/* * PowerPC floating point and SPE emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "internal.h" #include "fpu/softfloat.h" static inline float128 float128_snan_to_qnan(float128 x) { float128 r; r.high = x.high | 0x0000800000000000; r.low = x.low; return r; } #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) #define float32_snan_to_qnan(x) ((x) | 0x00400000) #define float16_snan_to_qnan(x) ((x) | 0x0200) static inline bool fp_exceptions_enabled(CPUPPCState *env) { #ifdef CONFIG_USER_ONLY return true; #else return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0; #endif } /*****************************************************************************/ /* Floating point operations helpers */ /* * This is the non-arithmatic conversion that happens e.g. on loads. * In the Power ISA pseudocode, this is called DOUBLE. */ uint64_t helper_todouble(uint32_t arg) { uint32_t abs_arg = arg & 0x7fffffff; uint64_t ret; if (likely(abs_arg >= 0x00800000)) { if (unlikely(extract32(arg, 23, 8) == 0xff)) { /* Inf or NAN. */ ret = (uint64_t)extract32(arg, 31, 1) << 63; ret |= (uint64_t)0x7ff << 52; ret |= (uint64_t)extract32(arg, 0, 23) << 29; } else { /* Normalized operand. */ ret = (uint64_t)extract32(arg, 30, 2) << 62; ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59; ret |= (uint64_t)extract32(arg, 0, 30) << 29; } } else { /* Zero or Denormalized operand. */ ret = (uint64_t)extract32(arg, 31, 1) << 63; if (unlikely(abs_arg != 0)) { /* * Denormalized operand. * Shift fraction so that the msb is in the implicit bit position. * Thus, shift is in the range [1:23]. */ int shift = clz32(abs_arg) - 8; /* * The first 3 terms compute the float64 exponent. We then bias * this result by -1 so that we can swallow the implicit bit below. */ int exp = -126 - shift + 1023 - 1; ret |= (uint64_t)exp << 52; ret += (uint64_t)abs_arg << (52 - 23 + shift); } } return ret; } /* * This is the non-arithmatic conversion that happens e.g. on stores. * In the Power ISA pseudocode, this is called SINGLE. */ uint32_t helper_tosingle(uint64_t arg) { int exp = extract64(arg, 52, 11); uint32_t ret; if (likely(exp > 896)) { /* No denormalization required (includes Inf, NaN). */ ret = extract64(arg, 62, 2) << 30; ret |= extract64(arg, 29, 30); } else { /* * Zero or Denormal result. If the exponent is in bounds for * a single-precision denormal result, extract the proper * bits. If the input is not zero, and the exponent is out of * bounds, then the result is undefined; this underflows to * zero. */ ret = extract64(arg, 63, 1) << 31; if (unlikely(exp >= 874)) { /* Denormal result. */ ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp); } } return ret; } static inline int ppc_float32_get_unbiased_exp(float32 f) { return ((f >> 23) & 0xFF) - 127; } static inline int ppc_float64_get_unbiased_exp(float64 f) { return ((f >> 52) & 0x7FF) - 1023; } /* Classify a floating-point number. */ enum { is_normal = 1, is_zero = 2, is_denormal = 4, is_inf = 8, is_qnan = 16, is_snan = 32, is_neg = 64, }; #define COMPUTE_CLASS(tp) \ static int tp##_classify(tp arg) \ { \ int ret = tp##_is_neg(arg) * is_neg; \ if (unlikely(tp##_is_any_nan(arg))) { \ float_status dummy = { }; /* snan_bit_is_one = 0 */ \ ret |= (tp##_is_signaling_nan(arg, &dummy) \ ? is_snan : is_qnan); \ } else if (unlikely(tp##_is_infinity(arg))) { \ ret |= is_inf; \ } else if (tp##_is_zero(arg)) { \ ret |= is_zero; \ } else if (tp##_is_zero_or_denormal(arg)) { \ ret |= is_denormal; \ } else { \ ret |= is_normal; \ } \ return ret; \ } COMPUTE_CLASS(float16) COMPUTE_CLASS(float32) COMPUTE_CLASS(float64) COMPUTE_CLASS(float128) static void set_fprf_from_class(CPUPPCState *env, int class) { static const uint8_t fprf[6][2] = { { 0x04, 0x08 }, /* normalized */ { 0x02, 0x12 }, /* zero */ { 0x14, 0x18 }, /* denormalized */ { 0x05, 0x09 }, /* infinity */ { 0x11, 0x11 }, /* qnan */ { 0x00, 0x00 }, /* snan -- flags are undefined */ }; bool isneg = class & is_neg; env->fpscr &= ~FP_FPRF; env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF; } #define COMPUTE_FPRF(tp) \ void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \ { \ set_fprf_from_class(env, tp##_classify(arg)); \ } COMPUTE_FPRF(float16) COMPUTE_FPRF(float32) COMPUTE_FPRF(float64) COMPUTE_FPRF(float128) /* Floating-point invalid operations exception */ static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr) { /* Update the floating-point invalid operation summary */ env->fpscr |= FP_VX; /* Update the floating-point exception summary */ env->fpscr |= FP_FX; if (fpscr_ve != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; if (fp_exceptions_enabled(env)) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op, retaddr); } } } static void finish_invalid_op_arith(CPUPPCState *env, int op, bool set_fpcc, uintptr_t retaddr) { env->fpscr &= ~(FP_FR | FP_FI); if (fpscr_ve == 0) { if (set_fpcc) { env->fpscr &= ~FP_FPCC; env->fpscr |= (FP_C | FP_FU); } } finish_invalid_op_excp(env, op, retaddr); } /* Signalling NaN */ static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr) { env->fpscr |= FP_VXSNAN; finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr); } /* Magnitude subtraction of infinities */ static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXISI; finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr); } /* Division of infinity by infinity */ static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXIDI; finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr); } /* Division of zero by zero */ static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXZDZ; finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr); } /* Multiplication of zero by infinity */ static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXIMZ; finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr); } /* Square root of a negative number */ static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXSQRT; finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr); } /* Ordered comparison of NaN */ static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXVC; if (set_fpcc) { env->fpscr &= ~FP_FPCC; env->fpscr |= (FP_C | FP_FU); } /* Update the floating-point invalid operation summary */ env->fpscr |= FP_VX; /* Update the floating-point exception summary */ env->fpscr |= FP_FX; /* We must update the target FPR before raising the exception */ if (fpscr_ve != 0) { CPUState *cs = env_cpu(env); cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; /* Exception is deferred */ } } /* Invalid conversion */ static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc, uintptr_t retaddr) { env->fpscr |= FP_VXCVI; env->fpscr &= ~(FP_FR | FP_FI); if (fpscr_ve == 0) { if (set_fpcc) { env->fpscr &= ~FP_FPCC; env->fpscr |= (FP_C | FP_FU); } } finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr); } static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr) { env->fpscr |= FP_ZX; env->fpscr &= ~(FP_FR | FP_FI); /* Update the floating-point exception summary */ env->fpscr |= FP_FX; if (fpscr_ze != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; if (fp_exceptions_enabled(env)) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX, raddr); } } } static inline void float_overflow_excp(CPUPPCState *env) { CPUState *cs = env_cpu(env); env->fpscr |= FP_OX; /* Update the floating-point exception summary */ env->fpscr |= FP_FX; if (fpscr_oe != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; } else { env->fpscr |= FP_XX; env->fpscr |= FP_FI; } } static inline void float_underflow_excp(CPUPPCState *env) { CPUState *cs = env_cpu(env); env->fpscr |= FP_UX; /* Update the floating-point exception summary */ env->fpscr |= FP_FX; if (fpscr_ue != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; } } static inline void float_inexact_excp(CPUPPCState *env) { CPUState *cs = env_cpu(env); env->fpscr |= FP_FI; env->fpscr |= FP_XX; /* Update the floating-point exception summary */ env->fpscr |= FP_FX; if (fpscr_xe != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= FP_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; } } void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) { uint32_t mask = 1u << bit; if (env->fpscr & mask) { ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask); } } void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) { uint32_t mask = 1u << bit; if (!(env->fpscr & mask)) { ppc_store_fpscr(env, env->fpscr | mask); } } void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles) { target_ulong mask = 0; int i; /* TODO: push this extension back to translation time */ for (i = 0; i < sizeof(target_ulong) * 2; i++) { if (nibbles & (1 << i)) { mask |= (target_ulong) 0xf << (4 * i); } } val = (val & mask) | (env->fpscr & ~mask); ppc_store_fpscr(env, val); } void helper_fpscr_check_status(CPUPPCState *env) { CPUState *cs = env_cpu(env); target_ulong fpscr = env->fpscr; int error = 0; if ((fpscr & FP_OX) && (fpscr & FP_OE)) { error = POWERPC_EXCP_FP_OX; } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) { error = POWERPC_EXCP_FP_UX; } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) { error = POWERPC_EXCP_FP_XX; } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) { error = POWERPC_EXCP_FP_ZX; } else if (fpscr & FP_VE) { if (fpscr & FP_VXSOFT) { error = POWERPC_EXCP_FP_VXSOFT; } else if (fpscr & FP_VXSNAN) { error = POWERPC_EXCP_FP_VXSNAN; } else if (fpscr & FP_VXISI) { error = POWERPC_EXCP_FP_VXISI; } else if (fpscr & FP_VXIDI) { error = POWERPC_EXCP_FP_VXIDI; } else if (fpscr & FP_VXZDZ) { error = POWERPC_EXCP_FP_VXZDZ; } else if (fpscr & FP_VXIMZ) { error = POWERPC_EXCP_FP_VXIMZ; } else if (fpscr & FP_VXVC) { error = POWERPC_EXCP_FP_VXVC; } else if (fpscr & FP_VXSQRT) { error = POWERPC_EXCP_FP_VXSQRT; } else if (fpscr & FP_VXCVI) { error = POWERPC_EXCP_FP_VXCVI; } else { return; } } else { return; } cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = error | POWERPC_EXCP_FP; /* Deferred floating-point exception after target FPSCR update */ if (fp_exceptions_enabled(env)) { raise_exception_err_ra(env, cs->exception_index, env->error_code, GETPC()); } } static void do_float_check_status(CPUPPCState *env, uintptr_t raddr) { CPUState *cs = env_cpu(env); int status = get_float_exception_flags(&env->fp_status); if (status & float_flag_overflow) { float_overflow_excp(env); } else if (status & float_flag_underflow) { float_underflow_excp(env); } if (status & float_flag_inexact) { float_inexact_excp(env); } else { env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */ } if (cs->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Deferred floating-point exception after target FPR update */ if (fp_exceptions_enabled(env)) { raise_exception_err_ra(env, cs->exception_index, env->error_code, raddr); } } } void helper_float_check_status(CPUPPCState *env) { do_float_check_status(env, GETPC()); } void helper_reset_fpstatus(CPUPPCState *env) { set_float_exception_flags(0, &env->fp_status); } static void float_invalid_op_addsub(CPUPPCState *env, int flags, bool set_fpcc, uintptr_t retaddr) { if (flags & float_flag_invalid_isi) { float_invalid_op_vxisi(env, set_fpcc, retaddr); } else if (flags & float_flag_invalid_snan) { float_invalid_op_vxsnan(env, retaddr); } } /* fadd - fadd. */ float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64_add(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_addsub(env, flags, 1, GETPC()); } return ret; } /* fadds - fadds. */ float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64r32_add(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_addsub(env, flags, 1, GETPC()); } return ret; } /* fsub - fsub. */ float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64_sub(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_addsub(env, flags, 1, GETPC()); } return ret; } /* fsubs - fsubs. */ float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64r32_sub(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_addsub(env, flags, 1, GETPC()); } return ret; } static void float_invalid_op_mul(CPUPPCState *env, int flags, bool set_fprc, uintptr_t retaddr) { if (flags & float_flag_invalid_imz) { float_invalid_op_vximz(env, set_fprc, retaddr); } else if (flags & float_flag_invalid_snan) { float_invalid_op_vxsnan(env, retaddr); } } /* fmul - fmul. */ float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64_mul(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_mul(env, flags, 1, GETPC()); } return ret; } static void float_invalid_op_div(CPUPPCState *env, int flags, bool set_fprc, uintptr_t retaddr) { if (flags & float_flag_invalid_idi) { float_invalid_op_vxidi(env, set_fprc, retaddr); } else if (flags & float_flag_invalid_zdz) { float_invalid_op_vxzdz(env, set_fprc, retaddr); } else if (flags & float_flag_invalid_snan) { float_invalid_op_vxsnan(env, retaddr); } } /* fdiv - fdiv. */ float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64_div(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_div(env, flags, 1, GETPC()); } if (unlikely(flags & float_flag_divbyzero)) { float_zero_divide_excp(env, GETPC()); } return ret; } /* fdivs - fdivs. */ float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2) { float64 ret = float64r32_div(arg1, arg2, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_div(env, flags, 1, GETPC()); } if (unlikely(flags & float_flag_divbyzero)) { float_zero_divide_excp(env, GETPC()); } return ret; } static uint64_t float_invalid_cvt(CPUPPCState *env, int flags, uint64_t ret, uint64_t ret_nan, bool set_fprc, uintptr_t retaddr) { /* * VXCVI is different from most in that it sets two exception bits, * VXCVI and VXSNAN for an SNaN input. */ if (flags & float_flag_invalid_snan) { env->fpscr |= FP_VXSNAN; } float_invalid_op_vxcvi(env, set_fprc, retaddr); return flags & float_flag_invalid_cvti ? ret : ret_nan; } #define FPU_FCTI(op, cvt, nanval) \ uint64_t helper_##op(CPUPPCState *env, float64 arg) \ { \ uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \ int flags = get_float_exception_flags(&env->fp_status); \ if (unlikely(flags & float_flag_invalid)) { \ ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \ } \ return ret; \ } FPU_FCTI(fctiw, int32, 0x80000000U) FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) FPU_FCTI(fctiwu, uint32, 0x00000000U) FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) FPU_FCTI(fctid, int64, 0x8000000000000000ULL) FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) #define FPU_FCFI(op, cvtr, is_single) \ uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ { \ CPU_DoubleU farg; \ \ if (is_single) { \ float32 tmp = cvtr(arg, &env->fp_status); \ farg.d = float32_to_float64(tmp, &env->fp_status); \ } else { \ farg.d = cvtr(arg, &env->fp_status); \ } \ do_float_check_status(env, GETPC()); \ return farg.ll; \ } FPU_FCFI(fcfid, int64_to_float64, 0) FPU_FCFI(fcfids, int64_to_float32, 1) FPU_FCFI(fcfidu, uint64_to_float64, 0) FPU_FCFI(fcfidus, uint64_to_float32, 1) static uint64_t do_fri(CPUPPCState *env, uint64_t arg, FloatRoundMode rounding_mode) { FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status); int flags; set_float_rounding_mode(rounding_mode, &env->fp_status); arg = float64_round_to_int(arg, &env->fp_status); set_float_rounding_mode(old_rounding_mode, &env->fp_status); flags = get_float_exception_flags(&env->fp_status); if (flags & float_flag_invalid_snan) { float_invalid_op_vxsnan(env, GETPC()); } /* fri* does not set FPSCR[XX] */ set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status); do_float_check_status(env, GETPC()); return arg; } uint64_t helper_frin(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_ties_away); } uint64_t helper_friz(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_to_zero); } uint64_t helper_frip(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_up); } uint64_t helper_frim(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_down); } static void float_invalid_op_madd(CPUPPCState *env, int flags, bool set_fpcc, uintptr_t retaddr) { if (flags & float_flag_invalid_imz) { float_invalid_op_vximz(env, set_fpcc, retaddr); } else { float_invalid_op_addsub(env, flags, set_fpcc, retaddr); } } static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b, float64 c, int madd_flags, uintptr_t retaddr) { float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_madd(env, flags, 1, retaddr); } return ret; } static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b, float64 c, int madd_flags, uintptr_t retaddr) { float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_madd(env, flags, 1, retaddr); } return ret; } #define FPU_FMADD(op, madd_flags) \ uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \ uint64_t arg2, uint64_t arg3) \ { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \ uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1, \ uint64_t arg2, uint64_t arg3) \ { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); } #define MADD_FLGS 0 #define MSUB_FLGS float_muladd_negate_c #define NMADD_FLGS float_muladd_negate_result #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) FPU_FMADD(fmadd, MADD_FLGS) FPU_FMADD(fnmadd, NMADD_FLGS) FPU_FMADD(fmsub, MSUB_FLGS) FPU_FMADD(fnmsub, NMSUB_FLGS) /* frsp - frsp. */ static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr) { float32 f32 = float64_to_float32(arg, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid_snan)) { float_invalid_op_vxsnan(env, retaddr); } return helper_todouble(f32); } uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) { return do_frsp(env, arg, GETPC()); } static void float_invalid_op_sqrt(CPUPPCState *env, int flags, bool set_fpcc, uintptr_t retaddr) { if (unlikely(flags & float_flag_invalid_sqrt)) { float_invalid_op_vxsqrt(env, set_fpcc, retaddr); } else if (unlikely(flags & float_flag_invalid_snan)) { float_invalid_op_vxsnan(env, retaddr); } } /* fsqrt - fsqrt. */ float64 helper_fsqrt(CPUPPCState *env, float64 arg) { float64 ret = float64_sqrt(arg, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_sqrt(env, flags, 1, GETPC()); } return ret; } /* fsqrts - fsqrts. */ float64 helper_fsqrts(CPUPPCState *env, float64 arg) { float64 ret = float64r32_sqrt(arg, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_sqrt(env, flags, 1, GETPC()); } return ret; } /* fre - fre. */ float64 helper_fre(CPUPPCState *env, float64 arg) { /* "Estimate" the reciprocal with actual division. */ float64 ret = float64_div(float64_one, arg, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid_snan)) { float_invalid_op_vxsnan(env, GETPC()); } if (unlikely(flags & float_flag_divbyzero)) { float_zero_divide_excp(env, GETPC()); /* For FPSCR.ZE == 0, the result is 1/2. */ ret = float64_set_sign(float64_half, float64_is_neg(arg)); } return ret; } /* fres - fres. */ uint64_t helper_fres(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; float32 f32; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { /* sNaN reciprocal */ float_invalid_op_vxsnan(env, GETPC()); } farg.d = float64_div(float64_one, farg.d, &env->fp_status); f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); return farg.ll; } /* frsqrte - frsqrte. */ float64 helper_frsqrte(CPUPPCState *env, float64 arg) { /* "Estimate" the reciprocal with actual division. */ float64 rets = float64_sqrt(arg, &env->fp_status); float64 retd = float64_div(float64_one, rets, &env->fp_status); int flags = get_float_exception_flags(&env->fp_status); if (unlikely(flags & float_flag_invalid)) { float_invalid_op_sqrt(env, flags, 1, GETPC()); } if (unlikely(flags & float_flag_divbyzero)) { /* Reciprocal of (square root of) zero. */ float_zero_divide_excp(env, GETPC()); } return retd; } /* fsel - fsel. */ uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1; farg1.ll = arg1; if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_any_nan(farg1.d)) { return arg2; } else { return arg3; } } uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) { int fe_flag = 0; int fg_flag = 0; if (unlikely(float64_is_infinity(fra) || float64_is_infinity(frb) || float64_is_zero(frb))) { fe_flag = 1; fg_flag = 1; } else { int e_a = ppc_float64_get_unbiased_exp(fra); int e_b = ppc_float64_get_unbiased_exp(frb); if (unlikely(float64_is_any_nan(fra) || float64_is_any_nan(frb))) { fe_flag = 1; } else if ((e_b <= -1022) || (e_b >= 1021)) { fe_flag = 1; } else if (!float64_is_zero(fra) && (((e_a - e_b) >= 1023) || ((e_a - e_b) <= -1021) || (e_a <= -970))) { fe_flag = 1; } if (unlikely(float64_is_zero_or_denormal(frb))) { /* XB is not zero because of the above check and */ /* so must be denormalized. */ fg_flag = 1; } } return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); } uint32_t helper_ftsqrt(uint64_t frb) { int fe_flag = 0; int fg_flag = 0; if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { fe_flag = 1; fg_flag = 1; } else { int e_b = ppc_float64_get_unbiased_exp(frb); if (unlikely(float64_is_any_nan(frb))) { fe_flag = 1; } else if (unlikely(float64_is_zero(frb))) { fe_flag = 1; } else if (unlikely(float64_is_neg(frb))) { fe_flag = 1; } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) { fe_flag = 1; } if (unlikely(float64_is_zero_or_denormal(frb))) { /* XB is not zero because of the above check and */ /* therefore must be denormalized. */ fg_flag = 1; } } return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); } void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_any_nan(farg1.d) || float64_is_any_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~FP_FPCC; env->fpscr |= ret << FPSCR_FPCC; env->crf[crfD] = ret; if (unlikely(ret == 0x01UL && (float64_is_signaling_nan(farg1.d, &env->fp_status) || float64_is_signaling_nan(farg2.d, &env->fp_status)))) { /* sNaN comparison */ float_invalid_op_vxsnan(env, GETPC()); } } void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_any_nan(farg1.d) || float64_is_any_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~FP_FPCC; env->fpscr |= ret << FPSCR_FPCC; env->crf[crfD] = (uint32_t) ret; if (unlikely(ret == 0x01UL)) { float_invalid_op_vxvc(env, 1, GETPC()); if (float64_is_signaling_nan(farg1.d, &env->fp_status) || float64_is_signaling_nan(farg2.d, &env->fp_status)) { /* sNaN comparison */ float_invalid_op_vxsnan(env, GETPC()); } } } /* Single-precision floating-point conversions */ static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.f = int32_to_float32(val, &env->vec_status); return u.l; } static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.f = uint32_to_float32(val, &env->vec_status); return u.l; } static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } return float32_to_int32(u.f, &env->vec_status); } static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } return float32_to_uint32(u.f, &env->vec_status); } static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } return float32_to_int32_round_to_zero(u.f, &env->vec_status); } static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } return float32_to_uint32_round_to_zero(u.f, &env->vec_status); } static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.f = int32_to_float32(val, &env->vec_status); tmp = int64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_div(u.f, tmp, &env->vec_status); return u.l; } static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.f = uint32_to_float32(val, &env->vec_status); tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_div(u.f, tmp, &env->vec_status); return u.l; } static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_mul(u.f, tmp, &env->vec_status); return float32_to_int32(u.f, &env->vec_status); } static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { return 0; } tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_mul(u.f, tmp, &env->vec_status); return float32_to_uint32(u.f, &env->vec_status); } #define HELPER_SPE_SINGLE_CONV(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ { \ return e##name(env, val); \ } /* efscfsi */ HELPER_SPE_SINGLE_CONV(fscfsi); /* efscfui */ HELPER_SPE_SINGLE_CONV(fscfui); /* efscfuf */ HELPER_SPE_SINGLE_CONV(fscfuf); /* efscfsf */ HELPER_SPE_SINGLE_CONV(fscfsf); /* efsctsi */ HELPER_SPE_SINGLE_CONV(fsctsi); /* efsctui */ HELPER_SPE_SINGLE_CONV(fsctui); /* efsctsiz */ HELPER_SPE_SINGLE_CONV(fsctsiz); /* efsctuiz */ HELPER_SPE_SINGLE_CONV(fsctuiz); /* efsctsf */ HELPER_SPE_SINGLE_CONV(fsctsf); /* efsctuf */ HELPER_SPE_SINGLE_CONV(fsctuf); #define HELPER_SPE_VECTOR_CONV(name) \ uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ { \ return ((uint64_t)e##name(env, val >> 32) << 32) | \ (uint64_t)e##name(env, val); \ } /* evfscfsi */ HELPER_SPE_VECTOR_CONV(fscfsi); /* evfscfui */ HELPER_SPE_VECTOR_CONV(fscfui); /* evfscfuf */ HELPER_SPE_VECTOR_CONV(fscfuf); /* evfscfsf */ HELPER_SPE_VECTOR_CONV(fscfsf); /* evfsctsi */ HELPER_SPE_VECTOR_CONV(fsctsi); /* evfsctui */ HELPER_SPE_VECTOR_CONV(fsctui); /* evfsctsiz */ HELPER_SPE_VECTOR_CONV(fsctsiz); /* evfsctuiz */ HELPER_SPE_VECTOR_CONV(fsctuiz); /* evfsctsf */ HELPER_SPE_VECTOR_CONV(fsctsf); /* evfsctuf */ HELPER_SPE_VECTOR_CONV(fsctuf); /* Single-precision floating-point arithmetic */ static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_add(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_sub(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_mul(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_div(u1.f, u2.f, &env->vec_status); return u1.l; } #define HELPER_SPE_SINGLE_ARITH(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ { \ return e##name(env, op1, op2); \ } /* efsadd */ HELPER_SPE_SINGLE_ARITH(fsadd); /* efssub */ HELPER_SPE_SINGLE_ARITH(fssub); /* efsmul */ HELPER_SPE_SINGLE_ARITH(fsmul); /* efsdiv */ HELPER_SPE_SINGLE_ARITH(fsdiv); #define HELPER_SPE_VECTOR_ARITH(name) \ uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ { \ return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ (uint64_t)e##name(env, op1, op2); \ } /* evfsadd */ HELPER_SPE_VECTOR_ARITH(fsadd); /* evfssub */ HELPER_SPE_VECTOR_ARITH(fssub); /* evfsmul */ HELPER_SPE_VECTOR_ARITH(fsmul); /* evfsdiv */ HELPER_SPE_VECTOR_ARITH(fsdiv); /* Single-precision floating-point comparisons */ static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; } static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; } static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; } static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmplt(env, op1, op2); } static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmpgt(env, op1, op2); } static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmpeq(env, op1, op2); } #define HELPER_SINGLE_SPE_CMP(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ { \ return e##name(env, op1, op2); \ } /* efststlt */ HELPER_SINGLE_SPE_CMP(fststlt); /* efststgt */ HELPER_SINGLE_SPE_CMP(fststgt); /* efststeq */ HELPER_SINGLE_SPE_CMP(fststeq); /* efscmplt */ HELPER_SINGLE_SPE_CMP(fscmplt); /* efscmpgt */ HELPER_SINGLE_SPE_CMP(fscmpgt); /* efscmpeq */ HELPER_SINGLE_SPE_CMP(fscmpeq); static inline uint32_t evcmp_merge(int t0, int t1) { return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); } #define HELPER_VECTOR_SPE_CMP(name) \ uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ { \ return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ e##name(env, op1, op2)); \ } /* evfststlt */ HELPER_VECTOR_SPE_CMP(fststlt); /* evfststgt */ HELPER_VECTOR_SPE_CMP(fststgt); /* evfststeq */ HELPER_VECTOR_SPE_CMP(fststeq); /* evfscmplt */ HELPER_VECTOR_SPE_CMP(fscmplt); /* evfscmpgt */ HELPER_VECTOR_SPE_CMP(fscmpgt); /* evfscmpeq */ HELPER_VECTOR_SPE_CMP(fscmpeq); /* Double-precision floating-point conversion */ uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; u.d = int32_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.d = int64_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; u.d = uint32_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.d = uint64_to_float64(val, &env->vec_status); return u.ll; } uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int32(u.d, &env->vec_status); } uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint32(u.d, &env->vec_status); } uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int32_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int64_round_to_zero(u.d, &env->vec_status); } uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint32_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint64_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = int32_to_float64(val, &env->vec_status); tmp = int64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_div(u.d, tmp, &env->vec_status); return u.ll; } uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = uint32_to_float64(val, &env->vec_status); tmp = int64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_div(u.d, tmp, &env->vec_status); return u.ll; } uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } tmp = uint64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_mul(u.d, tmp, &env->vec_status); return float64_to_int32(u.d, &env->vec_status); } uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } tmp = uint64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_mul(u.d, tmp, &env->vec_status); return float64_to_uint32(u.d, &env->vec_status); } uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) { CPU_DoubleU u1; CPU_FloatU u2; u1.ll = val; u2.f = float64_to_float32(u1.d, &env->vec_status); return u2.l; } uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) { CPU_DoubleU u2; CPU_FloatU u1; u1.l = val; u2.d = float32_to_float64(u1.f, &env->vec_status); return u2.ll; } /* Double precision fixed-point arithmetic */ uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_add(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_sub(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_mul(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_div(u1.d, u2.d, &env->vec_status); return u1.ll; } /* Double precision floating point helpers */ uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; } uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; } uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; } uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstlt(env, op1, op2); } uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstgt(env, op1, op2); } uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtsteq(env, op1, op2); } #define float64_to_float64(x, env) x /* * VSX_ADD_SUB - VSX floating point add/subtract * name - instruction mnemonic * op - operation (add or sub) * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_addsub(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0) VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1) VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0) VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0) VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0) VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1) VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0) VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0) void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { ppc_vsr_t t = *xt; float_status tstat; helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } set_float_exception_flags(0, &tstat); t.f128 = float128_add(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); } /* * VSX_MUL - VSX floating point multiply * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_mul(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0) VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1) VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0) VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0) void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { ppc_vsr_t t = *xt; float_status tstat; helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } set_float_exception_flags(0, &tstat); t.f128 = float128_mul(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC()); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); } /* * VSX_DIV - VSX floating point divide * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ t.fld = tp##_div(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_div(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \ float_zero_divide_excp(env, GETPC()); \ } \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0) VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1) VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0) VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0) void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { ppc_vsr_t t = *xt; float_status tstat; helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } set_float_exception_flags(0, &tstat); t.f128 = float128_div(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC()); } if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { float_zero_divide_excp(env, GETPC()); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); } /* * VSX_RE - VSX floating point reciprocal estimate * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) /* * VSX_SQRT - VSX floating point square root * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ t.fld = tp##_sqrt(xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_sqrt(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) /* *VSX_RSQRTE - VSX floating point reciprocal square root estimate * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * sfprf - set FPRF */ #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ t.fld = tp##_sqrt(xb->fld, &tstat); \ t.fld = tp##_div(tp##_one, t.fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_sqrt(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) /* * VSX_TDIV - VSX floating point test for divide * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * emin - minimum unbiased exponent * emax - maximum unbiased exponent * nbits - number of fraction bits */ #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ void helper_##op(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_infinity(xa->fld) || \ tp##_is_infinity(xb->fld) || \ tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \ int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ \ if (unlikely(tp##_is_any_nan(xa->fld) || \ tp##_is_any_nan(xb->fld))) { \ fe_flag = 1; \ } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \ fe_flag = 1; \ } else if (!tp##_is_zero(xa->fld) && \ (((e_a - e_b) >= emax) || \ ((e_a - e_b) <= (emin + 1)) || \ (e_a <= (emin + nbits)))) { \ fe_flag = 1; \ } \ \ if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ /* \ * XB is not zero because of the above check and so \ * must be denormalized. \ */ \ fg_flag = 1; \ } \ } \ } \ \ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ } VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) /* * VSX_TSQRT - VSX floating point test for square root * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * emin - minimum unbiased exponent * emax - maximum unbiased exponent * nbits - number of fraction bits */ #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \ { \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_infinity(xb->fld) || \ tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ \ if (unlikely(tp##_is_any_nan(xb->fld))) { \ fe_flag = 1; \ } else if (unlikely(tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ } else if (unlikely(tp##_is_neg(xb->fld))) { \ fe_flag = 1; \ } else if (!tp##_is_zero(xb->fld) && \ (e_b <= (emin + nbits))) { \ fe_flag = 1; \ } \ \ if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ /* \ * XB is not zero because of the above check and \ * therefore must be denormalized. \ */ \ fg_flag = 1; \ } \ } \ } \ \ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ } VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) /* * VSX_MADD - VSX floating point muliply/add variations * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * maddflgs - flags for the float*muladd routine that control the * various forms (madd, msub, nmadd, nmsub) * sfprf - set FPRF */ #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ /* \ * Avoid double rounding errors by rounding the intermediate \ * result to odd. \ */ \ set_float_rounding_mode(float_round_to_zero, &tstat); \ t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ maddflgs, &tstat); \ t.fld |= (get_float_exception_flags(&tstat) & \ float_flag_inexact) != 0; \ } else { \ t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ maddflgs, &tstat); \ } \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_madd(env, tstat.float_exception_flags, \ sfprf, GETPC()); \ } \ \ if (r2sp) { \ t.fld = do_frsp(env, t.fld, GETPC()); \ } \ \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0) VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0) VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0) VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0) VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1) VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1) VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1) VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1) VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0) VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0) VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0) VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0) VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0) VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0) VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0) VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0) /* * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision * op - instruction mnemonic * cmp - comparison operation * exp - expected result of comparison * svxvc - set VXVC bit */ #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \ \ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ if (fpscr_ve == 0 && svxvc) { \ vxvc_flag = true; \ } \ } else if (svxvc) { \ vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \ } \ if (vxsnan_flag) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (vxvc_flag) { \ float_invalid_op_vxvc(env, 0, GETPC()); \ } \ vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \ \ if (!vex_flag) { \ if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \ &env->fp_status) == exp) { \ t.VsrD(0) = -1; \ t.VsrD(1) = 0; \ } else { \ t.VsrD(0) = 0; \ t.VsrD(1) = 0; \ } \ } \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0) VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1) VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1) VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0) void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { int64_t exp_a, exp_b; uint32_t cc; exp_a = extract64(xa->VsrD(0), 52, 11); exp_b = extract64(xb->VsrD(0), 52, 11); if (unlikely(float64_is_any_nan(xa->VsrD(0)) || float64_is_any_nan(xb->VsrD(0)))) { cc = CRF_SO; } else { if (exp_a < exp_b) { cc = CRF_LT; } else if (exp_a > exp_b) { cc = CRF_GT; } else { cc = CRF_EQ; } } env->fpscr &= ~FP_FPCC; env->fpscr |= cc << FPSCR_FPCC; env->crf[BF(opcode)] = cc; do_float_check_status(env, GETPC()); } void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { int64_t exp_a, exp_b; uint32_t cc; exp_a = extract64(xa->VsrD(0), 48, 15); exp_b = extract64(xb->VsrD(0), 48, 15); if (unlikely(float128_is_any_nan(xa->f128) || float128_is_any_nan(xb->f128))) { cc = CRF_SO; } else { if (exp_a < exp_b) { cc = CRF_LT; } else if (exp_a > exp_b) { cc = CRF_GT; } else { cc = CRF_EQ; } } env->fpscr &= ~FP_FPCC; env->fpscr |= cc << FPSCR_FPCC; env->crf[BF(opcode)] = cc; do_float_check_status(env, GETPC()); } static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb, int crf_idx, bool ordered) { uint32_t cc; bool vxsnan_flag = false, vxvc_flag = false; helper_reset_fpstatus(env); switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { case float_relation_less: cc = CRF_LT; break; case float_relation_equal: cc = CRF_EQ; break; case float_relation_greater: cc = CRF_GT; break; case float_relation_unordered: cc = CRF_SO; if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { vxsnan_flag = true; if (fpscr_ve == 0 && ordered) { vxvc_flag = true; } } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { if (ordered) { vxvc_flag = true; } } break; default: g_assert_not_reached(); } env->fpscr &= ~FP_FPCC; env->fpscr |= cc << FPSCR_FPCC; env->crf[crf_idx] = cc; if (vxsnan_flag) { float_invalid_op_vxsnan(env, GETPC()); } if (vxvc_flag) { float_invalid_op_vxvc(env, 0, GETPC()); } do_float_check_status(env, GETPC()); } void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { do_scalar_cmp(env, xa, xb, BF(opcode), true); } void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { do_scalar_cmp(env, xa, xb, BF(opcode), false); } static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb, int crf_idx, bool ordered) { uint32_t cc; bool vxsnan_flag = false, vxvc_flag = false; helper_reset_fpstatus(env); switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) { case float_relation_less: cc = CRF_LT; break; case float_relation_equal: cc = CRF_EQ; break; case float_relation_greater: cc = CRF_GT; break; case float_relation_unordered: cc = CRF_SO; if (float128_is_signaling_nan(xa->f128, &env->fp_status) || float128_is_signaling_nan(xb->f128, &env->fp_status)) { vxsnan_flag = true; if (fpscr_ve == 0 && ordered) { vxvc_flag = true; } } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || float128_is_quiet_nan(xb->f128, &env->fp_status)) { if (ordered) { vxvc_flag = true; } } break; default: g_assert_not_reached(); } env->fpscr &= ~FP_FPCC; env->fpscr |= cc << FPSCR_FPCC; env->crf[crf_idx] = cc; if (vxsnan_flag) { float_invalid_op_vxsnan(env, GETPC()); } if (vxvc_flag) { float_invalid_op_vxvc(env, 0, GETPC()); } do_float_check_status(env, GETPC()); } void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { do_scalar_cmpq(env, xa, xb, BF(opcode), true); } void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, ppc_vsr_t *xb) { do_scalar_cmpq(env, xa, xb, BF(opcode), false); } /* * VSX_MAX_MIN - VSX floating point maximum/minimum * name - instruction mnemonic * op - operation (max or min) * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) */ #define VSX_MAX_MIN(name, op, nels, tp, fld) \ void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ for (i = 0; i < nels; i++) { \ t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \ if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0)) VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i)) VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i)) VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0)) VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i)) VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i)) #define VSX_MAX_MINC(name, max) \ void helper_##name(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vex_flag = false; \ \ if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \ float64_is_any_nan(xb->VsrD(0)))) { \ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ t.VsrD(0) = xb->VsrD(0); \ } else if ((max && \ !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ (!max && \ float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ t.VsrD(0) = xa->VsrD(0); \ } else { \ t.VsrD(0) = xb->VsrD(0); \ } \ \ vex_flag = fpscr_ve & vxsnan_flag; \ if (vxsnan_flag) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (!vex_flag) { \ *xt = t; \ } \ } \ VSX_MAX_MINC(xsmaxcdp, 1); VSX_MAX_MINC(xsmincdp, 0); #define VSX_MAX_MINJ(name, max) \ void helper_##name(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vex_flag = false; \ \ if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ t.VsrD(0) = xa->VsrD(0); \ } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \ if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ t.VsrD(0) = xb->VsrD(0); \ } else if (float64_is_zero(xa->VsrD(0)) && \ float64_is_zero(xb->VsrD(0))) { \ if (max) { \ if (!float64_is_neg(xa->VsrD(0)) || \ !float64_is_neg(xb->VsrD(0))) { \ t.VsrD(0) = 0ULL; \ } else { \ t.VsrD(0) = 0x8000000000000000ULL; \ } \ } else { \ if (float64_is_neg(xa->VsrD(0)) || \ float64_is_neg(xb->VsrD(0))) { \ t.VsrD(0) = 0x8000000000000000ULL; \ } else { \ t.VsrD(0) = 0ULL; \ } \ } \ } else if ((max && \ !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ (!max && \ float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ t.VsrD(0) = xa->VsrD(0); \ } else { \ t.VsrD(0) = xb->VsrD(0); \ } \ \ vex_flag = fpscr_ve & vxsnan_flag; \ if (vxsnan_flag) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (!vex_flag) { \ *xt = t; \ } \ } \ VSX_MAX_MINJ(xsmaxjdp, 1); VSX_MAX_MINJ(xsminjdp, 0); /* * VSX_CMP - VSX floating point compare * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * cmp - comparison operation * svxvc - set VXVC bit * exp - expected result of comparison */ #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \ uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ uint32_t crf6 = 0; \ int i; \ int all_true = 1; \ int all_false = 1; \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_any_nan(xa->fld) || \ tp##_is_any_nan(xb->fld))) { \ if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (svxvc) { \ float_invalid_op_vxvc(env, 0, GETPC()); \ } \ t.fld = 0; \ all_true = 0; \ } else { \ if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \ t.fld = -1; \ all_false = 0; \ } else { \ t.fld = 0; \ all_true = 0; \ } \ } \ } \ \ *xt = t; \ crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ return crf6; \ } VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1) VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1) VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1) VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0) VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1) VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1) VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1) VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0) /* * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (float32 or float64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ for (i = 0; i < nels; i++) { \ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1) VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0) VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) /* * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (float32 or float64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \ void helper_##op(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ for (i = 0; i < nels; i++) { \ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) /* * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion * involving one half precision value * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type * ttp - target type * sfld - source vsr_t field * tfld - target vsr_t field * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = { }; \ int i; \ \ for (i = 0; i < nels; i++) { \ t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \ if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1) VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1) VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0) VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) /* * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be * added to this later. */ void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xb) { ppc_vsr_t t = { }; float_status tstat; tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } t.VsrD(0) = float128_to_float64(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { float_invalid_op_vxsnan(env, GETPC()); t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); } helper_compute_fprf_float64(env, t.VsrD(0)); *xt = t; do_float_check_status(env, GETPC()); } uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) { uint64_t result, sign, exp, frac; float_status tstat = env->fp_status; set_float_exception_flags(0, &tstat); sign = extract64(xb, 63, 1); exp = extract64(xb, 52, 11); frac = extract64(xb, 0, 52) | 0x10000000000000ULL; if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) { /* DP denormal operand. */ /* Exponent override to DP min exp. */ exp = 1; /* Implicit bit override to 0. */ frac = deposit64(frac, 53, 1, 0); } if (unlikely(exp < 897 && frac != 0)) { /* SP tiny operand. */ if (897 - exp > 63) { frac = 0; } else { /* Denormalize until exp = SP min exp. */ frac >>= (897 - exp); } /* Exponent override to SP min exp - 1. */ exp = 896; } result = sign << 31; result |= extract64(exp, 10, 1) << 30; result |= extract64(exp, 0, 7) << 23; result |= extract64(frac, 29, 23); /* hardware replicates result to both words of the doubleword result. */ return (result << 32) | result; } uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) { float_status tstat = env->fp_status; set_float_exception_flags(0, &tstat); return float32_to_float64(xb >> 32, &tstat); } /* * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (float32 or float64) * ttp - target type (int32, uint32, int64 or uint64) * sfld - source vsr_t field * tfld - target vsr_t field * rnan - resulting NaN */ #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ int all_flags = env->fp_status.float_exception_flags, flags; \ ppc_vsr_t t = *xt; \ int i; \ \ for (i = 0; i < nels; i++) { \ env->fp_status.float_exception_flags = 0; \ t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ flags = env->fp_status.float_exception_flags; \ if (unlikely(flags & float_flag_invalid)) { \ t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\ } \ all_flags |= flags; \ } \ \ *xt = t; \ env->fp_status.float_exception_flags = all_flags; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \ 0x80000000U) VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL) VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U) VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \ 0x80000000U) VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL) VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U) VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U) VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL) VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U) /* * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion * op - instruction mnemonic * stp - source type (float32 or float64) * ttp - target type (int32, uint32, int64 or uint64) * sfld - source vsr_t field * tfld - target vsr_t field * rnan - resulting NaN */ #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \ void helper_##op(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = { }; \ int flags; \ \ t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ flags = get_float_exception_flags(&env->fp_status); \ if (flags & float_flag_invalid) { \ t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \ 0xffffffff80000000ULL) VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL) VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) /* * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (int32, uint32, int64 or uint64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field * jdef - definition of the j index (i or 2*i) * sfprf - set FPRF */ #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ \ for (i = 0; i < nels; i++) { \ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ if (r2sp) { \ t.tfld = do_frsp(env, t.tfld, GETPC()); \ } \ if (sfprf) { \ helper_compute_fprf_float64(env, t.tfld); \ } \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0) VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0) VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0) VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0) VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) /* * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion * op - instruction mnemonic * stp - source type (int32, uint32, int64 or uint64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field */ #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \ void helper_##op(CPUPPCState *env, uint32_t opcode, \ ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ \ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ helper_compute_fprf_##ttp(env, t.tfld); \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128) VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) /* * For "use current rounding mode", define a value that will not be * one of the existing rounding model enums. */ #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ float_round_up + float_round_to_zero) /* * VSX_ROUND - VSX floating point round * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * rmode - rounding mode * sfprf - set FPRF */ #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ ppc_vsr_t t = *xt; \ int i; \ FloatRoundMode curr_rounding_mode; \ \ if (rmode != FLOAT_ROUND_CURRENT) { \ curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \ set_float_rounding_mode(rmode, &env->fp_status); \ } \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_signaling_nan(xb->fld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ t.fld = tp##_snan_to_qnan(xb->fld); \ } else { \ t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \ } \ if (sfprf) { \ helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ /* \ * If this is not a "use current rounding mode" instruction, \ * then inhibit setting of the XX bit and restore rounding \ * mode from FPSCR \ */ \ if (rmode != FLOAT_ROUND_CURRENT) { \ set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \ env->fp_status.float_exception_flags &= ~float_flag_inexact; \ } \ \ *xt = t; \ do_float_check_status(env, GETPC()); \ } VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1) VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0) VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0) VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) { helper_reset_fpstatus(env); uint64_t xt = do_frsp(env, xb, GETPC()); helper_compute_fprf_float64(env, xt); do_float_check_status(env, GETPC()); return xt; } #define VSX_XXPERM(op, indexed) \ void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ ppc_vsr_t *xa, ppc_vsr_t *pcv) \ { \ ppc_vsr_t t = *xt; \ int i, idx; \ \ for (i = 0; i < 16; i++) { \ idx = pcv->VsrB(i) & 0x1F; \ if (indexed) { \ idx = 31 - idx; \ } \ t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \ : xt->VsrB(idx - 16); \ } \ *xt = t; \ } VSX_XXPERM(xxperm, 0) VSX_XXPERM(xxpermr, 1) void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) { ppc_vsr_t t = { }; uint32_t exp, i, fraction; for (i = 0; i < 4; i++) { exp = (xb->VsrW(i) >> 23) & 0xFF; fraction = xb->VsrW(i) & 0x7FFFFF; if (exp != 0 && exp != 255) { t.VsrW(i) = fraction | 0x00800000; } else { t.VsrW(i) = fraction; } } *xt = t; } /* * VSX_TEST_DC - VSX floating point test data class * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * xbn - VSR register number * tp - type (float32 or float64) * fld - vsr_t field (VsrD(*) or VsrW(*)) * tfld - target vsr_t field (VsrD(*) or VsrW(*)) * fld_max - target field max * scrf - set result in CR and FPCC */ #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \ ppc_vsr_t *xb = &env->vsr[xbn]; \ ppc_vsr_t t = { }; \ uint32_t i, sign, dcmx; \ uint32_t cc, match = 0; \ \ if (!scrf) { \ dcmx = DCMX_XV(opcode); \ } else { \ t = *xt; \ dcmx = DCMX(opcode); \ } \ \ for (i = 0; i < nels; i++) { \ sign = tp##_is_neg(xb->fld); \ if (tp##_is_any_nan(xb->fld)) { \ match = extract32(dcmx, 6, 1); \ } else if (tp##_is_infinity(xb->fld)) { \ match = extract32(dcmx, 4 + !sign, 1); \ } else if (tp##_is_zero(xb->fld)) { \ match = extract32(dcmx, 2 + !sign, 1); \ } else if (tp##_is_zero_or_denormal(xb->fld)) { \ match = extract32(dcmx, 0 + !sign, 1); \ } \ \ if (scrf) { \ cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \ env->fpscr &= ~FP_FPCC; \ env->fpscr |= cc << FPSCR_FPCC; \ env->crf[BF(opcode)] = cc; \ } else { \ t.tfld = match ? fld_max : 0; \ } \ match = 0; \ } \ if (!scrf) { \ *xt = t; \ } \ } VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0) VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0) VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1) VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1) void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) { uint32_t dcmx, sign, exp; uint32_t cc, match = 0, not_sp = 0; dcmx = DCMX(opcode); exp = (xb->VsrD(0) >> 52) & 0x7FF; sign = float64_is_neg(xb->VsrD(0)); if (float64_is_any_nan(xb->VsrD(0))) { match = extract32(dcmx, 6, 1); } else if (float64_is_infinity(xb->VsrD(0))) { match = extract32(dcmx, 4 + !sign, 1); } else if (float64_is_zero(xb->VsrD(0))) { match = extract32(dcmx, 2 + !sign, 1); } else if (float64_is_zero_or_denormal(xb->VsrD(0)) || (exp > 0 && exp < 0x381)) { match = extract32(dcmx, 0 + !sign, 1); } not_sp = !float64_eq(xb->VsrD(0), float32_to_float64( float64_to_float32(xb->VsrD(0), &env->fp_status), &env->fp_status), &env->fp_status); cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; env->fpscr &= ~FP_FPCC; env->fpscr |= cc << FPSCR_FPCC; env->crf[BF(opcode)] = cc; } void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xb) { ppc_vsr_t t = { }; uint8_t r = Rrm(opcode); uint8_t ex = Rc(opcode); uint8_t rmc = RMC(opcode); uint8_t rmode = 0; float_status tstat; helper_reset_fpstatus(env); if (r == 0 && rmc == 0) { rmode = float_round_ties_away; } else if (r == 0 && rmc == 0x3) { rmode = fpscr_rn; } else if (r == 1) { switch (rmc) { case 0: rmode = float_round_nearest_even; break; case 1: rmode = float_round_to_zero; break; case 2: rmode = float_round_up; break; case 3: rmode = float_round_down; break; default: abort(); } } tstat = env->fp_status; set_float_exception_flags(0, &tstat); set_float_rounding_mode(rmode, &tstat); t.f128 = float128_round_to_int(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { float_invalid_op_vxsnan(env, GETPC()); } if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) { env->fp_status.float_exception_flags &= ~float_flag_inexact; } helper_compute_fprf_float128(env, t.f128); do_float_check_status(env, GETPC()); *xt = t; } void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xb) { ppc_vsr_t t = { }; uint8_t r = Rrm(opcode); uint8_t rmc = RMC(opcode); uint8_t rmode = 0; floatx80 round_res; float_status tstat; helper_reset_fpstatus(env); if (r == 0 && rmc == 0) { rmode = float_round_ties_away; } else if (r == 0 && rmc == 0x3) { rmode = fpscr_rn; } else if (r == 1) { switch (rmc) { case 0: rmode = float_round_nearest_even; break; case 1: rmode = float_round_to_zero; break; case 2: rmode = float_round_up; break; case 3: rmode = float_round_down; break; default: abort(); } } tstat = env->fp_status; set_float_exception_flags(0, &tstat); set_float_rounding_mode(rmode, &tstat); round_res = float128_to_floatx80(xb->f128, &tstat); t.f128 = floatx80_to_float128(round_res, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { float_invalid_op_vxsnan(env, GETPC()); t.f128 = float128_snan_to_qnan(t.f128); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); } void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xb) { ppc_vsr_t t = { }; float_status tstat; helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } set_float_exception_flags(0, &tstat); t.f128 = float128_sqrt(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC()); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); } void helper_xssubqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { ppc_vsr_t t = *xt; float_status tstat; helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } set_float_exception_flags(0, &tstat); t.f128 = float128_sub(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); } helper_compute_fprf_float128(env, t.f128); *xt = t; do_float_check_status(env, GETPC()); }