/* * Multifd qpl compression accelerator implementation * * Copyright (c) 2023 Intel Corporation * * Authors: * Yuan Liu * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/module.h" #include "qapi/error.h" #include "qapi/qapi-types-migration.h" #include "exec/ramblock.h" #include "multifd.h" #include "qpl/qpl.h" /* Maximum number of retries to resubmit a job if IAA work queues are full */ #define MAX_SUBMIT_RETRY_NUM (3) typedef struct { /* the QPL hardware path job */ qpl_job *job; /* indicates if fallback to software path is required */ bool fallback_sw_path; /* output data from the software path */ uint8_t *sw_output; /* output data length from the software path */ uint32_t sw_output_len; } QplHwJob; typedef struct { /* array of hardware jobs, the number of jobs equals the number pages */ QplHwJob *hw_jobs; /* the QPL software job for the slow path and software fallback */ qpl_job *sw_job; /* the number of pages that the QPL needs to process at one time */ uint32_t page_num; /* array of compressed page buffers */ uint8_t *zbuf; /* array of compressed page lengths */ uint32_t *zlen; /* the status of the hardware device */ bool hw_avail; } QplData; /** * check_hw_avail: check if IAA hardware is available * * If the IAA hardware does not exist or is unavailable, * the QPL hardware job initialization will fail. * * Returns true if IAA hardware is available, otherwise false. * * @job_size: indicates the hardware job size if hardware is available */ static bool check_hw_avail(uint32_t *job_size) { qpl_path_t path = qpl_path_hardware; uint32_t size = 0; qpl_job *job; if (qpl_get_job_size(path, &size) != QPL_STS_OK) { return false; } assert(size > 0); job = g_malloc0(size); if (qpl_init_job(path, job) != QPL_STS_OK) { g_free(job); return false; } g_free(job); *job_size = size; return true; } /** * multifd_qpl_free_sw_job: clean up software job * * Free the software job resources. * * @qpl: pointer to the QplData structure */ static void multifd_qpl_free_sw_job(QplData *qpl) { assert(qpl); if (qpl->sw_job) { qpl_fini_job(qpl->sw_job); g_free(qpl->sw_job); qpl->sw_job = NULL; } } /** * multifd_qpl_free_jobs: clean up hardware jobs * * Free all hardware job resources. * * @qpl: pointer to the QplData structure */ static void multifd_qpl_free_hw_job(QplData *qpl) { assert(qpl); if (qpl->hw_jobs) { for (int i = 0; i < qpl->page_num; i++) { qpl_fini_job(qpl->hw_jobs[i].job); g_free(qpl->hw_jobs[i].job); qpl->hw_jobs[i].job = NULL; } g_free(qpl->hw_jobs); qpl->hw_jobs = NULL; } } /** * multifd_qpl_init_sw_job: initialize a software job * * Use the QPL software path to initialize a job * * @qpl: pointer to the QplData structure * @errp: pointer to an error */ static int multifd_qpl_init_sw_job(QplData *qpl, Error **errp) { qpl_path_t path = qpl_path_software; uint32_t size = 0; qpl_job *job = NULL; qpl_status status; status = qpl_get_job_size(path, &size); if (status != QPL_STS_OK) { error_setg(errp, "qpl_get_job_size failed with error %d", status); return -1; } job = g_malloc0(size); status = qpl_init_job(path, job); if (status != QPL_STS_OK) { error_setg(errp, "qpl_init_job failed with error %d", status); g_free(job); return -1; } qpl->sw_job = job; return 0; } /** * multifd_qpl_init_jobs: initialize hardware jobs * * Use the QPL hardware path to initialize jobs * * @qpl: pointer to the QplData structure * @size: the size of QPL hardware path job * @errp: pointer to an error */ static void multifd_qpl_init_hw_job(QplData *qpl, uint32_t size, Error **errp) { qpl_path_t path = qpl_path_hardware; qpl_job *job = NULL; qpl_status status; qpl->hw_jobs = g_new0(QplHwJob, qpl->page_num); for (int i = 0; i < qpl->page_num; i++) { job = g_malloc0(size); status = qpl_init_job(path, job); /* the job initialization should succeed after check_hw_avail */ assert(status == QPL_STS_OK); qpl->hw_jobs[i].job = job; } } /** * multifd_qpl_init: initialize QplData structure * * Allocate and initialize a QplData structure * * Returns a QplData pointer on success or NULL on error * * @num: the number of pages * @size: the page size * @errp: pointer to an error */ static QplData *multifd_qpl_init(uint32_t num, uint32_t size, Error **errp) { uint32_t job_size = 0; QplData *qpl; qpl = g_new0(QplData, 1); qpl->page_num = num; if (multifd_qpl_init_sw_job(qpl, errp) != 0) { g_free(qpl); return NULL; } qpl->hw_avail = check_hw_avail(&job_size); if (qpl->hw_avail) { multifd_qpl_init_hw_job(qpl, job_size, errp); } qpl->zbuf = g_malloc0(size * num); qpl->zlen = g_new0(uint32_t, num); return qpl; } /** * multifd_qpl_deinit: clean up QplData structure * * Free jobs, buffers and the QplData structure * * @qpl: pointer to the QplData structure */ static void multifd_qpl_deinit(QplData *qpl) { if (qpl) { multifd_qpl_free_sw_job(qpl); multifd_qpl_free_hw_job(qpl); g_free(qpl->zbuf); g_free(qpl->zlen); g_free(qpl); } } static int multifd_qpl_send_setup(MultiFDSendParams *p, Error **errp) { QplData *qpl; uint32_t page_size = multifd_ram_page_size(); uint32_t page_count = multifd_ram_page_count(); qpl = multifd_qpl_init(page_count, page_size, errp); if (!qpl) { return -1; } p->compress_data = qpl; /* * the page will be compressed independently and sent using an IOV. The * additional two IOVs are used to store packet header and compressed data * length */ p->iov = g_new0(struct iovec, page_count + 2); return 0; } static void multifd_qpl_send_cleanup(MultiFDSendParams *p, Error **errp) { multifd_qpl_deinit(p->compress_data); p->compress_data = NULL; g_free(p->iov); p->iov = NULL; } /** * multifd_qpl_prepare_job: prepare the job * * Set the QPL job parameters and properties. * * @job: pointer to the qpl_job structure * @is_compression: indicates compression and decompression * @input: pointer to the input data buffer * @input_len: the length of the input data * @output: pointer to the output data buffer * @output_len: the length of the output data */ static void multifd_qpl_prepare_job(qpl_job *job, bool is_compression, uint8_t *input, uint32_t input_len, uint8_t *output, uint32_t output_len) { job->op = is_compression ? qpl_op_compress : qpl_op_decompress; job->next_in_ptr = input; job->next_out_ptr = output; job->available_in = input_len; job->available_out = output_len; job->flags = QPL_FLAG_FIRST | QPL_FLAG_LAST | QPL_FLAG_OMIT_VERIFY; /* only supports compression level 1 */ job->level = 1; } /** * multifd_qpl_prepare_comp_job: prepare the compression job * * Set the compression job parameters and properties. * * @job: pointer to the qpl_job structure * @input: pointer to the input data buffer * @output: pointer to the output data buffer * @size: the page size */ static void multifd_qpl_prepare_comp_job(qpl_job *job, uint8_t *input, uint8_t *output, uint32_t size) { /* * Set output length to less than the page size to force the job to * fail in case it compresses to a larger size. We'll send that page * without compression and skip the decompression operation on the * destination. */ multifd_qpl_prepare_job(job, true, input, size, output, size - 1); } /** * multifd_qpl_prepare_decomp_job: prepare the decompression job * * Set the decompression job parameters and properties. * * @job: pointer to the qpl_job structure * @input: pointer to the input data buffer * @len: the length of the input data * @output: pointer to the output data buffer * @size: the page size */ static void multifd_qpl_prepare_decomp_job(qpl_job *job, uint8_t *input, uint32_t len, uint8_t *output, uint32_t size) { multifd_qpl_prepare_job(job, false, input, len, output, size); } /** * multifd_qpl_fill_iov: fill in the IOV * * Fill in the QPL packet IOV * * @p: Params for the channel being used * @data: pointer to the IOV data * @len: The length of the IOV data */ static void multifd_qpl_fill_iov(MultiFDSendParams *p, uint8_t *data, uint32_t len) { p->iov[p->iovs_num].iov_base = data; p->iov[p->iovs_num].iov_len = len; p->iovs_num++; p->next_packet_size += len; } /** * multifd_qpl_fill_packet: fill the compressed page into the QPL packet * * Fill the compressed page length and IOV into the QPL packet * * @idx: The index of the compressed length array * @p: Params for the channel being used * @data: pointer to the compressed page buffer * @len: The length of the compressed page */ static void multifd_qpl_fill_packet(uint32_t idx, MultiFDSendParams *p, uint8_t *data, uint32_t len) { QplData *qpl = p->compress_data; qpl->zlen[idx] = cpu_to_be32(len); multifd_qpl_fill_iov(p, data, len); } /** * multifd_qpl_submit_job: submit a job to the hardware * * Submit a QPL hardware job to the IAA device * * Returns true if the job is submitted successfully, otherwise false. * * @job: pointer to the qpl_job structure */ static bool multifd_qpl_submit_job(qpl_job *job) { qpl_status status; uint32_t num = 0; retry: status = qpl_submit_job(job); if (status == QPL_STS_QUEUES_ARE_BUSY_ERR) { if (num < MAX_SUBMIT_RETRY_NUM) { num++; goto retry; } } return (status == QPL_STS_OK); } /** * multifd_qpl_compress_pages_slow_path: compress pages using slow path * * Compress the pages using software. If compression fails, the uncompressed * page will be sent. * * @p: Params for the channel being used */ static void multifd_qpl_compress_pages_slow_path(MultiFDSendParams *p) { QplData *qpl = p->compress_data; MultiFDPages_t *pages = &p->data->u.ram; uint32_t size = p->page_size; qpl_job *job = qpl->sw_job; uint8_t *zbuf = qpl->zbuf; uint8_t *buf; for (int i = 0; i < pages->normal_num; i++) { buf = pages->block->host + pages->offset[i]; multifd_qpl_prepare_comp_job(job, buf, zbuf, size); if (qpl_execute_job(job) == QPL_STS_OK) { multifd_qpl_fill_packet(i, p, zbuf, job->total_out); } else { /* send the uncompressed page */ multifd_qpl_fill_packet(i, p, buf, size); } zbuf += size; } } /** * multifd_qpl_compress_pages: compress pages * * Submit the pages to the IAA hardware for compression. If hardware * compression fails, it falls back to software compression. If software * compression also fails, the uncompressed page is sent. * * @p: Params for the channel being used */ static void multifd_qpl_compress_pages(MultiFDSendParams *p) { QplData *qpl = p->compress_data; MultiFDPages_t *pages = &p->data->u.ram; uint32_t size = p->page_size; QplHwJob *hw_job; uint8_t *buf; uint8_t *zbuf; for (int i = 0; i < pages->normal_num; i++) { buf = pages->block->host + pages->offset[i]; zbuf = qpl->zbuf + (size * i); hw_job = &qpl->hw_jobs[i]; multifd_qpl_prepare_comp_job(hw_job->job, buf, zbuf, size); if (multifd_qpl_submit_job(hw_job->job)) { hw_job->fallback_sw_path = false; } else { /* * The IAA work queue is full, any immediate subsequent job * submission is likely to fail, sending the page via the QPL * software path at this point gives us a better chance of * finding the queue open for the next pages. */ hw_job->fallback_sw_path = true; multifd_qpl_prepare_comp_job(qpl->sw_job, buf, zbuf, size); if (qpl_execute_job(qpl->sw_job) == QPL_STS_OK) { hw_job->sw_output = zbuf; hw_job->sw_output_len = qpl->sw_job->total_out; } else { hw_job->sw_output = buf; hw_job->sw_output_len = size; } } } for (int i = 0; i < pages->normal_num; i++) { buf = pages->block->host + pages->offset[i]; zbuf = qpl->zbuf + (size * i); hw_job = &qpl->hw_jobs[i]; if (hw_job->fallback_sw_path) { multifd_qpl_fill_packet(i, p, hw_job->sw_output, hw_job->sw_output_len); continue; } if (qpl_wait_job(hw_job->job) == QPL_STS_OK) { multifd_qpl_fill_packet(i, p, zbuf, hw_job->job->total_out); } else { /* send the uncompressed page */ multifd_qpl_fill_packet(i, p, buf, size); } } } static int multifd_qpl_send_prepare(MultiFDSendParams *p, Error **errp) { QplData *qpl = p->compress_data; MultiFDPages_t *pages = &p->data->u.ram; uint32_t len = 0; if (!multifd_send_prepare_common(p)) { goto out; } /* The first IOV is used to store the compressed page lengths */ len = pages->normal_num * sizeof(uint32_t); multifd_qpl_fill_iov(p, (uint8_t *) qpl->zlen, len); if (qpl->hw_avail) { multifd_qpl_compress_pages(p); } else { multifd_qpl_compress_pages_slow_path(p); } out: p->flags |= MULTIFD_FLAG_QPL; multifd_send_fill_packet(p); return 0; } static int multifd_qpl_recv_setup(MultiFDRecvParams *p, Error **errp) { QplData *qpl; uint32_t page_size = multifd_ram_page_size(); uint32_t page_count = multifd_ram_page_count(); qpl = multifd_qpl_init(page_count, page_size, errp); if (!qpl) { return -1; } p->compress_data = qpl; return 0; } static void multifd_qpl_recv_cleanup(MultiFDRecvParams *p) { multifd_qpl_deinit(p->compress_data); p->compress_data = NULL; } /** * multifd_qpl_process_and_check_job: process and check a QPL job * * Process the job and check whether the job output length is the * same as the specified length * * Returns true if the job execution succeeded and the output length * is equal to the specified length, otherwise false. * * @job: pointer to the qpl_job structure * @is_hardware: indicates whether the job is a hardware job * @len: Specified output length * @errp: pointer to an error */ static bool multifd_qpl_process_and_check_job(qpl_job *job, bool is_hardware, uint32_t len, Error **errp) { qpl_status status; status = (is_hardware ? qpl_wait_job(job) : qpl_execute_job(job)); if (status != QPL_STS_OK) { error_setg(errp, "qpl job failed with error %d", status); return false; } if (job->total_out != len) { error_setg(errp, "qpl decompressed len %u, expected len %u", job->total_out, len); return false; } return true; } /** * multifd_qpl_decompress_pages_slow_path: decompress pages using slow path * * Decompress the pages using software * * Returns 0 on success or -1 on error * * @p: Params for the channel being used * @errp: pointer to an error */ static int multifd_qpl_decompress_pages_slow_path(MultiFDRecvParams *p, Error **errp) { QplData *qpl = p->compress_data; uint32_t size = p->page_size; qpl_job *job = qpl->sw_job; uint8_t *zbuf = qpl->zbuf; uint8_t *addr; uint32_t len; for (int i = 0; i < p->normal_num; i++) { len = qpl->zlen[i]; addr = p->host + p->normal[i]; /* the page is uncompressed, load it */ if (len == size) { memcpy(addr, zbuf, size); zbuf += size; continue; } multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size); if (!multifd_qpl_process_and_check_job(job, false, size, errp)) { return -1; } zbuf += len; } return 0; } /** * multifd_qpl_decompress_pages: decompress pages * * Decompress the pages using the IAA hardware. If hardware * decompression fails, it falls back to software decompression. * * Returns 0 on success or -1 on error * * @p: Params for the channel being used * @errp: pointer to an error */ static int multifd_qpl_decompress_pages(MultiFDRecvParams *p, Error **errp) { QplData *qpl = p->compress_data; uint32_t size = p->page_size; uint8_t *zbuf = qpl->zbuf; uint8_t *addr; uint32_t len; qpl_job *job; for (int i = 0; i < p->normal_num; i++) { addr = p->host + p->normal[i]; len = qpl->zlen[i]; /* the page is uncompressed if received length equals the page size */ if (len == size) { memcpy(addr, zbuf, size); zbuf += size; continue; } job = qpl->hw_jobs[i].job; multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size); if (multifd_qpl_submit_job(job)) { qpl->hw_jobs[i].fallback_sw_path = false; } else { /* * The IAA work queue is full, any immediate subsequent job * submission is likely to fail, sending the page via the QPL * software path at this point gives us a better chance of * finding the queue open for the next pages. */ qpl->hw_jobs[i].fallback_sw_path = true; job = qpl->sw_job; multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size); if (!multifd_qpl_process_and_check_job(job, false, size, errp)) { return -1; } } zbuf += len; } for (int i = 0; i < p->normal_num; i++) { /* ignore pages that have already been processed */ if (qpl->zlen[i] == size || qpl->hw_jobs[i].fallback_sw_path) { continue; } job = qpl->hw_jobs[i].job; if (!multifd_qpl_process_and_check_job(job, true, size, errp)) { return -1; } } return 0; } static int multifd_qpl_recv(MultiFDRecvParams *p, Error **errp) { QplData *qpl = p->compress_data; uint32_t in_size = p->next_packet_size; uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK; uint32_t len = 0; uint32_t zbuf_len = 0; int ret; if (flags != MULTIFD_FLAG_QPL) { error_setg(errp, "multifd %u: flags received %x flags expected %x", p->id, flags, MULTIFD_FLAG_QPL); return -1; } multifd_recv_zero_page_process(p); if (!p->normal_num) { assert(in_size == 0); return 0; } /* read compressed page lengths */ len = p->normal_num * sizeof(uint32_t); assert(len < in_size); ret = qio_channel_read_all(p->c, (void *) qpl->zlen, len, errp); if (ret != 0) { return ret; } for (int i = 0; i < p->normal_num; i++) { qpl->zlen[i] = be32_to_cpu(qpl->zlen[i]); assert(qpl->zlen[i] <= p->page_size); zbuf_len += qpl->zlen[i]; } /* read compressed pages */ assert(in_size == len + zbuf_len); ret = qio_channel_read_all(p->c, (void *) qpl->zbuf, zbuf_len, errp); if (ret != 0) { return ret; } if (qpl->hw_avail) { return multifd_qpl_decompress_pages(p, errp); } return multifd_qpl_decompress_pages_slow_path(p, errp); } static const MultiFDMethods multifd_qpl_ops = { .send_setup = multifd_qpl_send_setup, .send_cleanup = multifd_qpl_send_cleanup, .send_prepare = multifd_qpl_send_prepare, .recv_setup = multifd_qpl_recv_setup, .recv_cleanup = multifd_qpl_recv_cleanup, .recv = multifd_qpl_recv, }; static void multifd_qpl_register(void) { multifd_register_ops(MULTIFD_COMPRESSION_QPL, &multifd_qpl_ops); } migration_init(multifd_qpl_register);