/* * Xilinx Zynq cadence TTC model * * Copyright (c) 2011 Xilinx Inc. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) * Copyright (c) 2012 PetaLogix Pty Ltd. * Written By Haibing Ma * M. Habib * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "qemu/module.h" #include "qemu/timer.h" #ifdef CADENCE_TTC_ERR_DEBUG #define DB_PRINT(...) do { \ fprintf(stderr, ": %s: ", __func__); \ fprintf(stderr, ## __VA_ARGS__); \ } while (0) #else #define DB_PRINT(...) #endif #define COUNTER_INTR_IV 0x00000001 #define COUNTER_INTR_M1 0x00000002 #define COUNTER_INTR_M2 0x00000004 #define COUNTER_INTR_M3 0x00000008 #define COUNTER_INTR_OV 0x00000010 #define COUNTER_INTR_EV 0x00000020 #define COUNTER_CTRL_DIS 0x00000001 #define COUNTER_CTRL_INT 0x00000002 #define COUNTER_CTRL_DEC 0x00000004 #define COUNTER_CTRL_MATCH 0x00000008 #define COUNTER_CTRL_RST 0x00000010 #define CLOCK_CTRL_PS_EN 0x00000001 #define CLOCK_CTRL_PS_V 0x0000001e typedef struct { QEMUTimer *timer; int freq; uint32_t reg_clock; uint32_t reg_count; uint32_t reg_value; uint16_t reg_interval; uint16_t reg_match[3]; uint32_t reg_intr; uint32_t reg_intr_en; uint32_t reg_event_ctrl; uint32_t reg_event; uint64_t cpu_time; unsigned int cpu_time_valid; qemu_irq irq; } CadenceTimerState; #define TYPE_CADENCE_TTC "cadence_ttc" #define CADENCE_TTC(obj) \ OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC) typedef struct CadenceTTCState { SysBusDevice parent_obj; MemoryRegion iomem; CadenceTimerState timer[3]; } CadenceTTCState; static void cadence_timer_update(CadenceTimerState *s) { qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en)); } static CadenceTimerState *cadence_timer_from_addr(void *opaque, hwaddr offset) { unsigned int index; CadenceTTCState *s = (CadenceTTCState *)opaque; index = (offset >> 2) % 3; return &s->timer[index]; } static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps) { /* timer_steps has max value of 0x100000000. double check it * (or overflow can happen below) */ assert(timer_steps <= 1ULL << 32); uint64_t r = timer_steps * 1000000000ULL; if (s->reg_clock & CLOCK_CTRL_PS_EN) { r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); } else { r >>= 16; } r /= (uint64_t)s->freq; return r; } static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns) { uint64_t to_divide = 1000000000ULL; uint64_t r = ns; /* for very large intervals (> 8s) do some division first to stop * overflow (costs some prescision) */ while (r >= 8ULL << 30 && to_divide > 1) { r /= 1000; to_divide /= 1000; } r <<= 16; /* keep early-dividing as needed */ while (r >= 8ULL << 30 && to_divide > 1) { r /= 1000; to_divide /= 1000; } r *= (uint64_t)s->freq; if (s->reg_clock & CLOCK_CTRL_PS_EN) { r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1); } r /= to_divide; return r; } /* determine if x is in between a and b, exclusive of a, inclusive of b */ static inline int64_t is_between(int64_t x, int64_t a, int64_t b) { if (a < b) { return x > a && x <= b; } return x < a && x >= b; } static void cadence_timer_run(CadenceTimerState *s) { int i; int64_t event_interval, next_value; assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */ if (s->reg_count & COUNTER_CTRL_DIS) { s->cpu_time_valid = 0; return; } { /* figure out what's going to happen next (rollover or match) */ int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ? (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval; for (i = 0; i < 3; ++i) { int64_t cand = (uint64_t)s->reg_match[i] << 16; if (is_between(cand, (uint64_t)s->reg_value, next_value)) { next_value = cand; } } } DB_PRINT("next timer event value: %09llx\n", (unsigned long long)next_value); event_interval = next_value - (int64_t)s->reg_value; event_interval = (event_interval < 0) ? -event_interval : event_interval; timer_mod(s->timer, s->cpu_time + cadence_timer_get_ns(s, event_interval)); } static void cadence_timer_sync(CadenceTimerState *s) { int i; int64_t r, x; int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ? (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16; uint64_t old_time = s->cpu_time; s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); DB_PRINT("cpu time: %lld ns\n", (long long)old_time); if (!s->cpu_time_valid || old_time == s->cpu_time) { s->cpu_time_valid = 1; return; } r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time); x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r); for (i = 0; i < 3; ++i) { int64_t m = (int64_t)s->reg_match[i] << 16; if (m > interval) { continue; } /* check to see if match event has occurred. check m +/- interval * to account for match events in wrap around cases */ if (is_between(m, s->reg_value, x) || is_between(m + interval, s->reg_value, x) || is_between(m - interval, s->reg_value, x)) { s->reg_intr |= (2 << i); } } if ((x < 0) || (x >= interval)) { s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ? COUNTER_INTR_IV : COUNTER_INTR_OV; } while (x < 0) { x += interval; } s->reg_value = (uint32_t)(x % interval); cadence_timer_update(s); } static void cadence_timer_tick(void *opaque) { CadenceTimerState *s = opaque; DB_PRINT("\n"); cadence_timer_sync(s); cadence_timer_run(s); } static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset) { CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); uint32_t value; cadence_timer_sync(s); cadence_timer_run(s); switch (offset) { case 0x00: /* clock control */ case 0x04: case 0x08: return s->reg_clock; case 0x0c: /* counter control */ case 0x10: case 0x14: return s->reg_count; case 0x18: /* counter value */ case 0x1c: case 0x20: return (uint16_t)(s->reg_value >> 16); case 0x24: /* reg_interval counter */ case 0x28: case 0x2c: return s->reg_interval; case 0x30: /* match 1 counter */ case 0x34: case 0x38: return s->reg_match[0]; case 0x3c: /* match 2 counter */ case 0x40: case 0x44: return s->reg_match[1]; case 0x48: /* match 3 counter */ case 0x4c: case 0x50: return s->reg_match[2]; case 0x54: /* interrupt register */ case 0x58: case 0x5c: /* cleared after read */ value = s->reg_intr; s->reg_intr = 0; cadence_timer_update(s); return value; case 0x60: /* interrupt enable */ case 0x64: case 0x68: return s->reg_intr_en; case 0x6c: case 0x70: case 0x74: return s->reg_event_ctrl; case 0x78: case 0x7c: case 0x80: return s->reg_event; default: return 0; } } static uint64_t cadence_ttc_read(void *opaque, hwaddr offset, unsigned size) { uint32_t ret = cadence_ttc_read_imp(opaque, offset); DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret); return ret; } static void cadence_ttc_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { CadenceTimerState *s = cadence_timer_from_addr(opaque, offset); DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value); cadence_timer_sync(s); switch (offset) { case 0x00: /* clock control */ case 0x04: case 0x08: s->reg_clock = value & 0x3F; break; case 0x0c: /* counter control */ case 0x10: case 0x14: if (value & COUNTER_CTRL_RST) { s->reg_value = 0; } s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST; break; case 0x24: /* interval register */ case 0x28: case 0x2c: s->reg_interval = value & 0xffff; break; case 0x30: /* match register */ case 0x34: case 0x38: s->reg_match[0] = value & 0xffff; break; case 0x3c: /* match register */ case 0x40: case 0x44: s->reg_match[1] = value & 0xffff; break; case 0x48: /* match register */ case 0x4c: case 0x50: s->reg_match[2] = value & 0xffff; break; case 0x54: /* interrupt register */ case 0x58: case 0x5c: break; case 0x60: /* interrupt enable */ case 0x64: case 0x68: s->reg_intr_en = value & 0x3f; break; case 0x6c: /* event control */ case 0x70: case 0x74: s->reg_event_ctrl = value & 0x07; break; default: return; } cadence_timer_run(s); cadence_timer_update(s); } static const MemoryRegionOps cadence_ttc_ops = { .read = cadence_ttc_read, .write = cadence_ttc_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void cadence_timer_reset(CadenceTimerState *s) { s->reg_count = 0x21; } static void cadence_timer_init(uint32_t freq, CadenceTimerState *s) { memset(s, 0, sizeof(CadenceTimerState)); s->freq = freq; cadence_timer_reset(s); s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s); } static void cadence_ttc_init(Object *obj) { CadenceTTCState *s = CADENCE_TTC(obj); int i; for (i = 0; i < 3; ++i) { cadence_timer_init(133000000, &s->timer[i]); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq); } memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s, "timer", 0x1000); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); } static int cadence_timer_pre_save(void *opaque) { cadence_timer_sync((CadenceTimerState *)opaque); return 0; } static int cadence_timer_post_load(void *opaque, int version_id) { CadenceTimerState *s = opaque; s->cpu_time_valid = 0; cadence_timer_sync(s); cadence_timer_run(s); cadence_timer_update(s); return 0; } static const VMStateDescription vmstate_cadence_timer = { .name = "cadence_timer", .version_id = 1, .minimum_version_id = 1, .pre_save = cadence_timer_pre_save, .post_load = cadence_timer_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(reg_clock, CadenceTimerState), VMSTATE_UINT32(reg_count, CadenceTimerState), VMSTATE_UINT32(reg_value, CadenceTimerState), VMSTATE_UINT16(reg_interval, CadenceTimerState), VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3), VMSTATE_UINT32(reg_intr, CadenceTimerState), VMSTATE_UINT32(reg_intr_en, CadenceTimerState), VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState), VMSTATE_UINT32(reg_event, CadenceTimerState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_cadence_ttc = { .name = "cadence_TTC", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0, vmstate_cadence_timer, CadenceTimerState), VMSTATE_END_OF_LIST() } }; static void cadence_ttc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_cadence_ttc; } static const TypeInfo cadence_ttc_info = { .name = TYPE_CADENCE_TTC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CadenceTTCState), .instance_init = cadence_ttc_init, .class_init = cadence_ttc_class_init, }; static void cadence_ttc_register_types(void) { type_register_static(&cadence_ttc_info); } type_init(cadence_ttc_register_types)