Area. This is the memory region holding
* all the Interrupt Control Presenter (ICP) registers */
pnv_chip_icp_realize(chip, &error);
if (error) {
error_propagate(errp, error);
return;
}
/* Processor Service Interface (PSI) Host Bridge */
object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip),
"bar", &error_fatal);
object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error);
if (error) {
error_propagate(errp, error);
return;
}
pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs);
/* Create the simplified OCC model */
object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error);
if (error) {
error_propagate(errp, error);
return;
}
pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs);
}
static Property pnv_chip_properties[] = {
DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_chip_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_CPU, dc->categories);
dc->realize = pnv_chip_realize;
dc->props = pnv_chip_properties;
dc->desc = "PowerNV Chip";
}
static const TypeInfo pnv_chip_info = {
.name = TYPE_PNV_CHIP,
.parent = TYPE_SYS_BUS_DEVICE,
.class_init = pnv_chip_class_init,
.instance_init = pnv_chip_init,
.class_size = sizeof(PnvChipClass),
.abstract = true,
};
static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
{
PnvMachineState *pnv = POWERNV_MACHINE(xi);
int i;
for (i = 0; i < pnv->num_chips; i++) {
if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) {
return &pnv->chips[i]->psi.ics;
}
}
return NULL;
}
static void pnv_ics_resend(XICSFabric *xi)
{
PnvMachineState *pnv = POWERNV_MACHINE(xi);
int i;
for (i = 0; i < pnv->num_chips; i++) {
ics_resend(&pnv->chips[i]->psi.ics);
}
}
static PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
if (env->spr_cb[SPR_PIR].default_value == pir) {
return cpu;
}
}
return NULL;
}
static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
{
PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
return cpu ? ICP(cpu->intc) : NULL;
}
static void pnv_pic_print_info(InterruptStatsProvider *obj,
Monitor *mon)
{
PnvMachineState *pnv = POWERNV_MACHINE(obj);
int i;
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
icp_pic_print_info(ICP(cpu->intc), mon);
}
for (i = 0; i < pnv->num_chips; i++) {
ics_pic_print_info(&pnv->chips[i]->psi.ics, mon);
}
}
static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp);
}
static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PnvMachineState *pnv = POWERNV_MACHINE(obj);
uint32_t num_chips;
Error *local_err = NULL;
visit_type_uint32(v, name, &num_chips, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* TODO: should we decide on how many chips we can create based
* on #cores and Venice vs. Murano vs. Naples chip type etc...,
*/
if (!is_power_of_2(num_chips) || num_chips > 4) {
error_setg(errp, "invalid number of chips: '%d'", num_chips);
return;
}
pnv->num_chips = num_chips;
}
static void powernv_machine_initfn(Object *obj)
{
PnvMachineState *pnv = POWERNV_MACHINE(obj);
pnv->num_chips = 1;
}
static void powernv_machine_class_props_init(ObjectClass *oc)
{
object_class_property_add(oc, "num-chips", "uint32",
pnv_get_num_chips, pnv_set_num_chips,
NULL, NULL, NULL);
object_class_property_set_description(oc, "num-chips",
"Specifies the number of processor chips",
NULL);
}
static void powernv_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
mc->desc = "IBM PowerNV (Non-Virtualized)";
mc->init = ppc_powernv_init;
mc->reset = ppc_powernv_reset;
mc->max_cpus = MAX_CPUS;
mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
* storage */
mc->no_parallel = 1;
mc->default_boot_order = NULL;
mc->default_ram_size = 1 * G_BYTE;
xic->icp_get = pnv_icp_get;
xic->ics_get = pnv_ics_get;
xic->ics_resend = pnv_ics_resend;
ispc->print_info = pnv_pic_print_info;
powernv_machine_class_props_init(oc);
}
static const TypeInfo powernv_machine_info = {
.name = TYPE_POWERNV_MACHINE,
.parent = TYPE_MACHINE,
.instance_size = sizeof(PnvMachineState),
.instance_init = powernv_machine_initfn,
.class_init = powernv_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XICS_FABRIC },
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ },
},
};
static void powernv_machine_register_types(void)
{
type_register_static(&powernv_machine_info);
type_register_static(&pnv_chip_info);
type_register_static(&pnv_chip_power8e_info);
type_register_static(&pnv_chip_power8_info);
type_register_static(&pnv_chip_power8nvl_info);
type_register_static(&pnv_chip_power9_info);
}
type_init(powernv_machine_register_types)