/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * PAPR Virtualized Interrupt System, aka ICS/ICP aka xics, in-kernel emulation * * Copyright (c) 2013 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "hw/hw.h" #include "trace.h" #include "sysemu/kvm.h" #include "hw/ppc/spapr.h" #include "hw/ppc/xics.h" #include "hw/ppc/xics_spapr.h" #include "kvm_ppc.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include static int kernel_xics_fd = -1; typedef struct KVMEnabledICP { unsigned long vcpu_id; QLIST_ENTRY(KVMEnabledICP) node; } KVMEnabledICP; static QLIST_HEAD(, KVMEnabledICP) kvm_enabled_icps = QLIST_HEAD_INITIALIZER(&kvm_enabled_icps); /* * ICP-KVM */ void icp_get_kvm_state(ICPState *icp) { uint64_t state; int ret; /* ICP for this CPU thread is not in use, exiting */ if (!icp->cs) { return; } ret = kvm_get_one_reg(icp->cs, KVM_REG_PPC_ICP_STATE, &state); if (ret != 0) { error_report("Unable to retrieve KVM interrupt controller state" " for CPU %ld: %s", kvm_arch_vcpu_id(icp->cs), strerror(errno)); exit(1); } icp->xirr = state >> KVM_REG_PPC_ICP_XISR_SHIFT; icp->mfrr = (state >> KVM_REG_PPC_ICP_MFRR_SHIFT) & KVM_REG_PPC_ICP_MFRR_MASK; icp->pending_priority = (state >> KVM_REG_PPC_ICP_PPRI_SHIFT) & KVM_REG_PPC_ICP_PPRI_MASK; } static void do_icp_synchronize_state(CPUState *cpu, run_on_cpu_data arg) { icp_get_kvm_state(arg.host_ptr); } void icp_synchronize_state(ICPState *icp) { if (icp->cs) { run_on_cpu(icp->cs, do_icp_synchronize_state, RUN_ON_CPU_HOST_PTR(icp)); } } int icp_set_kvm_state(ICPState *icp) { uint64_t state; int ret; /* ICP for this CPU thread is not in use, exiting */ if (!icp->cs) { return 0; } state = ((uint64_t)icp->xirr << KVM_REG_PPC_ICP_XISR_SHIFT) | ((uint64_t)icp->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) | ((uint64_t)icp->pending_priority << KVM_REG_PPC_ICP_PPRI_SHIFT); ret = kvm_set_one_reg(icp->cs, KVM_REG_PPC_ICP_STATE, &state); if (ret != 0) { error_report("Unable to restore KVM interrupt controller state (0x%" PRIx64 ") for CPU %ld: %s", state, kvm_arch_vcpu_id(icp->cs), strerror(errno)); return ret; } return 0; } void icp_kvm_realize(DeviceState *dev, Error **errp) { ICPState *icp = ICP(dev); CPUState *cs; KVMEnabledICP *enabled_icp; unsigned long vcpu_id; int ret; if (kernel_xics_fd == -1) { abort(); } cs = icp->cs; vcpu_id = kvm_arch_vcpu_id(cs); /* * If we are reusing a parked vCPU fd corresponding to the CPU * which was hot-removed earlier we don't have to renable * KVM_CAP_IRQ_XICS capability again. */ QLIST_FOREACH(enabled_icp, &kvm_enabled_icps, node) { if (enabled_icp->vcpu_id == vcpu_id) { return; } } ret = kvm_vcpu_enable_cap(cs, KVM_CAP_IRQ_XICS, 0, kernel_xics_fd, vcpu_id); if (ret < 0) { error_setg(errp, "Unable to connect CPU%ld to kernel XICS: %s", vcpu_id, strerror(errno)); return; } enabled_icp = g_malloc(sizeof(*enabled_icp)); enabled_icp->vcpu_id = vcpu_id; QLIST_INSERT_HEAD(&kvm_enabled_icps, enabled_icp, node); } /* * ICS-KVM */ void ics_get_kvm_state(ICSState *ics) { uint64_t state; int i; for (i = 0; i < ics->nr_irqs; i++) { ICSIRQState *irq = &ics->irqs[i]; kvm_device_access(kernel_xics_fd, KVM_DEV_XICS_GRP_SOURCES, i + ics->offset, &state, false, &error_fatal); irq->server = state & KVM_XICS_DESTINATION_MASK; irq->saved_priority = (state >> KVM_XICS_PRIORITY_SHIFT) & KVM_XICS_PRIORITY_MASK; /* * To be consistent with the software emulation in xics.c, we * split out the masked state + priority that we get from the * kernel into 'current priority' (0xff if masked) and * 'saved priority' (if masked, this is the priority the * interrupt had before it was masked). Masking and unmasking * are done with the ibm,int-off and ibm,int-on RTAS calls. */ if (state & KVM_XICS_MASKED) { irq->priority = 0xff; } else { irq->priority = irq->saved_priority; } irq->status = 0; if (state & KVM_XICS_PENDING) { if (state & KVM_XICS_LEVEL_SENSITIVE) { irq->status |= XICS_STATUS_ASSERTED; } else { /* * A pending edge-triggered interrupt (or MSI) * must have been rejected previously when we * first detected it and tried to deliver it, * so mark it as pending and previously rejected * for consistency with how xics.c works. */ irq->status |= XICS_STATUS_MASKED_PENDING | XICS_STATUS_REJECTED; } } if (state & KVM_XICS_PRESENTED) { irq->status |= XICS_STATUS_PRESENTED; } if (state & KVM_XICS_QUEUED) { irq->status |= XICS_STATUS_QUEUED; } } } void ics_synchronize_state(ICSState *ics) { ics_get_kvm_state(ics); } int ics_set_kvm_state(ICSState *ics) { uint64_t state; int i; Error *local_err = NULL; for (i = 0; i < ics->nr_irqs; i++) { ICSIRQState *irq = &ics->irqs[i]; int ret; state = irq->server; state |= (uint64_t)(irq->saved_priority & KVM_XICS_PRIORITY_MASK) << KVM_XICS_PRIORITY_SHIFT; if (irq->priority != irq->saved_priority) { assert(irq->priority == 0xff); state |= KVM_XICS_MASKED; } if (ics->irqs[i].flags & XICS_FLAGS_IRQ_LSI) { state |= KVM_XICS_LEVEL_SENSITIVE; if (irq->status & XICS_STATUS_ASSERTED) { state |= KVM_XICS_PENDING; } } else { if (irq->status & XICS_STATUS_MASKED_PENDING) { state |= KVM_XICS_PENDING; } } if (irq->status & XICS_STATUS_PRESENTED) { state |= KVM_XICS_PRESENTED; } if (irq->status & XICS_STATUS_QUEUED) { state |= KVM_XICS_QUEUED; } ret = kvm_device_access(kernel_xics_fd, KVM_DEV_XICS_GRP_SOURCES, i + ics->offset, &state, true, &local_err); if (local_err) { error_report_err(local_err); return ret; } } return 0; } void ics_kvm_set_irq(void *opaque, int srcno, int val) { ICSState *ics = opaque; struct kvm_irq_level args; int rc; args.irq = srcno + ics->offset; if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_MSI) { if (!val) { return; } args.level = KVM_INTERRUPT_SET; } else { args.level = val ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; } rc = kvm_vm_ioctl(kvm_state, KVM_IRQ_LINE, &args); if (rc < 0) { perror("kvm_irq_line"); } } static void ics_kvm_reset(DeviceState *dev) { ICSStateClass *icsc = ICS_BASE_GET_CLASS(dev); icsc->parent_reset(dev); ics_set_kvm_state(ICS_KVM(dev)); } static void ics_kvm_reset_handler(void *dev) { ics_kvm_reset(dev); } static void ics_kvm_realize(DeviceState *dev, Error **errp) { ICSState *ics = ICS_KVM(dev); ICSStateClass *icsc = ICS_BASE_GET_CLASS(ics); Error *local_err = NULL; icsc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } qemu_register_reset(ics_kvm_reset_handler, ics); } static void ics_kvm_class_init(ObjectClass *klass, void *data) { ICSStateClass *icsc = ICS_BASE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_parent_realize(dc, ics_kvm_realize, &icsc->parent_realize); device_class_set_parent_reset(dc, ics_kvm_reset, &icsc->parent_reset); } static const TypeInfo ics_kvm_info = { .name = TYPE_ICS_KVM, .parent = TYPE_ICS_BASE, .instance_size = sizeof(ICSState), .class_init = ics_kvm_class_init, }; /* * XICS-KVM */ static void rtas_dummy(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { error_report("pseries: %s must never be called for in-kernel XICS", __func__); } int xics_kvm_init(sPAPRMachineState *spapr, Error **errp) { int rc; if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_IRQ_XICS)) { error_setg(errp, "KVM and IRQ_XICS capability must be present for in-kernel XICS"); goto fail; } spapr_rtas_register(RTAS_IBM_SET_XIVE, "ibm,set-xive", rtas_dummy); spapr_rtas_register(RTAS_IBM_GET_XIVE, "ibm,get-xive", rtas_dummy); spapr_rtas_register(RTAS_IBM_INT_OFF, "ibm,int-off", rtas_dummy); spapr_rtas_register(RTAS_IBM_INT_ON, "ibm,int-on", rtas_dummy); rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_SET_XIVE, "ibm,set-xive"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,set-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_GET_XIVE, "ibm,get-xive"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,get-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_ON, "ibm,int-on"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,int-on"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_OFF, "ibm,int-off"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,int-off"); goto fail; } /* Create the KVM XICS device */ rc = kvm_create_device(kvm_state, KVM_DEV_TYPE_XICS, false); if (rc < 0) { error_setg_errno(errp, -rc, "Error on KVM_CREATE_DEVICE for XICS"); goto fail; } kernel_xics_fd = rc; kvm_kernel_irqchip = true; kvm_msi_via_irqfd_allowed = true; kvm_gsi_direct_mapping = true; return 0; fail: kvmppc_define_rtas_kernel_token(0, "ibm,set-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,get-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,int-on"); kvmppc_define_rtas_kernel_token(0, "ibm,int-off"); return -1; } static void xics_kvm_register_types(void) { type_register_static(&ics_kvm_info); } type_init(xics_kvm_register_types)