/* * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #ifndef HEXAGON_MMVEC_MACROS_H #define HEXAGON_MMVEC_MACROS_H #include "qemu/osdep.h" #include "qemu/host-utils.h" #include "arch.h" #include "mmvec/system_ext_mmvec.h" #ifndef QEMU_GENERATE #define VdV (*(MMVector *)(VdV_void)) #define VsV (*(MMVector *)(VsV_void)) #define VuV (*(MMVector *)(VuV_void)) #define VvV (*(MMVector *)(VvV_void)) #define VwV (*(MMVector *)(VwV_void)) #define VxV (*(MMVector *)(VxV_void)) #define VyV (*(MMVector *)(VyV_void)) #define VddV (*(MMVectorPair *)(VddV_void)) #define VuuV (*(MMVectorPair *)(VuuV_void)) #define VvvV (*(MMVectorPair *)(VvvV_void)) #define VxxV (*(MMVectorPair *)(VxxV_void)) #define QeV (*(MMQReg *)(QeV_void)) #define QdV (*(MMQReg *)(QdV_void)) #define QsV (*(MMQReg *)(QsV_void)) #define QtV (*(MMQReg *)(QtV_void)) #define QuV (*(MMQReg *)(QuV_void)) #define QvV (*(MMQReg *)(QvV_void)) #define QxV (*(MMQReg *)(QxV_void)) #endif #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \ do { \ env->vtcm_log.data.ub[IDX] = (VAL); \ if (MASK) { \ set_bit((IDX), env->vtcm_log.mask); \ } else { \ clear_bit((IDX), env->vtcm_log.mask); \ } \ env->vtcm_log.va[IDX] = (VA); \ } while (0) #define fNOTQ(VAL) \ ({ \ MMQReg _ret; \ int _i_; \ for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \ _ret.ud[_i_] = ~VAL.ud[_i_]; \ } \ _ret;\ }) #define fGETQBITS(REG, WIDTH, MASK, BITNO) \ ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f))) #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO) #define fGENMASKW(QREG, IDX) \ (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \ ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \ ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \ ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24)) #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF)) #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3)) #define fGETCRUMB_SYMMETRIC(IDX, SRC) \ ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \ : fGETCRUMB(IDX, SRC))) #define fGENMASKH(QREG, IDX) \ (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \ ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8)) #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX)) #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX)) #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \ (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL)) #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \ ((fGENMASKH(QREG, IDX) & (YESVAL)) | \ (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL))) #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \ ((fGENMASKW(QREG, IDX) & (YESVAL)) | \ (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL))) #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \ do { \ uint32_t __TMP = (VAL); \ REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \ REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \ } while (0) #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL) #define fVBYTES() (fVECSIZE()) #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1)) #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1)) #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH) #define fVECLOGSIZE() (7) #define fVECSIZE() (1 << fVECLOGSIZE()) #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0) #define fV_AL_CHECK(EA, MASK) \ if ((EA) & (MASK)) { \ warn("aligning misaligned vector. EA=%08x", (EA)); \ } #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ mem_vector_scatter_init(env) #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ mem_vector_gather_init(env) #define fSCATTER_FINISH(OP) #define fGATHER_FINISH() #define fLOG_SCATTER_OP(SIZE) \ do { \ env->vtcm_log.op = true; \ env->vtcm_log.op_size = SIZE; \ } while (0) #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ do { \ int log_byte = 0; \ target_ulong va = EA; \ target_ulong va_high = EA + LEN; \ for (int i0 = 0; i0 < 4; i0++) { \ log_byte = (va + i0) <= va_high; \ LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \ 4 * IDX + i0); \ } \ } while (0) #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ do { \ int log_byte = 0; \ target_ulong va = EA; \ target_ulong va_high = EA + LEN; \ for (int i0 = 0; i0 < 2; i0++) { \ log_byte = (va + i0) <= va_high; \ LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 2 * IDX + i0); \ } \ } while (0) #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \ ALIGNMENT, LEN) \ do { \ int log_byte = 0; \ target_ulong va = EA; \ target_ulong va_high = EA + LEN; \ for (int i0 = 0; i0 < 2; i0++) { \ log_byte = (va + i0) <= va_high; \ LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ 2 * IDX + i0); \ } \ } while (0) /* NOTE - Will this always be tmp_VRegs[0]; */ #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \ do { \ int i0; \ target_ulong va = EA; \ target_ulong va_high = EA + LEN; \ uintptr_t ra = GETPC(); \ int log_bank = 0; \ int log_byte = 0; \ for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \ log_byte = ((va + i0) <= va_high) && QVAL; \ log_bank |= (log_byte << i0); \ uint8_t B; \ B = cpu_ldub_data_ra(env, EA + i0, ra); \ env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \ LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \ } \ } while (0) #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \ } while (0) #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \ } while (0) #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \ } while (0) #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ fGETQBIT(QsV, 4 * IDX + i0)); \ } while (0) #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ fGETQBIT(QsV, 2 * IDX + i0)); \ } while (0) #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \ do { \ GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ fGETQBIT(QsV, 2 * IDX + i0)); \ } while (0) #define SCATTER_OP_WRITE_TO_MEM(TYPE) \ do { \ uintptr_t ra = GETPC(); \ for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ if (test_bit(i, env->vtcm_log.mask)) { \ TYPE dst = 0; \ TYPE inc = 0; \ for (int j = 0; j < sizeof(TYPE); j++) { \ uint8_t val; \ val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \ dst |= val << (8 * j); \ inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \ clear_bit(j + i, env->vtcm_log.mask); \ env->vtcm_log.data.ub[j + i] = 0; \ } \ dst += inc; \ for (int j = 0; j < sizeof(TYPE); j++) { \ cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \ (dst >> (8 * j)) & 0xFF, ra); \ } \ } \ } \ } while (0) #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \ do { \ for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \ if (test_bit(i, env->vtcm_log.mask)) { \ for (int j = 0; j < sizeof(TYPE); j++) { \ probe_read(env, env->vtcm_log.va[i + j], 1, \ MMU_IDX, RETADDR); \ probe_write(env, env->vtcm_log.va[i + j], 1, \ MMU_IDX, RETADDR); \ } \ } \ } \ } while (0) #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \ do { \ int i0; \ target_ulong va = EA; \ target_ulong va_high = EA + LEN; \ int log_bank = 0; \ int log_byte = 0; \ for (i0 = 0; i0 < ELEM_SIZE; i0++) { \ log_byte = ((va + i0) <= va_high) && QVAL; \ log_bank |= (log_byte << i0); \ LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \ ELEM_SIZE * IDX + i0); \ } \ } while (0) #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \ } while (0) #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \ } while (0) #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ fGETQBIT(QsV, 2 * IDX + i0), IN); \ } while (0) #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ fGETQBIT(QsV, 4 * IDX + i0), IN); \ } while (0) #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \ (2 * IDX2 + IDX_H), 1, IN); \ } while (0) #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \ do { \ SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ fGETQBIT(QsV, 2 * IDX + i0), IN); \ } while (0) #define fSTORERELEASE(EA, TYPE) \ do { \ fV_AL_CHECK(EA, fVECSIZE() - 1); \ } while (0) #ifdef QEMU_GENERATE #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true) #endif #ifdef QEMU_GENERATE #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false) #endif #ifdef QEMU_GENERATE #define fSTOREMMV(EA, SRC) \ gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, true) #endif #ifdef QEMU_GENERATE #define fSTOREMMVQ(EA, SRC, MASK) \ gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false) #endif #ifdef QEMU_GENERATE #define fSTOREMMVNQ(EA, SRC, MASK) \ gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true) #endif #ifdef QEMU_GENERATE #define fSTOREMMVU(EA, SRC) \ gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, false) #endif #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++) #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \ ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \ (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))] #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V))) #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31)) #define fVUADDSAT(WIDTH, U, V) \ fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) #define fVSADDSAT(WIDTH, U, V) \ fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) #define fVUSUBSAT(WIDTH, U, V) \ fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) #define fVSSUBSAT(WIDTH, U, V) \ fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) #define fVAVGU(WIDTH, U, V) \ ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) #define fVAVGURND(WIDTH, U, V) \ ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) #define fVNAVGU(WIDTH, U, V) \ ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) #define fVNAVGURNDSAT(WIDTH, U, V) \ fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \ fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) #define fVAVGS(WIDTH, U, V) \ ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) #define fVAVGSRND(WIDTH, U, V) \ ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) #define fVNAVGS(WIDTH, U, V) \ ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) #define fVNAVGSRND(WIDTH, U, V) \ ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) #define fVNAVGSRNDSAT(WIDTH, U, V) \ fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \ fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) #define fVNOROUND(VAL, SHAMT) VAL #define fVNOSAT(VAL) VAL #define fVROUND(VAL, SHAMT) \ ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0)) #define fCARRY_FROM_ADD32(A, B, C) \ (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1) #define fUARCH_NOTE_PUMP_4X() #define fUARCH_NOTE_PUMP_2X() #define IV1DEAD() #endif