#ifndef CPU_COMMON_H #define CPU_COMMON_H /* CPU interfaces that are target independent. */ #ifndef CONFIG_USER_ONLY #include "exec/hwaddr.h" #endif /** * vaddr: * Type wide enough to contain any #target_ulong virtual address. */ typedef uint64_t vaddr; #define VADDR_PRId PRId64 #define VADDR_PRIu PRIu64 #define VADDR_PRIo PRIo64 #define VADDR_PRIx PRIx64 #define VADDR_PRIX PRIX64 #define VADDR_MAX UINT64_MAX void cpu_exec_init_all(void); void cpu_exec_step_atomic(CPUState *cpu); /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even * when intptr_t is 32-bit and we are aligning a long long. */ extern uintptr_t qemu_host_page_size; extern intptr_t qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size) #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size()) /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ void qemu_init_cpu_list(void); void cpu_list_lock(void); void cpu_list_unlock(void); unsigned int cpu_list_generation_id_get(void); void tcg_flush_softmmu_tlb(CPUState *cs); void tcg_flush_jmp_cache(CPUState *cs); void tcg_iommu_init_notifier_list(CPUState *cpu); void tcg_iommu_free_notifier_list(CPUState *cpu); #if !defined(CONFIG_USER_ONLY) enum device_endian { DEVICE_NATIVE_ENDIAN, DEVICE_BIG_ENDIAN, DEVICE_LITTLE_ENDIAN, }; #if HOST_BIG_ENDIAN #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN #else #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN #endif /* address in the RAM (different from a physical address) */ #if defined(CONFIG_XEN_BACKEND) typedef uint64_t ram_addr_t; # define RAM_ADDR_MAX UINT64_MAX # define RAM_ADDR_FMT "%" PRIx64 #else typedef uintptr_t ram_addr_t; # define RAM_ADDR_MAX UINTPTR_MAX # define RAM_ADDR_FMT "%" PRIxPTR #endif /* memory API */ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); /* This should not be used by devices. */ ram_addr_t qemu_ram_addr_from_host(void *ptr); ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); RAMBlock *qemu_ram_block_by_name(const char *name); RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, ram_addr_t *offset); ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); void qemu_ram_unset_idstr(RAMBlock *block); const char *qemu_ram_get_idstr(RAMBlock *rb); void *qemu_ram_get_host_addr(RAMBlock *rb); ram_addr_t qemu_ram_get_offset(RAMBlock *rb); ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); ram_addr_t qemu_ram_get_max_length(RAMBlock *rb); bool qemu_ram_is_shared(RAMBlock *rb); bool qemu_ram_is_noreserve(RAMBlock *rb); bool qemu_ram_is_uf_zeroable(RAMBlock *rb); void qemu_ram_set_uf_zeroable(RAMBlock *rb); bool qemu_ram_is_migratable(RAMBlock *rb); void qemu_ram_set_migratable(RAMBlock *rb); void qemu_ram_unset_migratable(RAMBlock *rb); size_t qemu_ram_pagesize(RAMBlock *block); size_t qemu_ram_pagesize_largest(void); /** * cpu_address_space_init: * @cpu: CPU to add this address space to * @asidx: integer index of this address space * @prefix: prefix to be used as name of address space * @mr: the root memory region of address space * * Add the specified address space to the CPU's cpu_ases list. * The address space added with @asidx 0 is the one used for the * convenience pointer cpu->as. * The target-specific code which registers ASes is responsible * for defining what semantics address space 0, 1, 2, etc have. * * Before the first call to this function, the caller must set * cpu->num_ases to the total number of address spaces it needs * to support. * * Note that with KVM only one address space is supported. */ void cpu_address_space_init(CPUState *cpu, int asidx, const char *prefix, MemoryRegion *mr); void cpu_physical_memory_rw(hwaddr addr, void *buf, hwaddr len, bool is_write); static inline void cpu_physical_memory_read(hwaddr addr, void *buf, hwaddr len) { cpu_physical_memory_rw(addr, buf, len, false); } static inline void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len) { cpu_physical_memory_rw(addr, (void *)buf, len, true); } void cpu_reloading_memory_map(void); void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen, bool is_write); void cpu_physical_memory_unmap(void *buffer, hwaddr len, bool is_write, hwaddr access_len); void cpu_register_map_client(QEMUBH *bh); void cpu_unregister_map_client(QEMUBH *bh); bool cpu_physical_memory_is_io(hwaddr phys_addr); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_flush_coalesced_mmio_buffer(void); void cpu_flush_icache_range(hwaddr start, hwaddr len); typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); #endif /* Returns: 0 on success, -1 on error */ int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, void *ptr, size_t len, bool is_write); /* vl.c */ extern int singlestep; void list_cpus(const char *optarg); #endif /* CPU_COMMON_H */