/* * Allwinner R40 SDRAM Controller emulation * * CCopyright (C) 2023 qianfan Zhao * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" #include "exec/address-spaces.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "qemu/bitops.h" #include "hw/misc/allwinner-r40-dramc.h" #include "trace.h" #define REG_INDEX(offset) (offset / sizeof(uint32_t)) /* DRAMCOM register offsets */ enum { REG_DRAMCOM_CR = 0x0000, /* Control Register */ }; /* DRAMCOMM register flags */ enum { REG_DRAMCOM_CR_DUAL_RANK = (1 << 0), }; /* DRAMCTL register offsets */ enum { REG_DRAMCTL_PIR = 0x0000, /* PHY Initialization Register */ REG_DRAMCTL_PGSR = 0x0010, /* PHY General Status Register */ REG_DRAMCTL_STATR = 0x0018, /* Status Register */ REG_DRAMCTL_PGCR = 0x0100, /* PHY general configuration registers */ }; /* DRAMCTL register flags */ enum { REG_DRAMCTL_PGSR_INITDONE = (1 << 0), REG_DRAMCTL_PGSR_READ_TIMEOUT = (1 << 13), REG_DRAMCTL_PGCR_ENABLE_READ_TIMEOUT = (1 << 25), }; enum { REG_DRAMCTL_STATR_ACTIVE = (1 << 0), }; #define DRAM_MAX_ROW_BITS 16 #define DRAM_MAX_COL_BITS 13 /* 8192 */ #define DRAM_MAX_BANK 3 static uint64_t dram_autodetect_cells[DRAM_MAX_ROW_BITS] [DRAM_MAX_BANK] [DRAM_MAX_COL_BITS]; struct VirtualDDRChip { uint32_t ram_size; uint8_t bank_bits; uint8_t row_bits; uint8_t col_bits; }; /* * Only power of 2 RAM sizes from 256MiB up to 2048MiB are supported, * 2GiB memory is not supported due to dual rank feature. */ static const struct VirtualDDRChip dummy_ddr_chips[] = { { .ram_size = 256, .bank_bits = 3, .row_bits = 12, .col_bits = 13, }, { .ram_size = 512, .bank_bits = 3, .row_bits = 13, .col_bits = 13, }, { .ram_size = 1024, .bank_bits = 3, .row_bits = 14, .col_bits = 13, }, { 0 } }; static const struct VirtualDDRChip *get_match_ddr(uint32_t ram_size) { const struct VirtualDDRChip *ddr; for (ddr = &dummy_ddr_chips[0]; ddr->ram_size; ddr++) { if (ddr->ram_size == ram_size) { return ddr; } } return NULL; } static uint64_t *address_to_autodetect_cells(AwR40DramCtlState *s, const struct VirtualDDRChip *ddr, uint32_t offset) { int row_index = 0, bank_index = 0, col_index = 0; uint32_t row_addr, bank_addr, col_addr; row_addr = extract32(offset, s->set_col_bits + s->set_bank_bits, s->set_row_bits); bank_addr = extract32(offset, s->set_col_bits, s->set_bank_bits); col_addr = extract32(offset, 0, s->set_col_bits); for (int i = 0; i < ddr->row_bits; i++) { if (row_addr & BIT(i)) { row_index = i; } } for (int i = 0; i < ddr->bank_bits; i++) { if (bank_addr & BIT(i)) { bank_index = i; } } for (int i = 0; i < ddr->col_bits; i++) { if (col_addr & BIT(i)) { col_index = i; } } trace_allwinner_r40_dramc_offset_to_cell(offset, row_index, bank_index, col_index); return &dram_autodetect_cells[row_index][bank_index][col_index]; } static void allwinner_r40_dramc_map_rows(AwR40DramCtlState *s, uint8_t row_bits, uint8_t bank_bits, uint8_t col_bits) { const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size); bool enable_detect_cells; trace_allwinner_r40_dramc_map_rows(row_bits, bank_bits, col_bits); if (!ddr) { return; } s->set_row_bits = row_bits; s->set_bank_bits = bank_bits; s->set_col_bits = col_bits; enable_detect_cells = ddr->bank_bits != bank_bits || ddr->row_bits != row_bits || ddr->col_bits != col_bits; if (enable_detect_cells) { trace_allwinner_r40_dramc_detect_cells_enable(); } else { trace_allwinner_r40_dramc_detect_cells_disable(); } memory_region_set_enabled(&s->detect_cells, enable_detect_cells); } static uint64_t allwinner_r40_dramcom_read(void *opaque, hwaddr offset, unsigned size) { const AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_R40_DRAMCOM_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_r40_dramcom_read(offset, s->dramcom[idx], size); return s->dramcom[idx]; } static void allwinner_r40_dramcom_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_r40_dramcom_write(offset, val, size); if (idx >= AW_R40_DRAMCOM_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } switch (offset) { case REG_DRAMCOM_CR: /* Control Register */ if (!(val & REG_DRAMCOM_CR_DUAL_RANK)) { allwinner_r40_dramc_map_rows(s, ((val >> 4) & 0xf) + 1, ((val >> 2) & 0x1) + 2, (((val >> 8) & 0xf) + 3)); } break; }; s->dramcom[idx] = (uint32_t) val; } static uint64_t allwinner_r40_dramctl_read(void *opaque, hwaddr offset, unsigned size) { const AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_R40_DRAMCTL_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_r40_dramctl_read(offset, s->dramctl[idx], size); return s->dramctl[idx]; } static void allwinner_r40_dramctl_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_r40_dramctl_write(offset, val, size); if (idx >= AW_R40_DRAMCTL_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } switch (offset) { case REG_DRAMCTL_PIR: /* PHY Initialization Register */ s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_INITDONE; s->dramctl[REG_INDEX(REG_DRAMCTL_STATR)] |= REG_DRAMCTL_STATR_ACTIVE; break; } s->dramctl[idx] = (uint32_t) val; } static uint64_t allwinner_r40_dramphy_read(void *opaque, hwaddr offset, unsigned size) { const AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_R40_DRAMPHY_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_r40_dramphy_read(offset, s->dramphy[idx], size); return s->dramphy[idx]; } static void allwinner_r40_dramphy_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_r40_dramphy_write(offset, val, size); if (idx >= AW_R40_DRAMPHY_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } s->dramphy[idx] = (uint32_t) val; } static const MemoryRegionOps allwinner_r40_dramcom_ops = { .read = allwinner_r40_dramcom_read, .write = allwinner_r40_dramcom_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static const MemoryRegionOps allwinner_r40_dramctl_ops = { .read = allwinner_r40_dramctl_read, .write = allwinner_r40_dramctl_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static const MemoryRegionOps allwinner_r40_dramphy_ops = { .read = allwinner_r40_dramphy_read, .write = allwinner_r40_dramphy_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static uint64_t allwinner_r40_detect_read(void *opaque, hwaddr offset, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size); uint64_t data = 0; if (ddr) { data = *address_to_autodetect_cells(s, ddr, (uint32_t)offset); } trace_allwinner_r40_dramc_detect_cell_read(offset, data); return data; } static void allwinner_r40_detect_write(void *opaque, hwaddr offset, uint64_t data, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size); if (ddr) { uint64_t *cell = address_to_autodetect_cells(s, ddr, (uint32_t)offset); trace_allwinner_r40_dramc_detect_cell_write(offset, data); *cell = data; } } static const MemoryRegionOps allwinner_r40_detect_ops = { .read = allwinner_r40_detect_read, .write = allwinner_r40_detect_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; /* * mctl_r40_detect_rank_count in u-boot will write the high 1G of DDR * to detect whether the board support dual_rank or not. Create a virtual memory * if the board's ram_size less or equal than 1G, and set read time out flag of * REG_DRAMCTL_PGSR when the user touch this high dram. */ static uint64_t allwinner_r40_dualrank_detect_read(void *opaque, hwaddr offset, unsigned size) { AwR40DramCtlState *s = AW_R40_DRAMC(opaque); uint32_t reg; reg = s->dramctl[REG_INDEX(REG_DRAMCTL_PGCR)]; if (reg & REG_DRAMCTL_PGCR_ENABLE_READ_TIMEOUT) { /* Enable read time out */ /* * this driver only support one rank, mark READ_TIMEOUT when try * read the second rank. */ s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_READ_TIMEOUT; } return 0; } static const MemoryRegionOps allwinner_r40_dualrank_detect_ops = { .read = allwinner_r40_dualrank_detect_read, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static void allwinner_r40_dramc_reset(DeviceState *dev) { AwR40DramCtlState *s = AW_R40_DRAMC(dev); /* Set default values for registers */ memset(&s->dramcom, 0, sizeof(s->dramcom)); memset(&s->dramctl, 0, sizeof(s->dramctl)); memset(&s->dramphy, 0, sizeof(s->dramphy)); } static void allwinner_r40_dramc_realize(DeviceState *dev, Error **errp) { AwR40DramCtlState *s = AW_R40_DRAMC(dev); if (!get_match_ddr(s->ram_size)) { error_report("%s: ram-size %u MiB is not supported", __func__, s->ram_size); exit(1); } /* R40 support max 2G memory but we only support up to 1G now. */ memory_region_init_io(&s->detect_cells, OBJECT(s), &allwinner_r40_detect_ops, s, "DRAMCELLS", 1 * GiB); memory_region_add_subregion_overlap(get_system_memory(), s->ram_addr, &s->detect_cells, 10); memory_region_set_enabled(&s->detect_cells, false); /* * We only support DRAM size up to 1G now, so prepare a high memory page * after 1G for dualrank detect. */ memory_region_init_io(&s->dram_high, OBJECT(s), &allwinner_r40_dualrank_detect_ops, s, "DRAMHIGH", KiB); memory_region_add_subregion(get_system_memory(), s->ram_addr + GiB, &s->dram_high); } static void allwinner_r40_dramc_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); AwR40DramCtlState *s = AW_R40_DRAMC(obj); /* DRAMCOM registers, index 0 */ memory_region_init_io(&s->dramcom_iomem, OBJECT(s), &allwinner_r40_dramcom_ops, s, "DRAMCOM", 4 * KiB); sysbus_init_mmio(sbd, &s->dramcom_iomem); /* DRAMCTL registers, index 1 */ memory_region_init_io(&s->dramctl_iomem, OBJECT(s), &allwinner_r40_dramctl_ops, s, "DRAMCTL", 4 * KiB); sysbus_init_mmio(sbd, &s->dramctl_iomem); /* DRAMPHY registers. index 2 */ memory_region_init_io(&s->dramphy_iomem, OBJECT(s), &allwinner_r40_dramphy_ops, s, "DRAMPHY", 4 * KiB); sysbus_init_mmio(sbd, &s->dramphy_iomem); } static Property allwinner_r40_dramc_properties[] = { DEFINE_PROP_UINT64("ram-addr", AwR40DramCtlState, ram_addr, 0x0), DEFINE_PROP_UINT32("ram-size", AwR40DramCtlState, ram_size, 256), /* MiB */ DEFINE_PROP_END_OF_LIST() }; static const VMStateDescription allwinner_r40_dramc_vmstate = { .name = "allwinner-r40-dramc", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(dramcom, AwR40DramCtlState, AW_R40_DRAMCOM_REGS_NUM), VMSTATE_UINT32_ARRAY(dramctl, AwR40DramCtlState, AW_R40_DRAMCTL_REGS_NUM), VMSTATE_UINT32_ARRAY(dramphy, AwR40DramCtlState, AW_R40_DRAMPHY_REGS_NUM), VMSTATE_END_OF_LIST() } }; static void allwinner_r40_dramc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, allwinner_r40_dramc_reset); dc->vmsd = &allwinner_r40_dramc_vmstate; dc->realize = allwinner_r40_dramc_realize; device_class_set_props(dc, allwinner_r40_dramc_properties); } static const TypeInfo allwinner_r40_dramc_info = { .name = TYPE_AW_R40_DRAMC, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = allwinner_r40_dramc_init, .instance_size = sizeof(AwR40DramCtlState), .class_init = allwinner_r40_dramc_class_init, }; static void allwinner_r40_dramc_register(void) { type_register_static(&allwinner_r40_dramc_info); } type_init(allwinner_r40_dramc_register)