/* SPARC translation Copyright (C) 2003 Thomas M. Ogrisegg Copyright (C) 2003-2005 Fabrice Bellard This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "exec/log.h" #include "asi.h" #define HELPER_H "helper.h" #include "exec/helper-info.c.inc" #undef HELPER_H #ifdef TARGET_SPARC64 # define gen_helper_rdpsr(D, E) qemu_build_not_reached() # define gen_helper_rdasr17(D, E) qemu_build_not_reached() # define gen_helper_rett(E) qemu_build_not_reached() # define gen_helper_power_down(E) qemu_build_not_reached() # define gen_helper_wrpsr(E, S) qemu_build_not_reached() #else # define gen_helper_clear_softint(E, S) qemu_build_not_reached() # define gen_helper_done(E) qemu_build_not_reached() # define gen_helper_flushw(E) qemu_build_not_reached() # define gen_helper_fmul8x16a(D, S1, S2) qemu_build_not_reached() # define gen_helper_rdccr(D, E) qemu_build_not_reached() # define gen_helper_rdcwp(D, E) qemu_build_not_reached() # define gen_helper_restored(E) qemu_build_not_reached() # define gen_helper_retry(E) qemu_build_not_reached() # define gen_helper_saved(E) qemu_build_not_reached() # define gen_helper_set_softint(E, S) qemu_build_not_reached() # define gen_helper_tick_get_count(D, E, T, C) qemu_build_not_reached() # define gen_helper_tick_set_count(P, S) qemu_build_not_reached() # define gen_helper_tick_set_limit(P, S) qemu_build_not_reached() # define gen_helper_wrccr(E, S) qemu_build_not_reached() # define gen_helper_wrcwp(E, S) qemu_build_not_reached() # define gen_helper_wrgl(E, S) qemu_build_not_reached() # define gen_helper_write_softint(E, S) qemu_build_not_reached() # define gen_helper_wrpil(E, S) qemu_build_not_reached() # define gen_helper_wrpstate(E, S) qemu_build_not_reached() # define gen_helper_fcmpeq16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmpeq32 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmpgt16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmpgt32 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmple16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmple32 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmpne16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fcmpne32 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fdtox ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fexpand ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fmul8sux16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fmul8ulx16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fmul8x16 ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fpmerge ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fqtox ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fstox ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fxtod ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fxtoq ({ qemu_build_not_reached(); NULL; }) # define gen_helper_fxtos ({ qemu_build_not_reached(); NULL; }) # define gen_helper_pdist ({ qemu_build_not_reached(); NULL; }) # define MAXTL_MASK 0 #endif /* Dynamic PC, must exit to main loop. */ #define DYNAMIC_PC 1 /* Dynamic PC, one of two values according to jump_pc[T2]. */ #define JUMP_PC 2 /* Dynamic PC, may lookup next TB. */ #define DYNAMIC_PC_LOOKUP 3 #define DISAS_EXIT DISAS_TARGET_0 /* global register indexes */ static TCGv_ptr cpu_regwptr; static TCGv cpu_pc, cpu_npc; static TCGv cpu_regs[32]; static TCGv cpu_y; static TCGv cpu_tbr; static TCGv cpu_cond; static TCGv cpu_cc_N; static TCGv cpu_cc_V; static TCGv cpu_icc_Z; static TCGv cpu_icc_C; #ifdef TARGET_SPARC64 static TCGv cpu_xcc_Z; static TCGv cpu_xcc_C; static TCGv_i32 cpu_fprs; static TCGv cpu_gsr; #else # define cpu_fprs ({ qemu_build_not_reached(); (TCGv)NULL; }) # define cpu_gsr ({ qemu_build_not_reached(); (TCGv)NULL; }) #endif #ifdef TARGET_SPARC64 #define cpu_cc_Z cpu_xcc_Z #define cpu_cc_C cpu_xcc_C #else #define cpu_cc_Z cpu_icc_Z #define cpu_cc_C cpu_icc_C #define cpu_xcc_Z ({ qemu_build_not_reached(); NULL; }) #define cpu_xcc_C ({ qemu_build_not_reached(); NULL; }) #endif /* Floating point registers */ static TCGv_i64 cpu_fpr[TARGET_DPREGS]; static TCGv_i32 cpu_fcc[TARGET_FCCREGS]; #define env_field_offsetof(X) offsetof(CPUSPARCState, X) #ifdef TARGET_SPARC64 # define env32_field_offsetof(X) ({ qemu_build_not_reached(); 0; }) # define env64_field_offsetof(X) env_field_offsetof(X) #else # define env32_field_offsetof(X) env_field_offsetof(X) # define env64_field_offsetof(X) ({ qemu_build_not_reached(); 0; }) #endif typedef struct DisasCompare { TCGCond cond; TCGv c1; int c2; } DisasCompare; typedef struct DisasDelayException { struct DisasDelayException *next; TCGLabel *lab; TCGv_i32 excp; /* Saved state at parent insn. */ target_ulong pc; target_ulong npc; } DisasDelayException; typedef struct DisasContext { DisasContextBase base; target_ulong pc; /* current Program Counter: integer or DYNAMIC_PC */ target_ulong npc; /* next PC: integer or DYNAMIC_PC or JUMP_PC */ /* Used when JUMP_PC value is used. */ DisasCompare jump; target_ulong jump_pc[2]; int mem_idx; bool cpu_cond_live; bool fpu_enabled; bool address_mask_32bit; #ifndef CONFIG_USER_ONLY bool supervisor; #ifdef TARGET_SPARC64 bool hypervisor; #endif #endif sparc_def_t *def; #ifdef TARGET_SPARC64 int fprs_dirty; int asi; #endif DisasDelayException *delay_excp_list; } DisasContext; // This function uses non-native bit order #define GET_FIELD(X, FROM, TO) \ ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1)) // This function uses the order in the manuals, i.e. bit 0 is 2^0 #define GET_FIELD_SP(X, FROM, TO) \ GET_FIELD(X, 31 - (TO), 31 - (FROM)) #define GET_FIELDs(x,a,b) sign_extend (GET_FIELD(x,a,b), (b) - (a) + 1) #define GET_FIELD_SPs(x,a,b) sign_extend (GET_FIELD_SP(x,a,b), ((b) - (a) + 1)) #ifdef TARGET_SPARC64 #define DFPREG(r) (((r & 1) << 5) | (r & 0x1e)) #define QFPREG(r) (((r & 1) << 5) | (r & 0x1c)) #else #define DFPREG(r) (r & 0x1e) #define QFPREG(r) (r & 0x1c) #endif #define UA2005_HTRAP_MASK 0xff #define V8_TRAP_MASK 0x7f #define IS_IMM (insn & (1<<13)) static void gen_update_fprs_dirty(DisasContext *dc, int rd) { #if defined(TARGET_SPARC64) int bit = (rd < 32) ? 1 : 2; /* If we know we've already set this bit within the TB, we can avoid setting it again. */ if (!(dc->fprs_dirty & bit)) { dc->fprs_dirty |= bit; tcg_gen_ori_i32(cpu_fprs, cpu_fprs, bit); } #endif } /* floating point registers moves */ static TCGv_i32 gen_load_fpr_F(DisasContext *dc, unsigned int src) { TCGv_i32 ret = tcg_temp_new_i32(); if (src & 1) { tcg_gen_extrl_i64_i32(ret, cpu_fpr[src / 2]); } else { tcg_gen_extrh_i64_i32(ret, cpu_fpr[src / 2]); } return ret; } static void gen_store_fpr_F(DisasContext *dc, unsigned int dst, TCGv_i32 v) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(t, v); tcg_gen_deposit_i64(cpu_fpr[dst / 2], cpu_fpr[dst / 2], t, (dst & 1 ? 0 : 32), 32); gen_update_fprs_dirty(dc, dst); } static TCGv_i64 gen_load_fpr_D(DisasContext *dc, unsigned int src) { src = DFPREG(src); return cpu_fpr[src / 2]; } static void gen_store_fpr_D(DisasContext *dc, unsigned int dst, TCGv_i64 v) { dst = DFPREG(dst); tcg_gen_mov_i64(cpu_fpr[dst / 2], v); gen_update_fprs_dirty(dc, dst); } static TCGv_i64 gen_dest_fpr_D(DisasContext *dc, unsigned int dst) { return cpu_fpr[DFPREG(dst) / 2]; } static TCGv_i128 gen_load_fpr_Q(DisasContext *dc, unsigned int src) { TCGv_i128 ret = tcg_temp_new_i128(); src = QFPREG(src); tcg_gen_concat_i64_i128(ret, cpu_fpr[src / 2 + 1], cpu_fpr[src / 2]); return ret; } static void gen_store_fpr_Q(DisasContext *dc, unsigned int dst, TCGv_i128 v) { dst = DFPREG(dst); tcg_gen_extr_i128_i64(cpu_fpr[dst / 2 + 1], cpu_fpr[dst / 2], v); gen_update_fprs_dirty(dc, dst); } /* moves */ #ifdef CONFIG_USER_ONLY #define supervisor(dc) 0 #define hypervisor(dc) 0 #else #ifdef TARGET_SPARC64 #define hypervisor(dc) (dc->hypervisor) #define supervisor(dc) (dc->supervisor | dc->hypervisor) #else #define supervisor(dc) (dc->supervisor) #define hypervisor(dc) 0 #endif #endif #if !defined(TARGET_SPARC64) # define AM_CHECK(dc) false #elif defined(TARGET_ABI32) # define AM_CHECK(dc) true #elif defined(CONFIG_USER_ONLY) # define AM_CHECK(dc) false #else # define AM_CHECK(dc) ((dc)->address_mask_32bit) #endif static void gen_address_mask(DisasContext *dc, TCGv addr) { if (AM_CHECK(dc)) { tcg_gen_andi_tl(addr, addr, 0xffffffffULL); } } static target_ulong address_mask_i(DisasContext *dc, target_ulong addr) { return AM_CHECK(dc) ? (uint32_t)addr : addr; } static TCGv gen_load_gpr(DisasContext *dc, int reg) { if (reg > 0) { assert(reg < 32); return cpu_regs[reg]; } else { TCGv t = tcg_temp_new(); tcg_gen_movi_tl(t, 0); return t; } } static void gen_store_gpr(DisasContext *dc, int reg, TCGv v) { if (reg > 0) { assert(reg < 32); tcg_gen_mov_tl(cpu_regs[reg], v); } } static TCGv gen_dest_gpr(DisasContext *dc, int reg) { if (reg > 0) { assert(reg < 32); return cpu_regs[reg]; } else { return tcg_temp_new(); } } static bool use_goto_tb(DisasContext *s, target_ulong pc, target_ulong npc) { return translator_use_goto_tb(&s->base, pc) && translator_use_goto_tb(&s->base, npc); } static void gen_goto_tb(DisasContext *s, int tb_num, target_ulong pc, target_ulong npc) { if (use_goto_tb(s, pc, npc)) { /* jump to same page: we can use a direct jump */ tcg_gen_goto_tb(tb_num); tcg_gen_movi_tl(cpu_pc, pc); tcg_gen_movi_tl(cpu_npc, npc); tcg_gen_exit_tb(s->base.tb, tb_num); } else { /* jump to another page: we can use an indirect jump */ tcg_gen_movi_tl(cpu_pc, pc); tcg_gen_movi_tl(cpu_npc, npc); tcg_gen_lookup_and_goto_ptr(); } } static TCGv gen_carry32(void) { if (TARGET_LONG_BITS == 64) { TCGv t = tcg_temp_new(); tcg_gen_extract_tl(t, cpu_icc_C, 32, 1); return t; } return cpu_icc_C; } static void gen_op_addcc_int(TCGv dst, TCGv src1, TCGv src2, TCGv cin) { TCGv z = tcg_constant_tl(0); if (cin) { tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, src1, z, cin, z); tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, cpu_cc_N, cpu_cc_C, src2, z); } else { tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, src1, z, src2, z); } tcg_gen_xor_tl(cpu_cc_Z, src1, src2); tcg_gen_xor_tl(cpu_cc_V, cpu_cc_N, src2); tcg_gen_andc_tl(cpu_cc_V, cpu_cc_V, cpu_cc_Z); if (TARGET_LONG_BITS == 64) { /* * Carry-in to bit 32 is result ^ src1 ^ src2. * We already have the src xor term in Z, from computation of V. */ tcg_gen_xor_tl(cpu_icc_C, cpu_cc_Z, cpu_cc_N); tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N); } tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N); tcg_gen_mov_tl(dst, cpu_cc_N); } static void gen_op_addcc(TCGv dst, TCGv src1, TCGv src2) { gen_op_addcc_int(dst, src1, src2, NULL); } static void gen_op_taddcc(TCGv dst, TCGv src1, TCGv src2) { TCGv t = tcg_temp_new(); /* Save the tag bits around modification of dst. */ tcg_gen_or_tl(t, src1, src2); gen_op_addcc(dst, src1, src2); /* Incorprate tag bits into icc.V */ tcg_gen_andi_tl(t, t, 3); tcg_gen_neg_tl(t, t); tcg_gen_ext32u_tl(t, t); tcg_gen_or_tl(cpu_cc_V, cpu_cc_V, t); } static void gen_op_addc(TCGv dst, TCGv src1, TCGv src2) { tcg_gen_add_tl(dst, src1, src2); tcg_gen_add_tl(dst, dst, gen_carry32()); } static void gen_op_addccc(TCGv dst, TCGv src1, TCGv src2) { gen_op_addcc_int(dst, src1, src2, gen_carry32()); } static void gen_op_subcc_int(TCGv dst, TCGv src1, TCGv src2, TCGv cin) { TCGv z = tcg_constant_tl(0); if (cin) { tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, src1, z, cin, z); tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, cpu_cc_N, cpu_cc_C, src2, z); } else { tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, src1, z, src2, z); } tcg_gen_neg_tl(cpu_cc_C, cpu_cc_C); tcg_gen_xor_tl(cpu_cc_Z, src1, src2); tcg_gen_xor_tl(cpu_cc_V, cpu_cc_N, src1); tcg_gen_and_tl(cpu_cc_V, cpu_cc_V, cpu_cc_Z); #ifdef TARGET_SPARC64 tcg_gen_xor_tl(cpu_icc_C, cpu_cc_Z, cpu_cc_N); tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N); #endif tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N); tcg_gen_mov_tl(dst, cpu_cc_N); } static void gen_op_subcc(TCGv dst, TCGv src1, TCGv src2) { gen_op_subcc_int(dst, src1, src2, NULL); } static void gen_op_tsubcc(TCGv dst, TCGv src1, TCGv src2) { TCGv t = tcg_temp_new(); /* Save the tag bits around modification of dst. */ tcg_gen_or_tl(t, src1, src2); gen_op_subcc(dst, src1, src2); /* Incorprate tag bits into icc.V */ tcg_gen_andi_tl(t, t, 3); tcg_gen_neg_tl(t, t); tcg_gen_ext32u_tl(t, t); tcg_gen_or_tl(cpu_cc_V, cpu_cc_V, t); } static void gen_op_subc(TCGv dst, TCGv src1, TCGv src2) { tcg_gen_sub_tl(dst, src1, src2); tcg_gen_sub_tl(dst, dst, gen_carry32()); } static void gen_op_subccc(TCGv dst, TCGv src1, TCGv src2) { gen_op_subcc_int(dst, src1, src2, gen_carry32()); } static void gen_op_mulscc(TCGv dst, TCGv src1, TCGv src2) { TCGv zero = tcg_constant_tl(0); TCGv one = tcg_constant_tl(1); TCGv t_src1 = tcg_temp_new(); TCGv t_src2 = tcg_temp_new(); TCGv t0 = tcg_temp_new(); tcg_gen_ext32u_tl(t_src1, src1); tcg_gen_ext32u_tl(t_src2, src2); /* * if (!(env->y & 1)) * src2 = 0; */ tcg_gen_movcond_tl(TCG_COND_TSTEQ, t_src2, cpu_y, one, zero, t_src2); /* * b2 = src1 & 1; * y = (b2 << 31) | (y >> 1); */ tcg_gen_extract_tl(t0, cpu_y, 1, 31); tcg_gen_deposit_tl(cpu_y, t0, src1, 31, 1); // b1 = N ^ V; tcg_gen_xor_tl(t0, cpu_cc_N, cpu_cc_V); /* * src1 = (b1 << 31) | (src1 >> 1) */ tcg_gen_andi_tl(t0, t0, 1u << 31); tcg_gen_shri_tl(t_src1, t_src1, 1); tcg_gen_or_tl(t_src1, t_src1, t0); gen_op_addcc(dst, t_src1, t_src2); } static void gen_op_multiply(TCGv dst, TCGv src1, TCGv src2, int sign_ext) { #if TARGET_LONG_BITS == 32 if (sign_ext) { tcg_gen_muls2_tl(dst, cpu_y, src1, src2); } else { tcg_gen_mulu2_tl(dst, cpu_y, src1, src2); } #else TCGv t0 = tcg_temp_new_i64(); TCGv t1 = tcg_temp_new_i64(); if (sign_ext) { tcg_gen_ext32s_i64(t0, src1); tcg_gen_ext32s_i64(t1, src2); } else { tcg_gen_ext32u_i64(t0, src1); tcg_gen_ext32u_i64(t1, src2); } tcg_gen_mul_i64(dst, t0, t1); tcg_gen_shri_i64(cpu_y, dst, 32); #endif } static void gen_op_umul(TCGv dst, TCGv src1, TCGv src2) { /* zero-extend truncated operands before multiplication */ gen_op_multiply(dst, src1, src2, 0); } static void gen_op_smul(TCGv dst, TCGv src1, TCGv src2) { /* sign-extend truncated operands before multiplication */ gen_op_multiply(dst, src1, src2, 1); } static void gen_op_sdiv(TCGv dst, TCGv src1, TCGv src2) { #ifdef TARGET_SPARC64 gen_helper_sdiv(dst, tcg_env, src1, src2); tcg_gen_ext32s_tl(dst, dst); #else TCGv_i64 t64 = tcg_temp_new_i64(); gen_helper_sdiv(t64, tcg_env, src1, src2); tcg_gen_trunc_i64_tl(dst, t64); #endif } static void gen_op_udivcc(TCGv dst, TCGv src1, TCGv src2) { TCGv_i64 t64; #ifdef TARGET_SPARC64 t64 = cpu_cc_V; #else t64 = tcg_temp_new_i64(); #endif gen_helper_udiv(t64, tcg_env, src1, src2); #ifdef TARGET_SPARC64 tcg_gen_ext32u_tl(cpu_cc_N, t64); tcg_gen_shri_tl(cpu_cc_V, t64, 32); tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_icc_C, 0); #else tcg_gen_extr_i64_tl(cpu_cc_N, cpu_cc_V, t64); #endif tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_cc_C, 0); tcg_gen_mov_tl(dst, cpu_cc_N); } static void gen_op_sdivcc(TCGv dst, TCGv src1, TCGv src2) { TCGv_i64 t64; #ifdef TARGET_SPARC64 t64 = cpu_cc_V; #else t64 = tcg_temp_new_i64(); #endif gen_helper_sdiv(t64, tcg_env, src1, src2); #ifdef TARGET_SPARC64 tcg_gen_ext32s_tl(cpu_cc_N, t64); tcg_gen_shri_tl(cpu_cc_V, t64, 32); tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_icc_C, 0); #else tcg_gen_extr_i64_tl(cpu_cc_N, cpu_cc_V, t64); #endif tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_cc_C, 0); tcg_gen_mov_tl(dst, cpu_cc_N); } static void gen_op_taddcctv(TCGv dst, TCGv src1, TCGv src2) { gen_helper_taddcctv(dst, tcg_env, src1, src2); } static void gen_op_tsubcctv(TCGv dst, TCGv src1, TCGv src2) { gen_helper_tsubcctv(dst, tcg_env, src1, src2); } static void gen_op_popc(TCGv dst, TCGv src1, TCGv src2) { tcg_gen_ctpop_tl(dst, src2); } #ifndef TARGET_SPARC64 static void gen_helper_array8(TCGv dst, TCGv src1, TCGv src2) { g_assert_not_reached(); } #endif static void gen_op_array16(TCGv dst, TCGv src1, TCGv src2) { gen_helper_array8(dst, src1, src2); tcg_gen_shli_tl(dst, dst, 1); } static void gen_op_array32(TCGv dst, TCGv src1, TCGv src2) { gen_helper_array8(dst, src1, src2); tcg_gen_shli_tl(dst, dst, 2); } static void gen_op_fpack16(TCGv_i32 dst, TCGv_i64 src) { #ifdef TARGET_SPARC64 gen_helper_fpack16(dst, cpu_gsr, src); #else g_assert_not_reached(); #endif } static void gen_op_fpackfix(TCGv_i32 dst, TCGv_i64 src) { #ifdef TARGET_SPARC64 gen_helper_fpackfix(dst, cpu_gsr, src); #else g_assert_not_reached(); #endif } static void gen_op_fpack32(TCGv_i64 dst, TCGv_i64 src1, TCGv_i64 src2) { #ifdef TARGET_SPARC64 gen_helper_fpack32(dst, cpu_gsr, src1, src2); #else g_assert_not_reached(); #endif } static void gen_op_faligndata(TCGv_i64 dst, TCGv_i64 s1, TCGv_i64 s2) { #ifdef TARGET_SPARC64 TCGv t1, t2, shift; t1 = tcg_temp_new(); t2 = tcg_temp_new(); shift = tcg_temp_new(); tcg_gen_andi_tl(shift, cpu_gsr, 7); tcg_gen_shli_tl(shift, shift, 3); tcg_gen_shl_tl(t1, s1, shift); /* * A shift of 64 does not produce 0 in TCG. Divide this into a * shift of (up to 63) followed by a constant shift of 1. */ tcg_gen_xori_tl(shift, shift, 63); tcg_gen_shr_tl(t2, s2, shift); tcg_gen_shri_tl(t2, t2, 1); tcg_gen_or_tl(dst, t1, t2); #else g_assert_not_reached(); #endif } static void gen_op_bshuffle(TCGv_i64 dst, TCGv_i64 src1, TCGv_i64 src2) { #ifdef TARGET_SPARC64 gen_helper_bshuffle(dst, cpu_gsr, src1, src2); #else g_assert_not_reached(); #endif } static void gen_op_fmul8x16al(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2) { tcg_gen_ext16s_i32(src2, src2); gen_helper_fmul8x16a(dst, src1, src2); } static void gen_op_fmul8x16au(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2) { tcg_gen_sari_i32(src2, src2, 16); gen_helper_fmul8x16a(dst, src1, src2); } static void gen_op_fmuld8ulx16(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); tcg_gen_ext8u_i32(t0, src1); tcg_gen_ext16s_i32(t1, src2); tcg_gen_mul_i32(t0, t0, t1); tcg_gen_extract_i32(t1, src1, 16, 8); tcg_gen_sextract_i32(t2, src2, 16, 16); tcg_gen_mul_i32(t1, t1, t2); tcg_gen_concat_i32_i64(dst, t0, t1); } static void gen_op_fmuld8sux16(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2) { TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); /* * The insn description talks about extracting the upper 8 bits * of the signed 16-bit input rs1, performing the multiply, then * shifting left by 8 bits. Instead, zap the lower 8 bits of * the rs1 input, which avoids the need for two shifts. */ tcg_gen_ext16s_i32(t0, src1); tcg_gen_andi_i32(t0, t0, ~0xff); tcg_gen_ext16s_i32(t1, src2); tcg_gen_mul_i32(t0, t0, t1); tcg_gen_sextract_i32(t1, src1, 16, 16); tcg_gen_andi_i32(t1, t1, ~0xff); tcg_gen_sextract_i32(t2, src2, 16, 16); tcg_gen_mul_i32(t1, t1, t2); tcg_gen_concat_i32_i64(dst, t0, t1); } static void finishing_insn(DisasContext *dc) { /* * From here, there is no future path through an unwinding exception. * If the current insn cannot raise an exception, the computation of * cpu_cond may be able to be elided. */ if (dc->cpu_cond_live) { tcg_gen_discard_tl(cpu_cond); dc->cpu_cond_live = false; } } static void gen_generic_branch(DisasContext *dc) { TCGv npc0 = tcg_constant_tl(dc->jump_pc[0]); TCGv npc1 = tcg_constant_tl(dc->jump_pc[1]); TCGv c2 = tcg_constant_tl(dc->jump.c2); tcg_gen_movcond_tl(dc->jump.cond, cpu_npc, dc->jump.c1, c2, npc0, npc1); } /* call this function before using the condition register as it may have been set for a jump */ static void flush_cond(DisasContext *dc) { if (dc->npc == JUMP_PC) { gen_generic_branch(dc); dc->npc = DYNAMIC_PC_LOOKUP; } } static void save_npc(DisasContext *dc) { if (dc->npc & 3) { switch (dc->npc) { case JUMP_PC: gen_generic_branch(dc); dc->npc = DYNAMIC_PC_LOOKUP; break; case DYNAMIC_PC: case DYNAMIC_PC_LOOKUP: break; default: g_assert_not_reached(); } } else { tcg_gen_movi_tl(cpu_npc, dc->npc); } } static void save_state(DisasContext *dc) { tcg_gen_movi_tl(cpu_pc, dc->pc); save_npc(dc); } static void gen_exception(DisasContext *dc, int which) { finishing_insn(dc); save_state(dc); gen_helper_raise_exception(tcg_env, tcg_constant_i32(which)); dc->base.is_jmp = DISAS_NORETURN; } static TCGLabel *delay_exceptionv(DisasContext *dc, TCGv_i32 excp) { DisasDelayException *e = g_new0(DisasDelayException, 1); e->next = dc->delay_excp_list; dc->delay_excp_list = e; e->lab = gen_new_label(); e->excp = excp; e->pc = dc->pc; /* Caller must have used flush_cond before branch. */ assert(e->npc != JUMP_PC); e->npc = dc->npc; return e->lab; } static TCGLabel *delay_exception(DisasContext *dc, int excp) { return delay_exceptionv(dc, tcg_constant_i32(excp)); } static void gen_check_align(DisasContext *dc, TCGv addr, int mask) { TCGv t = tcg_temp_new(); TCGLabel *lab; tcg_gen_andi_tl(t, addr, mask); flush_cond(dc); lab = delay_exception(dc, TT_UNALIGNED); tcg_gen_brcondi_tl(TCG_COND_NE, t, 0, lab); } static void gen_mov_pc_npc(DisasContext *dc) { finishing_insn(dc); if (dc->npc & 3) { switch (dc->npc) { case JUMP_PC: gen_generic_branch(dc); tcg_gen_mov_tl(cpu_pc, cpu_npc); dc->pc = DYNAMIC_PC_LOOKUP; break; case DYNAMIC_PC: case DYNAMIC_PC_LOOKUP: tcg_gen_mov_tl(cpu_pc, cpu_npc); dc->pc = dc->npc; break; default: g_assert_not_reached(); } } else { dc->pc = dc->npc; } } static void gen_compare(DisasCompare *cmp, bool xcc, unsigned int cond, DisasContext *dc) { TCGv t1; cmp->c1 = t1 = tcg_temp_new(); cmp->c2 = 0; switch (cond & 7) { case 0x0: /* never */ cmp->cond = TCG_COND_NEVER; cmp->c1 = tcg_constant_tl(0); break; case 0x1: /* eq: Z */ cmp->cond = TCG_COND_EQ; if (TARGET_LONG_BITS == 32 || xcc) { tcg_gen_mov_tl(t1, cpu_cc_Z); } else { tcg_gen_ext32u_tl(t1, cpu_icc_Z); } break; case 0x2: /* le: Z | (N ^ V) */ /* * Simplify: * cc_Z || (N ^ V) < 0 NE * cc_Z && !((N ^ V) < 0) EQ * cc_Z & ~((N ^ V) >> TLB) EQ */ cmp->cond = TCG_COND_EQ; tcg_gen_xor_tl(t1, cpu_cc_N, cpu_cc_V); tcg_gen_sextract_tl(t1, t1, xcc ? 63 : 31, 1); tcg_gen_andc_tl(t1, xcc ? cpu_cc_Z : cpu_icc_Z, t1); if (TARGET_LONG_BITS == 64 && !xcc) { tcg_gen_ext32u_tl(t1, t1); } break; case 0x3: /* lt: N ^ V */ cmp->cond = TCG_COND_LT; tcg_gen_xor_tl(t1, cpu_cc_N, cpu_cc_V); if (TARGET_LONG_BITS == 64 && !xcc) { tcg_gen_ext32s_tl(t1, t1); } break; case 0x4: /* leu: Z | C */ /* * Simplify: * cc_Z == 0 || cc_C != 0 NE * cc_Z != 0 && cc_C == 0 EQ * cc_Z & (cc_C ? 0 : -1) EQ * cc_Z & (cc_C - 1) EQ */ cmp->cond = TCG_COND_EQ; if (TARGET_LONG_BITS == 32 || xcc) { tcg_gen_subi_tl(t1, cpu_cc_C, 1); tcg_gen_and_tl(t1, t1, cpu_cc_Z); } else { tcg_gen_extract_tl(t1, cpu_icc_C, 32, 1); tcg_gen_subi_tl(t1, t1, 1); tcg_gen_and_tl(t1, t1, cpu_icc_Z); tcg_gen_ext32u_tl(t1, t1); } break; case 0x5: /* ltu: C */ cmp->cond = TCG_COND_NE; if (TARGET_LONG_BITS == 32 || xcc) { tcg_gen_mov_tl(t1, cpu_cc_C); } else { tcg_gen_extract_tl(t1, cpu_icc_C, 32, 1); } break; case 0x6: /* neg: N */ cmp->cond = TCG_COND_LT; if (TARGET_LONG_BITS == 32 || xcc) { tcg_gen_mov_tl(t1, cpu_cc_N); } else { tcg_gen_ext32s_tl(t1, cpu_cc_N); } break; case 0x7: /* vs: V */ cmp->cond = TCG_COND_LT; if (TARGET_LONG_BITS == 32 || xcc) { tcg_gen_mov_tl(t1, cpu_cc_V); } else { tcg_gen_ext32s_tl(t1, cpu_cc_V); } break; } if (cond & 8) { cmp->cond = tcg_invert_cond(cmp->cond); } } static void gen_fcompare(DisasCompare *cmp, unsigned int cc, unsigned int cond) { TCGv_i32 fcc = cpu_fcc[cc]; TCGv_i32 c1 = fcc; int c2 = 0; TCGCond tcond; /* * FCC values: * 0 = * 1 < * 2 > * 3 unordered */ switch (cond & 7) { case 0x0: /* fbn */ tcond = TCG_COND_NEVER; break; case 0x1: /* fbne : !0 */ tcond = TCG_COND_NE; break; case 0x2: /* fblg : 1 or 2 */ /* fcc in {1,2} - 1 -> fcc in {0,1} */ c1 = tcg_temp_new_i32(); tcg_gen_addi_i32(c1, fcc, -1); c2 = 1; tcond = TCG_COND_LEU; break; case 0x3: /* fbul : 1 or 3 */ c1 = tcg_temp_new_i32(); tcg_gen_andi_i32(c1, fcc, 1); tcond = TCG_COND_NE; break; case 0x4: /* fbl : 1 */ c2 = 1; tcond = TCG_COND_EQ; break; case 0x5: /* fbug : 2 or 3 */ c2 = 2; tcond = TCG_COND_GEU; break; case 0x6: /* fbg : 2 */ c2 = 2; tcond = TCG_COND_EQ; break; case 0x7: /* fbu : 3 */ c2 = 3; tcond = TCG_COND_EQ; break; } if (cond & 8) { tcond = tcg_invert_cond(tcond); } cmp->cond = tcond; cmp->c2 = c2; cmp->c1 = tcg_temp_new(); tcg_gen_extu_i32_tl(cmp->c1, c1); } static bool gen_compare_reg(DisasCompare *cmp, int cond, TCGv r_src) { static const TCGCond cond_reg[4] = { TCG_COND_NEVER, /* reserved */ TCG_COND_EQ, TCG_COND_LE, TCG_COND_LT, }; TCGCond tcond; if ((cond & 3) == 0) { return false; } tcond = cond_reg[cond & 3]; if (cond & 4) { tcond = tcg_invert_cond(tcond); } cmp->cond = tcond; cmp->c1 = tcg_temp_new(); cmp->c2 = 0; tcg_gen_mov_tl(cmp->c1, r_src); return true; } static void gen_op_clear_ieee_excp_and_FTT(void) { tcg_gen_st_i32(tcg_constant_i32(0), tcg_env, offsetof(CPUSPARCState, fsr_cexc_ftt)); } static void gen_op_fmovs(TCGv_i32 dst, TCGv_i32 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_mov_i32(dst, src); } static void gen_op_fnegs(TCGv_i32 dst, TCGv_i32 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_xori_i32(dst, src, 1u << 31); } static void gen_op_fabss(TCGv_i32 dst, TCGv_i32 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_andi_i32(dst, src, ~(1u << 31)); } static void gen_op_fmovd(TCGv_i64 dst, TCGv_i64 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_mov_i64(dst, src); } static void gen_op_fnegd(TCGv_i64 dst, TCGv_i64 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_xori_i64(dst, src, 1ull << 63); } static void gen_op_fabsd(TCGv_i64 dst, TCGv_i64 src) { gen_op_clear_ieee_excp_and_FTT(); tcg_gen_andi_i64(dst, src, ~(1ull << 63)); } static void gen_op_fnegq(TCGv_i128 dst, TCGv_i128 src) { TCGv_i64 l = tcg_temp_new_i64(); TCGv_i64 h = tcg_temp_new_i64(); tcg_gen_extr_i128_i64(l, h, src); tcg_gen_xori_i64(h, h, 1ull << 63); tcg_gen_concat_i64_i128(dst, l, h); } static void gen_op_fabsq(TCGv_i128 dst, TCGv_i128 src) { TCGv_i64 l = tcg_temp_new_i64(); TCGv_i64 h = tcg_temp_new_i64(); tcg_gen_extr_i128_i64(l, h, src); tcg_gen_andi_i64(h, h, ~(1ull << 63)); tcg_gen_concat_i64_i128(dst, l, h); } static void gen_op_fpexception_im(DisasContext *dc, int ftt) { /* * CEXC is only set when succesfully completing an FPop, * or when raising FSR_FTT_IEEE_EXCP, i.e. check_ieee_exception. * Thus we can simply store FTT into this field. */ tcg_gen_st_i32(tcg_constant_i32(ftt), tcg_env, offsetof(CPUSPARCState, fsr_cexc_ftt)); gen_exception(dc, TT_FP_EXCP); } static int gen_trap_ifnofpu(DisasContext *dc) { #if !defined(CONFIG_USER_ONLY) if (!dc->fpu_enabled) { gen_exception(dc, TT_NFPU_INSN); return 1; } #endif return 0; } /* asi moves */ typedef enum { GET_ASI_HELPER, GET_ASI_EXCP, GET_ASI_DIRECT, GET_ASI_DTWINX, GET_ASI_CODE, GET_ASI_BLOCK, GET_ASI_SHORT, GET_ASI_BCOPY, GET_ASI_BFILL, } ASIType; typedef struct { ASIType type; int asi; int mem_idx; MemOp memop; } DisasASI; /* * Build DisasASI. * For asi == -1, treat as non-asi. * For ask == -2, treat as immediate offset (v8 error, v9 %asi). */ static DisasASI resolve_asi(DisasContext *dc, int asi, MemOp memop) { ASIType type = GET_ASI_HELPER; int mem_idx = dc->mem_idx; if (asi == -1) { /* Artificial "non-asi" case. */ type = GET_ASI_DIRECT; goto done; } #ifndef TARGET_SPARC64 /* Before v9, all asis are immediate and privileged. */ if (asi < 0) { gen_exception(dc, TT_ILL_INSN); type = GET_ASI_EXCP; } else if (supervisor(dc) /* Note that LEON accepts ASI_USERDATA in user mode, for use with CASA. Also note that previous versions of QEMU allowed (and old versions of gcc emitted) ASI_P for LEON, which is incorrect. */ || (asi == ASI_USERDATA && (dc->def->features & CPU_FEATURE_CASA))) { switch (asi) { case ASI_USERDATA: /* User data access */ mem_idx = MMU_USER_IDX; type = GET_ASI_DIRECT; break; case ASI_KERNELDATA: /* Supervisor data access */ mem_idx = MMU_KERNEL_IDX; type = GET_ASI_DIRECT; break; case ASI_USERTXT: /* User text access */ mem_idx = MMU_USER_IDX; type = GET_ASI_CODE; break; case ASI_KERNELTXT: /* Supervisor text access */ mem_idx = MMU_KERNEL_IDX; type = GET_ASI_CODE; break; case ASI_M_BYPASS: /* MMU passthrough */ case ASI_LEON_BYPASS: /* LEON MMU passthrough */ mem_idx = MMU_PHYS_IDX; type = GET_ASI_DIRECT; break; case ASI_M_BCOPY: /* Block copy, sta access */ mem_idx = MMU_KERNEL_IDX; type = GET_ASI_BCOPY; break; case ASI_M_BFILL: /* Block fill, stda access */ mem_idx = MMU_KERNEL_IDX; type = GET_ASI_BFILL; break; } /* MMU_PHYS_IDX is used when the MMU is disabled to passthrough the * permissions check in get_physical_address(..). */ mem_idx = (dc->mem_idx == MMU_PHYS_IDX) ? MMU_PHYS_IDX : mem_idx; } else { gen_exception(dc, TT_PRIV_INSN); type = GET_ASI_EXCP; } #else if (asi < 0) { asi = dc->asi; } /* With v9, all asis below 0x80 are privileged. */ /* ??? We ought to check cpu_has_hypervisor, but we didn't copy down that bit into DisasContext. For the moment that's ok, since the direct implementations below doesn't have any ASIs in the restricted [0x30, 0x7f] range, and the check will be done properly in the helper. */ if (!supervisor(dc) && asi < 0x80) { gen_exception(dc, TT_PRIV_ACT); type = GET_ASI_EXCP; } else { switch (asi) { case ASI_REAL: /* Bypass */ case ASI_REAL_IO: /* Bypass, non-cacheable */ case ASI_REAL_L: /* Bypass LE */ case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ case ASI_TWINX_REAL: /* Real address, twinx */ case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ case ASI_QUAD_LDD_PHYS: case ASI_QUAD_LDD_PHYS_L: mem_idx = MMU_PHYS_IDX; break; case ASI_N: /* Nucleus */ case ASI_NL: /* Nucleus LE */ case ASI_TWINX_N: case ASI_TWINX_NL: case ASI_NUCLEUS_QUAD_LDD: case ASI_NUCLEUS_QUAD_LDD_L: if (hypervisor(dc)) { mem_idx = MMU_PHYS_IDX; } else { mem_idx = MMU_NUCLEUS_IDX; } break; case ASI_AIUP: /* As if user primary */ case ASI_AIUPL: /* As if user primary LE */ case ASI_TWINX_AIUP: case ASI_TWINX_AIUP_L: case ASI_BLK_AIUP_4V: case ASI_BLK_AIUP_L_4V: case ASI_BLK_AIUP: case ASI_BLK_AIUPL: mem_idx = MMU_USER_IDX; break; case ASI_AIUS: /* As if user secondary */ case ASI_AIUSL: /* As if user secondary LE */ case ASI_TWINX_AIUS: case ASI_TWINX_AIUS_L: case ASI_BLK_AIUS_4V: case ASI_BLK_AIUS_L_4V: case ASI_BLK_AIUS: case ASI_BLK_AIUSL: mem_idx = MMU_USER_SECONDARY_IDX; break; case ASI_S: /* Secondary */ case ASI_SL: /* Secondary LE */ case ASI_TWINX_S: case ASI_TWINX_SL: case ASI_BLK_COMMIT_S: case ASI_BLK_S: case ASI_BLK_SL: case ASI_FL8_S: case ASI_FL8_SL: case ASI_FL16_S: case ASI_FL16_SL: if (mem_idx == MMU_USER_IDX) { mem_idx = MMU_USER_SECONDARY_IDX; } else if (mem_idx == MMU_KERNEL_IDX) { mem_idx = MMU_KERNEL_SECONDARY_IDX; } break; case ASI_P: /* Primary */ case ASI_PL: /* Primary LE */ case ASI_TWINX_P: case ASI_TWINX_PL: case ASI_BLK_COMMIT_P: case ASI_BLK_P: case ASI_BLK_PL: case ASI_FL8_P: case ASI_FL8_PL: case ASI_FL16_P: case ASI_FL16_PL: break; } switch (asi) { case ASI_REAL: case ASI_REAL_IO: case ASI_REAL_L: case ASI_REAL_IO_L: case ASI_N: case ASI_NL: case ASI_AIUP: case ASI_AIUPL: case ASI_AIUS: case ASI_AIUSL: case ASI_S: case ASI_SL: case ASI_P: case ASI_PL: type = GET_ASI_DIRECT; break; case ASI_TWINX_REAL: case ASI_TWINX_REAL_L: case ASI_TWINX_N: case ASI_TWINX_NL: case ASI_TWINX_AIUP: case ASI_TWINX_AIUP_L: case ASI_TWINX_AIUS: case ASI_TWINX_AIUS_L: case ASI_TWINX_P: case ASI_TWINX_PL: case ASI_TWINX_S: case ASI_TWINX_SL: case ASI_QUAD_LDD_PHYS: case ASI_QUAD_LDD_PHYS_L: case ASI_NUCLEUS_QUAD_LDD: case ASI_NUCLEUS_QUAD_LDD_L: type = GET_ASI_DTWINX; break; case ASI_BLK_COMMIT_P: case ASI_BLK_COMMIT_S: case ASI_BLK_AIUP_4V: case ASI_BLK_AIUP_L_4V: case ASI_BLK_AIUP: case ASI_BLK_AIUPL: case ASI_BLK_AIUS_4V: case ASI_BLK_AIUS_L_4V: case ASI_BLK_AIUS: case ASI_BLK_AIUSL: case ASI_BLK_S: case ASI_BLK_SL: case ASI_BLK_P: case ASI_BLK_PL: type = GET_ASI_BLOCK; break; case ASI_FL8_S: case ASI_FL8_SL: case ASI_FL8_P: case ASI_FL8_PL: memop = MO_UB; type = GET_ASI_SHORT; break; case ASI_FL16_S: case ASI_FL16_SL: case ASI_FL16_P: case ASI_FL16_PL: memop = MO_TEUW; type = GET_ASI_SHORT; break; } /* The little-endian asis all have bit 3 set. */ if (asi & 8) { memop ^= MO_BSWAP; } } #endif done: return (DisasASI){ type, asi, mem_idx, memop }; } #if defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64) static void gen_helper_ld_asi(TCGv_i64 r, TCGv_env e, TCGv a, TCGv_i32 asi, TCGv_i32 mop) { g_assert_not_reached(); } static void gen_helper_st_asi(TCGv_env e, TCGv a, TCGv_i64 r, TCGv_i32 asi, TCGv_i32 mop) { g_assert_not_reached(); } #endif static void gen_ld_asi(DisasContext *dc, DisasASI *da, TCGv dst, TCGv addr) { switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DTWINX: /* Reserved for ldda. */ gen_exception(dc, TT_ILL_INSN); break; case GET_ASI_DIRECT: tcg_gen_qemu_ld_tl(dst, addr, da->mem_idx, da->memop | MO_ALIGN); break; case GET_ASI_CODE: #if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64) { MemOpIdx oi = make_memop_idx(da->memop, da->mem_idx); TCGv_i64 t64 = tcg_temp_new_i64(); gen_helper_ld_code(t64, tcg_env, addr, tcg_constant_i32(oi)); tcg_gen_trunc_i64_tl(dst, t64); } break; #else g_assert_not_reached(); #endif default: { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(da->memop | MO_ALIGN); save_state(dc); #ifdef TARGET_SPARC64 gen_helper_ld_asi(dst, tcg_env, addr, r_asi, r_mop); #else { TCGv_i64 t64 = tcg_temp_new_i64(); gen_helper_ld_asi(t64, tcg_env, addr, r_asi, r_mop); tcg_gen_trunc_i64_tl(dst, t64); } #endif } break; } } static void gen_st_asi(DisasContext *dc, DisasASI *da, TCGv src, TCGv addr) { switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DTWINX: /* Reserved for stda. */ if (TARGET_LONG_BITS == 32) { gen_exception(dc, TT_ILL_INSN); break; } else if (!(dc->def->features & CPU_FEATURE_HYPV)) { /* Pre OpenSPARC CPUs don't have these */ gen_exception(dc, TT_ILL_INSN); break; } /* In OpenSPARC T1+ CPUs TWINX ASIs in store are ST_BLKINIT_ ASIs */ /* fall through */ case GET_ASI_DIRECT: tcg_gen_qemu_st_tl(src, addr, da->mem_idx, da->memop | MO_ALIGN); break; case GET_ASI_BCOPY: assert(TARGET_LONG_BITS == 32); /* * Copy 32 bytes from the address in SRC to ADDR. * * From Ross RT625 hyperSPARC manual, section 4.6: * "Block Copy and Block Fill will work only on cache line boundaries." * * It does not specify if an unaliged address is truncated or trapped. * Previous qemu behaviour was to truncate to 4 byte alignment, which * is obviously wrong. The only place I can see this used is in the * Linux kernel which begins with page alignment, advancing by 32, * so is always aligned. Assume truncation as the simpler option. * * Since the loads and stores are paired, allow the copy to happen * in the host endianness. The copy need not be atomic. */ { MemOp mop = MO_128 | MO_ATOM_IFALIGN_PAIR; TCGv saddr = tcg_temp_new(); TCGv daddr = tcg_temp_new(); TCGv_i128 tmp = tcg_temp_new_i128(); tcg_gen_andi_tl(saddr, src, -32); tcg_gen_andi_tl(daddr, addr, -32); tcg_gen_qemu_ld_i128(tmp, saddr, da->mem_idx, mop); tcg_gen_qemu_st_i128(tmp, daddr, da->mem_idx, mop); tcg_gen_addi_tl(saddr, saddr, 16); tcg_gen_addi_tl(daddr, daddr, 16); tcg_gen_qemu_ld_i128(tmp, saddr, da->mem_idx, mop); tcg_gen_qemu_st_i128(tmp, daddr, da->mem_idx, mop); } break; default: { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(da->memop | MO_ALIGN); save_state(dc); #ifdef TARGET_SPARC64 gen_helper_st_asi(tcg_env, addr, src, r_asi, r_mop); #else { TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_extu_tl_i64(t64, src); gen_helper_st_asi(tcg_env, addr, t64, r_asi, r_mop); } #endif /* A write to a TLB register may alter page maps. End the TB. */ dc->npc = DYNAMIC_PC; } break; } } static void gen_swap_asi(DisasContext *dc, DisasASI *da, TCGv dst, TCGv src, TCGv addr) { switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DIRECT: tcg_gen_atomic_xchg_tl(dst, addr, src, da->mem_idx, da->memop | MO_ALIGN); break; default: /* ??? Should be DAE_invalid_asi. */ gen_exception(dc, TT_DATA_ACCESS); break; } } static void gen_cas_asi(DisasContext *dc, DisasASI *da, TCGv oldv, TCGv newv, TCGv cmpv, TCGv addr) { switch (da->type) { case GET_ASI_EXCP: return; case GET_ASI_DIRECT: tcg_gen_atomic_cmpxchg_tl(oldv, addr, cmpv, newv, da->mem_idx, da->memop | MO_ALIGN); break; default: /* ??? Should be DAE_invalid_asi. */ gen_exception(dc, TT_DATA_ACCESS); break; } } static void gen_ldstub_asi(DisasContext *dc, DisasASI *da, TCGv dst, TCGv addr) { switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DIRECT: tcg_gen_atomic_xchg_tl(dst, addr, tcg_constant_tl(0xff), da->mem_idx, MO_UB); break; default: /* ??? In theory, this should be raise DAE_invalid_asi. But the SS-20 roms do ldstuba [%l0] #ASI_M_CTL, %o1. */ if (tb_cflags(dc->base.tb) & CF_PARALLEL) { gen_helper_exit_atomic(tcg_env); } else { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(MO_UB); TCGv_i64 s64, t64; save_state(dc); t64 = tcg_temp_new_i64(); gen_helper_ld_asi(t64, tcg_env, addr, r_asi, r_mop); s64 = tcg_constant_i64(0xff); gen_helper_st_asi(tcg_env, addr, s64, r_asi, r_mop); tcg_gen_trunc_i64_tl(dst, t64); /* End the TB. */ dc->npc = DYNAMIC_PC; } break; } } static void gen_ldf_asi(DisasContext *dc, DisasASI *da, MemOp orig_size, TCGv addr, int rd) { MemOp memop = da->memop; MemOp size = memop & MO_SIZE; TCGv_i32 d32; TCGv_i64 d64; TCGv addr_tmp; /* TODO: Use 128-bit load/store below. */ if (size == MO_128) { memop = (memop & ~MO_SIZE) | MO_64; } switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DIRECT: memop |= MO_ALIGN_4; switch (size) { case MO_32: d32 = tcg_temp_new_i32(); tcg_gen_qemu_ld_i32(d32, addr, da->mem_idx, memop); gen_store_fpr_F(dc, rd, d32); break; case MO_64: tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop); break; case MO_128: d64 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(d64, addr, da->mem_idx, memop); addr_tmp = tcg_temp_new(); tcg_gen_addi_tl(addr_tmp, addr, 8); tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2 + 1], addr_tmp, da->mem_idx, memop); tcg_gen_mov_i64(cpu_fpr[rd / 2], d64); break; default: g_assert_not_reached(); } break; case GET_ASI_BLOCK: /* Valid for lddfa on aligned registers only. */ if (orig_size == MO_64 && (rd & 7) == 0) { /* The first operation checks required alignment. */ addr_tmp = tcg_temp_new(); for (int i = 0; ; ++i) { tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2 + i], addr, da->mem_idx, memop | (i == 0 ? MO_ALIGN_64 : 0)); if (i == 7) { break; } tcg_gen_addi_tl(addr_tmp, addr, 8); addr = addr_tmp; } } else { gen_exception(dc, TT_ILL_INSN); } break; case GET_ASI_SHORT: /* Valid for lddfa only. */ if (orig_size == MO_64) { tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop | MO_ALIGN); } else { gen_exception(dc, TT_ILL_INSN); } break; default: { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(memop | MO_ALIGN); save_state(dc); /* According to the table in the UA2011 manual, the only other asis that are valid for ldfa/lddfa/ldqfa are the NO_FAULT asis. We still need a helper for these, but we can just use the integer asi helper for them. */ switch (size) { case MO_32: d64 = tcg_temp_new_i64(); gen_helper_ld_asi(d64, tcg_env, addr, r_asi, r_mop); d32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(d32, d64); gen_store_fpr_F(dc, rd, d32); break; case MO_64: gen_helper_ld_asi(cpu_fpr[rd / 2], tcg_env, addr, r_asi, r_mop); break; case MO_128: d64 = tcg_temp_new_i64(); gen_helper_ld_asi(d64, tcg_env, addr, r_asi, r_mop); addr_tmp = tcg_temp_new(); tcg_gen_addi_tl(addr_tmp, addr, 8); gen_helper_ld_asi(cpu_fpr[rd / 2 + 1], tcg_env, addr_tmp, r_asi, r_mop); tcg_gen_mov_i64(cpu_fpr[rd / 2], d64); break; default: g_assert_not_reached(); } } break; } } static void gen_stf_asi(DisasContext *dc, DisasASI *da, MemOp orig_size, TCGv addr, int rd) { MemOp memop = da->memop; MemOp size = memop & MO_SIZE; TCGv_i32 d32; TCGv addr_tmp; /* TODO: Use 128-bit load/store below. */ if (size == MO_128) { memop = (memop & ~MO_SIZE) | MO_64; } switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DIRECT: memop |= MO_ALIGN_4; switch (size) { case MO_32: d32 = gen_load_fpr_F(dc, rd); tcg_gen_qemu_st_i32(d32, addr, da->mem_idx, memop | MO_ALIGN); break; case MO_64: tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop | MO_ALIGN_4); break; case MO_128: /* Only 4-byte alignment required. However, it is legal for the cpu to signal the alignment fault, and the OS trap handler is required to fix it up. Requiring 16-byte alignment here avoids having to probe the second page before performing the first write. */ tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop | MO_ALIGN_16); addr_tmp = tcg_temp_new(); tcg_gen_addi_tl(addr_tmp, addr, 8); tcg_gen_qemu_st_i64(cpu_fpr[rd / 2 + 1], addr_tmp, da->mem_idx, memop); break; default: g_assert_not_reached(); } break; case GET_ASI_BLOCK: /* Valid for stdfa on aligned registers only. */ if (orig_size == MO_64 && (rd & 7) == 0) { /* The first operation checks required alignment. */ addr_tmp = tcg_temp_new(); for (int i = 0; ; ++i) { tcg_gen_qemu_st_i64(cpu_fpr[rd / 2 + i], addr, da->mem_idx, memop | (i == 0 ? MO_ALIGN_64 : 0)); if (i == 7) { break; } tcg_gen_addi_tl(addr_tmp, addr, 8); addr = addr_tmp; } } else { gen_exception(dc, TT_ILL_INSN); } break; case GET_ASI_SHORT: /* Valid for stdfa only. */ if (orig_size == MO_64) { tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop | MO_ALIGN); } else { gen_exception(dc, TT_ILL_INSN); } break; default: /* According to the table in the UA2011 manual, the only other asis that are valid for ldfa/lddfa/ldqfa are the PST* asis, which aren't currently handled. */ gen_exception(dc, TT_ILL_INSN); break; } } static void gen_ldda_asi(DisasContext *dc, DisasASI *da, TCGv addr, int rd) { TCGv hi = gen_dest_gpr(dc, rd); TCGv lo = gen_dest_gpr(dc, rd + 1); switch (da->type) { case GET_ASI_EXCP: return; case GET_ASI_DTWINX: #ifdef TARGET_SPARC64 { MemOp mop = (da->memop & MO_BSWAP) | MO_128 | MO_ALIGN_16; TCGv_i128 t = tcg_temp_new_i128(); tcg_gen_qemu_ld_i128(t, addr, da->mem_idx, mop); /* * Note that LE twinx acts as if each 64-bit register result is * byte swapped. We perform one 128-bit LE load, so must swap * the order of the writebacks. */ if ((mop & MO_BSWAP) == MO_TE) { tcg_gen_extr_i128_i64(lo, hi, t); } else { tcg_gen_extr_i128_i64(hi, lo, t); } } break; #else g_assert_not_reached(); #endif case GET_ASI_DIRECT: { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(tmp, addr, da->mem_idx, da->memop | MO_ALIGN); /* Note that LE ldda acts as if each 32-bit register result is byte swapped. Having just performed one 64-bit bswap, we need now to swap the writebacks. */ if ((da->memop & MO_BSWAP) == MO_TE) { tcg_gen_extr_i64_tl(lo, hi, tmp); } else { tcg_gen_extr_i64_tl(hi, lo, tmp); } } break; case GET_ASI_CODE: #if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64) { MemOpIdx oi = make_memop_idx(da->memop, da->mem_idx); TCGv_i64 tmp = tcg_temp_new_i64(); gen_helper_ld_code(tmp, tcg_env, addr, tcg_constant_i32(oi)); /* See above. */ if ((da->memop & MO_BSWAP) == MO_TE) { tcg_gen_extr_i64_tl(lo, hi, tmp); } else { tcg_gen_extr_i64_tl(hi, lo, tmp); } } break; #else g_assert_not_reached(); #endif default: /* ??? In theory we've handled all of the ASIs that are valid for ldda, and this should raise DAE_invalid_asi. However, real hardware allows others. This can be seen with e.g. FreeBSD 10.3 wrt ASI_IC_TAG. */ { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(da->memop); TCGv_i64 tmp = tcg_temp_new_i64(); save_state(dc); gen_helper_ld_asi(tmp, tcg_env, addr, r_asi, r_mop); /* See above. */ if ((da->memop & MO_BSWAP) == MO_TE) { tcg_gen_extr_i64_tl(lo, hi, tmp); } else { tcg_gen_extr_i64_tl(hi, lo, tmp); } } break; } gen_store_gpr(dc, rd, hi); gen_store_gpr(dc, rd + 1, lo); } static void gen_stda_asi(DisasContext *dc, DisasASI *da, TCGv addr, int rd) { TCGv hi = gen_load_gpr(dc, rd); TCGv lo = gen_load_gpr(dc, rd + 1); switch (da->type) { case GET_ASI_EXCP: break; case GET_ASI_DTWINX: #ifdef TARGET_SPARC64 { MemOp mop = (da->memop & MO_BSWAP) | MO_128 | MO_ALIGN_16; TCGv_i128 t = tcg_temp_new_i128(); /* * Note that LE twinx acts as if each 64-bit register result is * byte swapped. We perform one 128-bit LE store, so must swap * the order of the construction. */ if ((mop & MO_BSWAP) == MO_TE) { tcg_gen_concat_i64_i128(t, lo, hi); } else { tcg_gen_concat_i64_i128(t, hi, lo); } tcg_gen_qemu_st_i128(t, addr, da->mem_idx, mop); } break; #else g_assert_not_reached(); #endif case GET_ASI_DIRECT: { TCGv_i64 t64 = tcg_temp_new_i64(); /* Note that LE stda acts as if each 32-bit register result is byte swapped. We will perform one 64-bit LE store, so now we must swap the order of the construction. */ if ((da->memop & MO_BSWAP) == MO_TE) { tcg_gen_concat_tl_i64(t64, lo, hi); } else { tcg_gen_concat_tl_i64(t64, hi, lo); } tcg_gen_qemu_st_i64(t64, addr, da->mem_idx, da->memop | MO_ALIGN); } break; case GET_ASI_BFILL: assert(TARGET_LONG_BITS == 32); /* * Store 32 bytes of [rd:rd+1] to ADDR. * See comments for GET_ASI_COPY above. */ { MemOp mop = MO_TE | MO_128 | MO_ATOM_IFALIGN_PAIR; TCGv_i64 t8 = tcg_temp_new_i64(); TCGv_i128 t16 = tcg_temp_new_i128(); TCGv daddr = tcg_temp_new(); tcg_gen_concat_tl_i64(t8, lo, hi); tcg_gen_concat_i64_i128(t16, t8, t8); tcg_gen_andi_tl(daddr, addr, -32); tcg_gen_qemu_st_i128(t16, daddr, da->mem_idx, mop); tcg_gen_addi_tl(daddr, daddr, 16); tcg_gen_qemu_st_i128(t16, daddr, da->mem_idx, mop); } break; default: /* ??? In theory we've handled all of the ASIs that are valid for stda, and this should raise DAE_invalid_asi. */ { TCGv_i32 r_asi = tcg_constant_i32(da->asi); TCGv_i32 r_mop = tcg_constant_i32(da->memop); TCGv_i64 t64 = tcg_temp_new_i64(); /* See above. */ if ((da->memop & MO_BSWAP) == MO_TE) { tcg_gen_concat_tl_i64(t64, lo, hi); } else { tcg_gen_concat_tl_i64(t64, hi, lo); } save_state(dc); gen_helper_st_asi(tcg_env, addr, t64, r_asi, r_mop); } break; } } static void gen_fmovs(DisasContext *dc, DisasCompare *cmp, int rd, int rs) { #ifdef TARGET_SPARC64 TCGv_i32 c32, zero, dst, s1, s2; TCGv_i64 c64 = tcg_temp_new_i64(); /* We have two choices here: extend the 32 bit data and use movcond_i64, or fold the comparison down to 32 bits and use movcond_i32. Choose the later. */ c32 = tcg_temp_new_i32(); tcg_gen_setcondi_i64(cmp->cond, c64, cmp->c1, cmp->c2); tcg_gen_extrl_i64_i32(c32, c64); s1 = gen_load_fpr_F(dc, rs); s2 = gen_load_fpr_F(dc, rd); dst = tcg_temp_new_i32(); zero = tcg_constant_i32(0); tcg_gen_movcond_i32(TCG_COND_NE, dst, c32, zero, s1, s2); gen_store_fpr_F(dc, rd, dst); #else qemu_build_not_reached(); #endif } static void gen_fmovd(DisasContext *dc, DisasCompare *cmp, int rd, int rs) { #ifdef TARGET_SPARC64 TCGv_i64 dst = gen_dest_fpr_D(dc, rd); tcg_gen_movcond_i64(cmp->cond, dst, cmp->c1, tcg_constant_tl(cmp->c2), gen_load_fpr_D(dc, rs), gen_load_fpr_D(dc, rd)); gen_store_fpr_D(dc, rd, dst); #else qemu_build_not_reached(); #endif } static void gen_fmovq(DisasContext *dc, DisasCompare *cmp, int rd, int rs) { #ifdef TARGET_SPARC64 int qd = QFPREG(rd); int qs = QFPREG(rs); TCGv c2 = tcg_constant_tl(cmp->c2); tcg_gen_movcond_i64(cmp->cond, cpu_fpr[qd / 2], cmp->c1, c2, cpu_fpr[qs / 2], cpu_fpr[qd / 2]); tcg_gen_movcond_i64(cmp->cond, cpu_fpr[qd / 2 + 1], cmp->c1, c2, cpu_fpr[qs / 2 + 1], cpu_fpr[qd / 2 + 1]); gen_update_fprs_dirty(dc, qd); #else qemu_build_not_reached(); #endif } #ifdef TARGET_SPARC64 static void gen_load_trap_state_at_tl(TCGv_ptr r_tsptr) { TCGv_i32 r_tl = tcg_temp_new_i32(); /* load env->tl into r_tl */ tcg_gen_ld_i32(r_tl, tcg_env, offsetof(CPUSPARCState, tl)); /* tl = [0 ... MAXTL_MASK] where MAXTL_MASK must be power of 2 */ tcg_gen_andi_i32(r_tl, r_tl, MAXTL_MASK); /* calculate offset to current trap state from env->ts, reuse r_tl */ tcg_gen_muli_i32(r_tl, r_tl, sizeof (trap_state)); tcg_gen_addi_ptr(r_tsptr, tcg_env, offsetof(CPUSPARCState, ts)); /* tsptr = env->ts[env->tl & MAXTL_MASK] */ { TCGv_ptr r_tl_tmp = tcg_temp_new_ptr(); tcg_gen_ext_i32_ptr(r_tl_tmp, r_tl); tcg_gen_add_ptr(r_tsptr, r_tsptr, r_tl_tmp); } } #endif static int extract_dfpreg(DisasContext *dc, int x) { return DFPREG(x); } static int extract_qfpreg(DisasContext *dc, int x) { return QFPREG(x); } /* Include the auto-generated decoder. */ #include "decode-insns.c.inc" #define TRANS(NAME, AVAIL, FUNC, ...) \ static bool trans_##NAME(DisasContext *dc, arg_##NAME *a) \ { return avail_##AVAIL(dc) && FUNC(dc, __VA_ARGS__); } #define avail_ALL(C) true #ifdef TARGET_SPARC64 # define avail_32(C) false # define avail_ASR17(C) false # define avail_CASA(C) true # define avail_DIV(C) true # define avail_MUL(C) true # define avail_POWERDOWN(C) false # define avail_64(C) true # define avail_GL(C) ((C)->def->features & CPU_FEATURE_GL) # define avail_HYPV(C) ((C)->def->features & CPU_FEATURE_HYPV) # define avail_VIS1(C) ((C)->def->features & CPU_FEATURE_VIS1) # define avail_VIS2(C) ((C)->def->features & CPU_FEATURE_VIS2) #else # define avail_32(C) true # define avail_ASR17(C) ((C)->def->features & CPU_FEATURE_ASR17) # define avail_CASA(C) ((C)->def->features & CPU_FEATURE_CASA) # define avail_DIV(C) ((C)->def->features & CPU_FEATURE_DIV) # define avail_MUL(C) ((C)->def->features & CPU_FEATURE_MUL) # define avail_POWERDOWN(C) ((C)->def->features & CPU_FEATURE_POWERDOWN) # define avail_64(C) false # define avail_GL(C) false # define avail_HYPV(C) false # define avail_VIS1(C) false # define avail_VIS2(C) false #endif /* Default case for non jump instructions. */ static bool advance_pc(DisasContext *dc) { TCGLabel *l1; finishing_insn(dc); if (dc->npc & 3) { switch (dc->npc) { case DYNAMIC_PC: case DYNAMIC_PC_LOOKUP: dc->pc = dc->npc; tcg_gen_mov_tl(cpu_pc, cpu_npc); tcg_gen_addi_tl(cpu_npc, cpu_npc, 4); break; case JUMP_PC: /* we can do a static jump */ l1 = gen_new_label(); tcg_gen_brcondi_tl(dc->jump.cond, dc->jump.c1, dc->jump.c2, l1); /* jump not taken */ gen_goto_tb(dc, 1, dc->jump_pc[1], dc->jump_pc[1] + 4); /* jump taken */ gen_set_label(l1); gen_goto_tb(dc, 0, dc->jump_pc[0], dc->jump_pc[0] + 4); dc->base.is_jmp = DISAS_NORETURN; break; default: g_assert_not_reached(); } } else { dc->pc = dc->npc; dc->npc = dc->npc + 4; } return true; } /* * Major opcodes 00 and 01 -- branches, call, and sethi */ static bool advance_jump_cond(DisasContext *dc, DisasCompare *cmp, bool annul, int disp) { target_ulong dest = address_mask_i(dc, dc->pc + disp * 4); target_ulong npc; finishing_insn(dc); if (cmp->cond == TCG_COND_ALWAYS) { if (annul) { dc->pc = dest; dc->npc = dest + 4; } else { gen_mov_pc_npc(dc); dc->npc = dest; } return true; } if (cmp->cond == TCG_COND_NEVER) { npc = dc->npc; if (npc & 3) { gen_mov_pc_npc(dc); if (annul) { tcg_gen_addi_tl(cpu_pc, cpu_pc, 4); } tcg_gen_addi_tl(cpu_npc, cpu_pc, 4); } else { dc->pc = npc + (annul ? 4 : 0); dc->npc = dc->pc + 4; } return true; } flush_cond(dc); npc = dc->npc; if (annul) { TCGLabel *l1 = gen_new_label(); tcg_gen_brcondi_tl(tcg_invert_cond(cmp->cond), cmp->c1, cmp->c2, l1); gen_goto_tb(dc, 0, npc, dest); gen_set_label(l1); gen_goto_tb(dc, 1, npc + 4, npc + 8); dc->base.is_jmp = DISAS_NORETURN; } else { if (npc & 3) { switch (npc) { case DYNAMIC_PC: case DYNAMIC_PC_LOOKUP: tcg_gen_mov_tl(cpu_pc, cpu_npc); tcg_gen_addi_tl(cpu_npc, cpu_npc, 4); tcg_gen_movcond_tl(cmp->cond, cpu_npc, cmp->c1, tcg_constant_tl(cmp->c2), tcg_constant_tl(dest), cpu_npc); dc->pc = npc; break; default: g_assert_not_reached(); } } else { dc->pc = npc; dc->npc = JUMP_PC; dc->jump = *cmp; dc->jump_pc[0] = dest; dc->jump_pc[1] = npc + 4; /* The condition for cpu_cond is always NE -- normalize. */ if (cmp->cond == TCG_COND_NE) { tcg_gen_xori_tl(cpu_cond, cmp->c1, cmp->c2); } else { tcg_gen_setcondi_tl(cmp->cond, cpu_cond, cmp->c1, cmp->c2); } dc->cpu_cond_live = true; } } return true; } static bool raise_priv(DisasContext *dc) { gen_exception(dc, TT_PRIV_INSN); return true; } static bool raise_unimpfpop(DisasContext *dc) { gen_op_fpexception_im(dc, FSR_FTT_UNIMPFPOP); return true; } static bool gen_trap_float128(DisasContext *dc) { if (dc->def->features & CPU_FEATURE_FLOAT128) { return false; } return raise_unimpfpop(dc); } static bool do_bpcc(DisasContext *dc, arg_bcc *a) { DisasCompare cmp; gen_compare(&cmp, a->cc, a->cond, dc); return advance_jump_cond(dc, &cmp, a->a, a->i); } TRANS(Bicc, ALL, do_bpcc, a) TRANS(BPcc, 64, do_bpcc, a) static bool do_fbpfcc(DisasContext *dc, arg_bcc *a) { DisasCompare cmp; if (gen_trap_ifnofpu(dc)) { return true; } gen_fcompare(&cmp, a->cc, a->cond); return advance_jump_cond(dc, &cmp, a->a, a->i); } TRANS(FBPfcc, 64, do_fbpfcc, a) TRANS(FBfcc, ALL, do_fbpfcc, a) static bool trans_BPr(DisasContext *dc, arg_BPr *a) { DisasCompare cmp; if (!avail_64(dc)) { return false; } if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) { return false; } return advance_jump_cond(dc, &cmp, a->a, a->i); } static bool trans_CALL(DisasContext *dc, arg_CALL *a) { target_long target = address_mask_i(dc, dc->pc + a->i * 4); gen_store_gpr(dc, 15, tcg_constant_tl(dc->pc)); gen_mov_pc_npc(dc); dc->npc = target; return true; } static bool trans_NCP(DisasContext *dc, arg_NCP *a) { /* * For sparc32, always generate the no-coprocessor exception. * For sparc64, always generate illegal instruction. */ #ifdef TARGET_SPARC64 return false; #else gen_exception(dc, TT_NCP_INSN); return true; #endif } static bool trans_SETHI(DisasContext *dc, arg_SETHI *a) { /* Special-case %g0 because that's the canonical nop. */ if (a->rd) { gen_store_gpr(dc, a->rd, tcg_constant_tl((uint32_t)a->i << 10)); } return advance_pc(dc); } /* * Major Opcode 10 -- integer, floating-point, vis, and system insns. */ static bool do_tcc(DisasContext *dc, int cond, int cc, int rs1, bool imm, int rs2_or_imm) { int mask = ((dc->def->features & CPU_FEATURE_HYPV) && supervisor(dc) ? UA2005_HTRAP_MASK : V8_TRAP_MASK); DisasCompare cmp; TCGLabel *lab; TCGv_i32 trap; /* Trap never. */ if (cond == 0) { return advance_pc(dc); } /* * Immediate traps are the most common case. Since this value is * live across the branch, it really pays to evaluate the constant. */ if (rs1 == 0 && (imm || rs2_or_imm == 0)) { trap = tcg_constant_i32((rs2_or_imm & mask) + TT_TRAP); } else { trap = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(trap, gen_load_gpr(dc, rs1)); if (imm) { tcg_gen_addi_i32(trap, trap, rs2_or_imm); } else { TCGv_i32 t2 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, gen_load_gpr(dc, rs2_or_imm)); tcg_gen_add_i32(trap, trap, t2); } tcg_gen_andi_i32(trap, trap, mask); tcg_gen_addi_i32(trap, trap, TT_TRAP); } finishing_insn(dc); /* Trap always. */ if (cond == 8) { save_state(dc); gen_helper_raise_exception(tcg_env, trap); dc->base.is_jmp = DISAS_NORETURN; return true; } /* Conditional trap. */ flush_cond(dc); lab = delay_exceptionv(dc, trap); gen_compare(&cmp, cc, cond, dc); tcg_gen_brcondi_tl(cmp.cond, cmp.c1, cmp.c2, lab); return advance_pc(dc); } static bool trans_Tcc_r(DisasContext *dc, arg_Tcc_r *a) { if (avail_32(dc) && a->cc) { return false; } return do_tcc(dc, a->cond, a->cc, a->rs1, false, a->rs2); } static bool trans_Tcc_i_v7(DisasContext *dc, arg_Tcc_i_v7 *a) { if (avail_64(dc)) { return false; } return do_tcc(dc, a->cond, 0, a->rs1, true, a->i); } static bool trans_Tcc_i_v9(DisasContext *dc, arg_Tcc_i_v9 *a) { if (avail_32(dc)) { return false; } return do_tcc(dc, a->cond, a->cc, a->rs1, true, a->i); } static bool trans_STBAR(DisasContext *dc, arg_STBAR *a) { tcg_gen_mb(TCG_MO_ST_ST | TCG_BAR_SC); return advance_pc(dc); } static bool trans_MEMBAR(DisasContext *dc, arg_MEMBAR *a) { if (avail_32(dc)) { return false; } if (a->mmask) { /* Note TCG_MO_* was modeled on sparc64, so mmask matches. */ tcg_gen_mb(a->mmask | TCG_BAR_SC); } if (a->cmask) { /* For #Sync, etc, end the TB to recognize interrupts. */ dc->base.is_jmp = DISAS_EXIT; } return advance_pc(dc); } static bool do_rd_special(DisasContext *dc, bool priv, int rd, TCGv (*func)(DisasContext *, TCGv)) { if (!priv) { return raise_priv(dc); } gen_store_gpr(dc, rd, func(dc, gen_dest_gpr(dc, rd))); return advance_pc(dc); } static TCGv do_rdy(DisasContext *dc, TCGv dst) { return cpu_y; } static bool trans_RDY(DisasContext *dc, arg_RDY *a) { /* * TODO: Need a feature bit for sparcv8. In the meantime, treat all * 32-bit cpus like sparcv7, which ignores the rs1 field. * This matches after all other ASR, so Leon3 Asr17 is handled first. */ if (avail_64(dc) && a->rs1 != 0) { return false; } return do_rd_special(dc, true, a->rd, do_rdy); } static TCGv do_rd_leon3_config(DisasContext *dc, TCGv dst) { gen_helper_rdasr17(dst, tcg_env); return dst; } TRANS(RDASR17, ASR17, do_rd_special, true, a->rd, do_rd_leon3_config) static TCGv do_rdccr(DisasContext *dc, TCGv dst) { gen_helper_rdccr(dst, tcg_env); return dst; } TRANS(RDCCR, 64, do_rd_special, true, a->rd, do_rdccr) static TCGv do_rdasi(DisasContext *dc, TCGv dst) { #ifdef TARGET_SPARC64 return tcg_constant_tl(dc->asi); #else qemu_build_not_reached(); #endif } TRANS(RDASI, 64, do_rd_special, true, a->rd, do_rdasi) static TCGv do_rdtick(DisasContext *dc, TCGv dst) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick)); if (translator_io_start(&dc->base)) { dc->base.is_jmp = DISAS_EXIT; } gen_helper_tick_get_count(dst, tcg_env, r_tickptr, tcg_constant_i32(dc->mem_idx)); return dst; } /* TODO: non-priv access only allowed when enabled. */ TRANS(RDTICK, 64, do_rd_special, true, a->rd, do_rdtick) static TCGv do_rdpc(DisasContext *dc, TCGv dst) { return tcg_constant_tl(address_mask_i(dc, dc->pc)); } TRANS(RDPC, 64, do_rd_special, true, a->rd, do_rdpc) static TCGv do_rdfprs(DisasContext *dc, TCGv dst) { tcg_gen_ext_i32_tl(dst, cpu_fprs); return dst; } TRANS(RDFPRS, 64, do_rd_special, true, a->rd, do_rdfprs) static TCGv do_rdgsr(DisasContext *dc, TCGv dst) { gen_trap_ifnofpu(dc); return cpu_gsr; } TRANS(RDGSR, 64, do_rd_special, true, a->rd, do_rdgsr) static TCGv do_rdsoftint(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(softint)); return dst; } TRANS(RDSOFTINT, 64, do_rd_special, supervisor(dc), a->rd, do_rdsoftint) static TCGv do_rdtick_cmpr(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(tick_cmpr)); return dst; } /* TODO: non-priv access only allowed when enabled. */ TRANS(RDTICK_CMPR, 64, do_rd_special, true, a->rd, do_rdtick_cmpr) static TCGv do_rdstick(DisasContext *dc, TCGv dst) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(stick)); if (translator_io_start(&dc->base)) { dc->base.is_jmp = DISAS_EXIT; } gen_helper_tick_get_count(dst, tcg_env, r_tickptr, tcg_constant_i32(dc->mem_idx)); return dst; } /* TODO: non-priv access only allowed when enabled. */ TRANS(RDSTICK, 64, do_rd_special, true, a->rd, do_rdstick) static TCGv do_rdstick_cmpr(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(stick_cmpr)); return dst; } /* TODO: supervisor access only allowed when enabled by hypervisor. */ TRANS(RDSTICK_CMPR, 64, do_rd_special, supervisor(dc), a->rd, do_rdstick_cmpr) /* * UltraSPARC-T1 Strand status. * HYPV check maybe not enough, UA2005 & UA2007 describe * this ASR as impl. dep */ static TCGv do_rdstrand_status(DisasContext *dc, TCGv dst) { return tcg_constant_tl(1); } TRANS(RDSTRAND_STATUS, HYPV, do_rd_special, true, a->rd, do_rdstrand_status) static TCGv do_rdpsr(DisasContext *dc, TCGv dst) { gen_helper_rdpsr(dst, tcg_env); return dst; } TRANS(RDPSR, 32, do_rd_special, supervisor(dc), a->rd, do_rdpsr) static TCGv do_rdhpstate(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hpstate)); return dst; } TRANS(RDHPR_hpstate, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhpstate) static TCGv do_rdhtstate(DisasContext *dc, TCGv dst) { TCGv_i32 tl = tcg_temp_new_i32(); TCGv_ptr tp = tcg_temp_new_ptr(); tcg_gen_ld_i32(tl, tcg_env, env64_field_offsetof(tl)); tcg_gen_andi_i32(tl, tl, MAXTL_MASK); tcg_gen_shli_i32(tl, tl, 3); tcg_gen_ext_i32_ptr(tp, tl); tcg_gen_add_ptr(tp, tp, tcg_env); tcg_gen_ld_tl(dst, tp, env64_field_offsetof(htstate)); return dst; } TRANS(RDHPR_htstate, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhtstate) static TCGv do_rdhintp(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hintp)); return dst; } TRANS(RDHPR_hintp, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhintp) static TCGv do_rdhtba(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(htba)); return dst; } TRANS(RDHPR_htba, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhtba) static TCGv do_rdhver(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hver)); return dst; } TRANS(RDHPR_hver, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhver) static TCGv do_rdhstick_cmpr(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hstick_cmpr)); return dst; } TRANS(RDHPR_hstick_cmpr, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhstick_cmpr) static TCGv do_rdwim(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env32_field_offsetof(wim)); return dst; } TRANS(RDWIM, 32, do_rd_special, supervisor(dc), a->rd, do_rdwim) static TCGv do_rdtpc(DisasContext *dc, TCGv dst) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tpc)); return dst; #else qemu_build_not_reached(); #endif } TRANS(RDPR_tpc, 64, do_rd_special, supervisor(dc), a->rd, do_rdtpc) static TCGv do_rdtnpc(DisasContext *dc, TCGv dst) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tnpc)); return dst; #else qemu_build_not_reached(); #endif } TRANS(RDPR_tnpc, 64, do_rd_special, supervisor(dc), a->rd, do_rdtnpc) static TCGv do_rdtstate(DisasContext *dc, TCGv dst) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tstate)); return dst; #else qemu_build_not_reached(); #endif } TRANS(RDPR_tstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdtstate) static TCGv do_rdtt(DisasContext *dc, TCGv dst) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_ld32s_tl(dst, r_tsptr, offsetof(trap_state, tt)); return dst; #else qemu_build_not_reached(); #endif } TRANS(RDPR_tt, 64, do_rd_special, supervisor(dc), a->rd, do_rdtt) TRANS(RDPR_tick, 64, do_rd_special, supervisor(dc), a->rd, do_rdtick) static TCGv do_rdtba(DisasContext *dc, TCGv dst) { return cpu_tbr; } TRANS(RDTBR, 32, do_rd_special, supervisor(dc), a->rd, do_rdtba) TRANS(RDPR_tba, 64, do_rd_special, supervisor(dc), a->rd, do_rdtba) static TCGv do_rdpstate(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(pstate)); return dst; } TRANS(RDPR_pstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdpstate) static TCGv do_rdtl(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(tl)); return dst; } TRANS(RDPR_tl, 64, do_rd_special, supervisor(dc), a->rd, do_rdtl) static TCGv do_rdpil(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env_field_offsetof(psrpil)); return dst; } TRANS(RDPR_pil, 64, do_rd_special, supervisor(dc), a->rd, do_rdpil) static TCGv do_rdcwp(DisasContext *dc, TCGv dst) { gen_helper_rdcwp(dst, tcg_env); return dst; } TRANS(RDPR_cwp, 64, do_rd_special, supervisor(dc), a->rd, do_rdcwp) static TCGv do_rdcansave(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(cansave)); return dst; } TRANS(RDPR_cansave, 64, do_rd_special, supervisor(dc), a->rd, do_rdcansave) static TCGv do_rdcanrestore(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(canrestore)); return dst; } TRANS(RDPR_canrestore, 64, do_rd_special, supervisor(dc), a->rd, do_rdcanrestore) static TCGv do_rdcleanwin(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(cleanwin)); return dst; } TRANS(RDPR_cleanwin, 64, do_rd_special, supervisor(dc), a->rd, do_rdcleanwin) static TCGv do_rdotherwin(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(otherwin)); return dst; } TRANS(RDPR_otherwin, 64, do_rd_special, supervisor(dc), a->rd, do_rdotherwin) static TCGv do_rdwstate(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(wstate)); return dst; } TRANS(RDPR_wstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdwstate) static TCGv do_rdgl(DisasContext *dc, TCGv dst) { tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(gl)); return dst; } TRANS(RDPR_gl, GL, do_rd_special, supervisor(dc), a->rd, do_rdgl) /* UA2005 strand status */ static TCGv do_rdssr(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(ssr)); return dst; } TRANS(RDPR_strand_status, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdssr) static TCGv do_rdver(DisasContext *dc, TCGv dst) { tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(version)); return dst; } TRANS(RDPR_ver, 64, do_rd_special, supervisor(dc), a->rd, do_rdver) static bool trans_FLUSHW(DisasContext *dc, arg_FLUSHW *a) { if (avail_64(dc)) { gen_helper_flushw(tcg_env); return advance_pc(dc); } return false; } static bool do_wr_special(DisasContext *dc, arg_r_r_ri *a, bool priv, void (*func)(DisasContext *, TCGv)) { TCGv src; /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && (a->rs2_or_imm & ~0x1f)) { return false; } if (!priv) { return raise_priv(dc); } if (a->rs1 == 0 && (a->imm || a->rs2_or_imm == 0)) { src = tcg_constant_tl(a->rs2_or_imm); } else { TCGv src1 = gen_load_gpr(dc, a->rs1); if (a->rs2_or_imm == 0) { src = src1; } else { src = tcg_temp_new(); if (a->imm) { tcg_gen_xori_tl(src, src1, a->rs2_or_imm); } else { tcg_gen_xor_tl(src, src1, gen_load_gpr(dc, a->rs2_or_imm)); } } } func(dc, src); return advance_pc(dc); } static void do_wry(DisasContext *dc, TCGv src) { tcg_gen_ext32u_tl(cpu_y, src); } TRANS(WRY, ALL, do_wr_special, a, true, do_wry) static void do_wrccr(DisasContext *dc, TCGv src) { gen_helper_wrccr(tcg_env, src); } TRANS(WRCCR, 64, do_wr_special, a, true, do_wrccr) static void do_wrasi(DisasContext *dc, TCGv src) { TCGv tmp = tcg_temp_new(); tcg_gen_ext8u_tl(tmp, src); tcg_gen_st32_tl(tmp, tcg_env, env64_field_offsetof(asi)); /* End TB to notice changed ASI. */ dc->base.is_jmp = DISAS_EXIT; } TRANS(WRASI, 64, do_wr_special, a, true, do_wrasi) static void do_wrfprs(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 tcg_gen_trunc_tl_i32(cpu_fprs, src); dc->fprs_dirty = 0; dc->base.is_jmp = DISAS_EXIT; #else qemu_build_not_reached(); #endif } TRANS(WRFPRS, 64, do_wr_special, a, true, do_wrfprs) static void do_wrgsr(DisasContext *dc, TCGv src) { gen_trap_ifnofpu(dc); tcg_gen_mov_tl(cpu_gsr, src); } TRANS(WRGSR, 64, do_wr_special, a, true, do_wrgsr) static void do_wrsoftint_set(DisasContext *dc, TCGv src) { gen_helper_set_softint(tcg_env, src); } TRANS(WRSOFTINT_SET, 64, do_wr_special, a, supervisor(dc), do_wrsoftint_set) static void do_wrsoftint_clr(DisasContext *dc, TCGv src) { gen_helper_clear_softint(tcg_env, src); } TRANS(WRSOFTINT_CLR, 64, do_wr_special, a, supervisor(dc), do_wrsoftint_clr) static void do_wrsoftint(DisasContext *dc, TCGv src) { gen_helper_write_softint(tcg_env, src); } TRANS(WRSOFTINT, 64, do_wr_special, a, supervisor(dc), do_wrsoftint) static void do_wrtick_cmpr(DisasContext *dc, TCGv src) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(tick_cmpr)); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick)); translator_io_start(&dc->base); gen_helper_tick_set_limit(r_tickptr, src); /* End TB to handle timer interrupt */ dc->base.is_jmp = DISAS_EXIT; } TRANS(WRTICK_CMPR, 64, do_wr_special, a, supervisor(dc), do_wrtick_cmpr) static void do_wrstick(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, tcg_env, offsetof(CPUSPARCState, stick)); translator_io_start(&dc->base); gen_helper_tick_set_count(r_tickptr, src); /* End TB to handle timer interrupt */ dc->base.is_jmp = DISAS_EXIT; #else qemu_build_not_reached(); #endif } TRANS(WRSTICK, 64, do_wr_special, a, supervisor(dc), do_wrstick) static void do_wrstick_cmpr(DisasContext *dc, TCGv src) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(stick_cmpr)); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(stick)); translator_io_start(&dc->base); gen_helper_tick_set_limit(r_tickptr, src); /* End TB to handle timer interrupt */ dc->base.is_jmp = DISAS_EXIT; } TRANS(WRSTICK_CMPR, 64, do_wr_special, a, supervisor(dc), do_wrstick_cmpr) static void do_wrpowerdown(DisasContext *dc, TCGv src) { finishing_insn(dc); save_state(dc); gen_helper_power_down(tcg_env); } TRANS(WRPOWERDOWN, POWERDOWN, do_wr_special, a, supervisor(dc), do_wrpowerdown) static void do_wrpsr(DisasContext *dc, TCGv src) { gen_helper_wrpsr(tcg_env, src); dc->base.is_jmp = DISAS_EXIT; } TRANS(WRPSR, 32, do_wr_special, a, supervisor(dc), do_wrpsr) static void do_wrwim(DisasContext *dc, TCGv src) { target_ulong mask = MAKE_64BIT_MASK(0, dc->def->nwindows); TCGv tmp = tcg_temp_new(); tcg_gen_andi_tl(tmp, src, mask); tcg_gen_st_tl(tmp, tcg_env, env32_field_offsetof(wim)); } TRANS(WRWIM, 32, do_wr_special, a, supervisor(dc), do_wrwim) static void do_wrtpc(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tpc)); #else qemu_build_not_reached(); #endif } TRANS(WRPR_tpc, 64, do_wr_special, a, supervisor(dc), do_wrtpc) static void do_wrtnpc(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tnpc)); #else qemu_build_not_reached(); #endif } TRANS(WRPR_tnpc, 64, do_wr_special, a, supervisor(dc), do_wrtnpc) static void do_wrtstate(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tstate)); #else qemu_build_not_reached(); #endif } TRANS(WRPR_tstate, 64, do_wr_special, a, supervisor(dc), do_wrtstate) static void do_wrtt(DisasContext *dc, TCGv src) { #ifdef TARGET_SPARC64 TCGv_ptr r_tsptr = tcg_temp_new_ptr(); gen_load_trap_state_at_tl(r_tsptr); tcg_gen_st32_tl(src, r_tsptr, offsetof(trap_state, tt)); #else qemu_build_not_reached(); #endif } TRANS(WRPR_tt, 64, do_wr_special, a, supervisor(dc), do_wrtt) static void do_wrtick(DisasContext *dc, TCGv src) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick)); translator_io_start(&dc->base); gen_helper_tick_set_count(r_tickptr, src); /* End TB to handle timer interrupt */ dc->base.is_jmp = DISAS_EXIT; } TRANS(WRPR_tick, 64, do_wr_special, a, supervisor(dc), do_wrtick) static void do_wrtba(DisasContext *dc, TCGv src) { tcg_gen_mov_tl(cpu_tbr, src); } TRANS(WRPR_tba, 64, do_wr_special, a, supervisor(dc), do_wrtba) static void do_wrpstate(DisasContext *dc, TCGv src) { save_state(dc); if (translator_io_start(&dc->base)) { dc->base.is_jmp = DISAS_EXIT; } gen_helper_wrpstate(tcg_env, src); dc->npc = DYNAMIC_PC; } TRANS(WRPR_pstate, 64, do_wr_special, a, supervisor(dc), do_wrpstate) static void do_wrtl(DisasContext *dc, TCGv src) { save_state(dc); tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(tl)); dc->npc = DYNAMIC_PC; } TRANS(WRPR_tl, 64, do_wr_special, a, supervisor(dc), do_wrtl) static void do_wrpil(DisasContext *dc, TCGv src) { if (translator_io_start(&dc->base)) { dc->base.is_jmp = DISAS_EXIT; } gen_helper_wrpil(tcg_env, src); } TRANS(WRPR_pil, 64, do_wr_special, a, supervisor(dc), do_wrpil) static void do_wrcwp(DisasContext *dc, TCGv src) { gen_helper_wrcwp(tcg_env, src); } TRANS(WRPR_cwp, 64, do_wr_special, a, supervisor(dc), do_wrcwp) static void do_wrcansave(DisasContext *dc, TCGv src) { tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(cansave)); } TRANS(WRPR_cansave, 64, do_wr_special, a, supervisor(dc), do_wrcansave) static void do_wrcanrestore(DisasContext *dc, TCGv src) { tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(canrestore)); } TRANS(WRPR_canrestore, 64, do_wr_special, a, supervisor(dc), do_wrcanrestore) static void do_wrcleanwin(DisasContext *dc, TCGv src) { tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(cleanwin)); } TRANS(WRPR_cleanwin, 64, do_wr_special, a, supervisor(dc), do_wrcleanwin) static void do_wrotherwin(DisasContext *dc, TCGv src) { tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(otherwin)); } TRANS(WRPR_otherwin, 64, do_wr_special, a, supervisor(dc), do_wrotherwin) static void do_wrwstate(DisasContext *dc, TCGv src) { tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(wstate)); } TRANS(WRPR_wstate, 64, do_wr_special, a, supervisor(dc), do_wrwstate) static void do_wrgl(DisasContext *dc, TCGv src) { gen_helper_wrgl(tcg_env, src); } TRANS(WRPR_gl, GL, do_wr_special, a, supervisor(dc), do_wrgl) /* UA2005 strand status */ static void do_wrssr(DisasContext *dc, TCGv src) { tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(ssr)); } TRANS(WRPR_strand_status, HYPV, do_wr_special, a, hypervisor(dc), do_wrssr) TRANS(WRTBR, 32, do_wr_special, a, supervisor(dc), do_wrtba) static void do_wrhpstate(DisasContext *dc, TCGv src) { tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hpstate)); dc->base.is_jmp = DISAS_EXIT; } TRANS(WRHPR_hpstate, HYPV, do_wr_special, a, hypervisor(dc), do_wrhpstate) static void do_wrhtstate(DisasContext *dc, TCGv src) { TCGv_i32 tl = tcg_temp_new_i32(); TCGv_ptr tp = tcg_temp_new_ptr(); tcg_gen_ld_i32(tl, tcg_env, env64_field_offsetof(tl)); tcg_gen_andi_i32(tl, tl, MAXTL_MASK); tcg_gen_shli_i32(tl, tl, 3); tcg_gen_ext_i32_ptr(tp, tl); tcg_gen_add_ptr(tp, tp, tcg_env); tcg_gen_st_tl(src, tp, env64_field_offsetof(htstate)); } TRANS(WRHPR_htstate, HYPV, do_wr_special, a, hypervisor(dc), do_wrhtstate) static void do_wrhintp(DisasContext *dc, TCGv src) { tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hintp)); } TRANS(WRHPR_hintp, HYPV, do_wr_special, a, hypervisor(dc), do_wrhintp) static void do_wrhtba(DisasContext *dc, TCGv src) { tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(htba)); } TRANS(WRHPR_htba, HYPV, do_wr_special, a, hypervisor(dc), do_wrhtba) static void do_wrhstick_cmpr(DisasContext *dc, TCGv src) { TCGv_ptr r_tickptr = tcg_temp_new_ptr(); tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hstick_cmpr)); tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(hstick)); translator_io_start(&dc->base); gen_helper_tick_set_limit(r_tickptr, src); /* End TB to handle timer interrupt */ dc->base.is_jmp = DISAS_EXIT; } TRANS(WRHPR_hstick_cmpr, HYPV, do_wr_special, a, hypervisor(dc), do_wrhstick_cmpr) static bool do_saved_restored(DisasContext *dc, bool saved) { if (!supervisor(dc)) { return raise_priv(dc); } if (saved) { gen_helper_saved(tcg_env); } else { gen_helper_restored(tcg_env); } return advance_pc(dc); } TRANS(SAVED, 64, do_saved_restored, true) TRANS(RESTORED, 64, do_saved_restored, false) static bool trans_NOP(DisasContext *dc, arg_NOP *a) { return advance_pc(dc); } /* * TODO: Need a feature bit for sparcv8. * In the meantime, treat all 32-bit cpus like sparcv7. */ TRANS(NOP_v7, 32, trans_NOP, a) TRANS(NOP_v9, 64, trans_NOP, a) static bool do_arith_int(DisasContext *dc, arg_r_r_ri_cc *a, void (*func)(TCGv, TCGv, TCGv), void (*funci)(TCGv, TCGv, target_long), bool logic_cc) { TCGv dst, src1; /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && a->rs2_or_imm & ~0x1f) { return false; } if (logic_cc) { dst = cpu_cc_N; } else { dst = gen_dest_gpr(dc, a->rd); } src1 = gen_load_gpr(dc, a->rs1); if (a->imm || a->rs2_or_imm == 0) { if (funci) { funci(dst, src1, a->rs2_or_imm); } else { func(dst, src1, tcg_constant_tl(a->rs2_or_imm)); } } else { func(dst, src1, cpu_regs[a->rs2_or_imm]); } if (logic_cc) { if (TARGET_LONG_BITS == 64) { tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_icc_C, 0); } tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N); tcg_gen_movi_tl(cpu_cc_C, 0); tcg_gen_movi_tl(cpu_cc_V, 0); } gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } static bool do_arith(DisasContext *dc, arg_r_r_ri_cc *a, void (*func)(TCGv, TCGv, TCGv), void (*funci)(TCGv, TCGv, target_long), void (*func_cc)(TCGv, TCGv, TCGv)) { if (a->cc) { return do_arith_int(dc, a, func_cc, NULL, false); } return do_arith_int(dc, a, func, funci, false); } static bool do_logic(DisasContext *dc, arg_r_r_ri_cc *a, void (*func)(TCGv, TCGv, TCGv), void (*funci)(TCGv, TCGv, target_long)) { return do_arith_int(dc, a, func, funci, a->cc); } TRANS(ADD, ALL, do_arith, a, tcg_gen_add_tl, tcg_gen_addi_tl, gen_op_addcc) TRANS(SUB, ALL, do_arith, a, tcg_gen_sub_tl, tcg_gen_subi_tl, gen_op_subcc) TRANS(ADDC, ALL, do_arith, a, gen_op_addc, NULL, gen_op_addccc) TRANS(SUBC, ALL, do_arith, a, gen_op_subc, NULL, gen_op_subccc) TRANS(TADDcc, ALL, do_arith, a, NULL, NULL, gen_op_taddcc) TRANS(TSUBcc, ALL, do_arith, a, NULL, NULL, gen_op_tsubcc) TRANS(TADDccTV, ALL, do_arith, a, NULL, NULL, gen_op_taddcctv) TRANS(TSUBccTV, ALL, do_arith, a, NULL, NULL, gen_op_tsubcctv) TRANS(AND, ALL, do_logic, a, tcg_gen_and_tl, tcg_gen_andi_tl) TRANS(XOR, ALL, do_logic, a, tcg_gen_xor_tl, tcg_gen_xori_tl) TRANS(ANDN, ALL, do_logic, a, tcg_gen_andc_tl, NULL) TRANS(ORN, ALL, do_logic, a, tcg_gen_orc_tl, NULL) TRANS(XORN, ALL, do_logic, a, tcg_gen_eqv_tl, NULL) TRANS(MULX, 64, do_arith, a, tcg_gen_mul_tl, tcg_gen_muli_tl, NULL) TRANS(UMUL, MUL, do_logic, a, gen_op_umul, NULL) TRANS(SMUL, MUL, do_logic, a, gen_op_smul, NULL) TRANS(MULScc, ALL, do_arith, a, NULL, NULL, gen_op_mulscc) TRANS(UDIVcc, DIV, do_arith, a, NULL, NULL, gen_op_udivcc) TRANS(SDIV, DIV, do_arith, a, gen_op_sdiv, NULL, gen_op_sdivcc) /* TODO: Should have feature bit -- comes in with UltraSparc T2. */ TRANS(POPC, 64, do_arith, a, gen_op_popc, NULL, NULL) static bool trans_OR(DisasContext *dc, arg_r_r_ri_cc *a) { /* OR with %g0 is the canonical alias for MOV. */ if (!a->cc && a->rs1 == 0) { if (a->imm || a->rs2_or_imm == 0) { gen_store_gpr(dc, a->rd, tcg_constant_tl(a->rs2_or_imm)); } else if (a->rs2_or_imm & ~0x1f) { /* For simplicity, we under-decoded the rs2 form. */ return false; } else { gen_store_gpr(dc, a->rd, cpu_regs[a->rs2_or_imm]); } return advance_pc(dc); } return do_logic(dc, a, tcg_gen_or_tl, tcg_gen_ori_tl); } static bool trans_UDIV(DisasContext *dc, arg_r_r_ri *a) { TCGv_i64 t1, t2; TCGv dst; if (!avail_DIV(dc)) { return false; } /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && a->rs2_or_imm & ~0x1f) { return false; } if (unlikely(a->rs2_or_imm == 0)) { gen_exception(dc, TT_DIV_ZERO); return true; } if (a->imm) { t2 = tcg_constant_i64((uint32_t)a->rs2_or_imm); } else { TCGLabel *lab; TCGv_i32 n2; finishing_insn(dc); flush_cond(dc); n2 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(n2, cpu_regs[a->rs2_or_imm]); lab = delay_exception(dc, TT_DIV_ZERO); tcg_gen_brcondi_i32(TCG_COND_EQ, n2, 0, lab); t2 = tcg_temp_new_i64(); #ifdef TARGET_SPARC64 tcg_gen_ext32u_i64(t2, cpu_regs[a->rs2_or_imm]); #else tcg_gen_extu_i32_i64(t2, cpu_regs[a->rs2_or_imm]); #endif } t1 = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(t1, gen_load_gpr(dc, a->rs1), cpu_y); tcg_gen_divu_i64(t1, t1, t2); tcg_gen_umin_i64(t1, t1, tcg_constant_i64(UINT32_MAX)); dst = gen_dest_gpr(dc, a->rd); tcg_gen_trunc_i64_tl(dst, t1); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } static bool trans_UDIVX(DisasContext *dc, arg_r_r_ri *a) { TCGv dst, src1, src2; if (!avail_64(dc)) { return false; } /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && a->rs2_or_imm & ~0x1f) { return false; } if (unlikely(a->rs2_or_imm == 0)) { gen_exception(dc, TT_DIV_ZERO); return true; } if (a->imm) { src2 = tcg_constant_tl(a->rs2_or_imm); } else { TCGLabel *lab; finishing_insn(dc); flush_cond(dc); lab = delay_exception(dc, TT_DIV_ZERO); src2 = cpu_regs[a->rs2_or_imm]; tcg_gen_brcondi_tl(TCG_COND_EQ, src2, 0, lab); } dst = gen_dest_gpr(dc, a->rd); src1 = gen_load_gpr(dc, a->rs1); tcg_gen_divu_tl(dst, src1, src2); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } static bool trans_SDIVX(DisasContext *dc, arg_r_r_ri *a) { TCGv dst, src1, src2; if (!avail_64(dc)) { return false; } /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && a->rs2_or_imm & ~0x1f) { return false; } if (unlikely(a->rs2_or_imm == 0)) { gen_exception(dc, TT_DIV_ZERO); return true; } dst = gen_dest_gpr(dc, a->rd); src1 = gen_load_gpr(dc, a->rs1); if (a->imm) { if (unlikely(a->rs2_or_imm == -1)) { tcg_gen_neg_tl(dst, src1); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } src2 = tcg_constant_tl(a->rs2_or_imm); } else { TCGLabel *lab; TCGv t1, t2; finishing_insn(dc); flush_cond(dc); lab = delay_exception(dc, TT_DIV_ZERO); src2 = cpu_regs[a->rs2_or_imm]; tcg_gen_brcondi_tl(TCG_COND_EQ, src2, 0, lab); /* * Need to avoid INT64_MIN / -1, which will trap on x86 host. * Set SRC2 to 1 as a new divisor, to produce the correct result. */ t1 = tcg_temp_new(); t2 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, t1, src1, (target_long)INT64_MIN); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, src2, -1); tcg_gen_and_tl(t1, t1, t2); tcg_gen_movcond_tl(TCG_COND_NE, t1, t1, tcg_constant_tl(0), tcg_constant_tl(1), src2); src2 = t1; } tcg_gen_div_tl(dst, src1, src2); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } static bool gen_edge(DisasContext *dc, arg_r_r_r *a, int width, bool cc, bool left) { TCGv dst, s1, s2, lo1, lo2; uint64_t amask, tabl, tabr; int shift, imask, omask; dst = gen_dest_gpr(dc, a->rd); s1 = gen_load_gpr(dc, a->rs1); s2 = gen_load_gpr(dc, a->rs2); if (cc) { gen_op_subcc(cpu_cc_N, s1, s2); } /* * Theory of operation: there are two tables, left and right (not to * be confused with the left and right versions of the opcode). These * are indexed by the low 3 bits of the inputs. To make things "easy", * these tables are loaded into two constants, TABL and TABR below. * The operation index = (input & imask) << shift calculates the index * into the constant, while val = (table >> index) & omask calculates * the value we're looking for. */ switch (width) { case 8: imask = 0x7; shift = 3; omask = 0xff; if (left) { tabl = 0x80c0e0f0f8fcfeffULL; tabr = 0xff7f3f1f0f070301ULL; } else { tabl = 0x0103070f1f3f7fffULL; tabr = 0xfffefcf8f0e0c080ULL; } break; case 16: imask = 0x6; shift = 1; omask = 0xf; if (left) { tabl = 0x8cef; tabr = 0xf731; } else { tabl = 0x137f; tabr = 0xfec8; } break; case 32: imask = 0x4; shift = 0; omask = 0x3; if (left) { tabl = (2 << 2) | 3; tabr = (3 << 2) | 1; } else { tabl = (1 << 2) | 3; tabr = (3 << 2) | 2; } break; default: abort(); } lo1 = tcg_temp_new(); lo2 = tcg_temp_new(); tcg_gen_andi_tl(lo1, s1, imask); tcg_gen_andi_tl(lo2, s2, imask); tcg_gen_shli_tl(lo1, lo1, shift); tcg_gen_shli_tl(lo2, lo2, shift); tcg_gen_shr_tl(lo1, tcg_constant_tl(tabl), lo1); tcg_gen_shr_tl(lo2, tcg_constant_tl(tabr), lo2); tcg_gen_andi_tl(lo1, lo1, omask); tcg_gen_andi_tl(lo2, lo2, omask); amask = address_mask_i(dc, -8); tcg_gen_andi_tl(s1, s1, amask); tcg_gen_andi_tl(s2, s2, amask); /* Compute dst = (s1 == s2 ? lo1 : lo1 & lo2). */ tcg_gen_and_tl(lo2, lo2, lo1); tcg_gen_movcond_tl(TCG_COND_EQ, dst, s1, s2, lo1, lo2); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } TRANS(EDGE8cc, VIS1, gen_edge, a, 8, 1, 0) TRANS(EDGE8Lcc, VIS1, gen_edge, a, 8, 1, 1) TRANS(EDGE16cc, VIS1, gen_edge, a, 16, 1, 0) TRANS(EDGE16Lcc, VIS1, gen_edge, a, 16, 1, 1) TRANS(EDGE32cc, VIS1, gen_edge, a, 32, 1, 0) TRANS(EDGE32Lcc, VIS1, gen_edge, a, 32, 1, 1) TRANS(EDGE8N, VIS2, gen_edge, a, 8, 0, 0) TRANS(EDGE8LN, VIS2, gen_edge, a, 8, 0, 1) TRANS(EDGE16N, VIS2, gen_edge, a, 16, 0, 0) TRANS(EDGE16LN, VIS2, gen_edge, a, 16, 0, 1) TRANS(EDGE32N, VIS2, gen_edge, a, 32, 0, 0) TRANS(EDGE32LN, VIS2, gen_edge, a, 32, 0, 1) static bool do_rrr(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv, TCGv, TCGv)) { TCGv dst = gen_dest_gpr(dc, a->rd); TCGv src1 = gen_load_gpr(dc, a->rs1); TCGv src2 = gen_load_gpr(dc, a->rs2); func(dst, src1, src2); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } TRANS(ARRAY8, VIS1, do_rrr, a, gen_helper_array8) TRANS(ARRAY16, VIS1, do_rrr, a, gen_op_array16) TRANS(ARRAY32, VIS1, do_rrr, a, gen_op_array32) static void gen_op_alignaddr(TCGv dst, TCGv s1, TCGv s2) { #ifdef TARGET_SPARC64 TCGv tmp = tcg_temp_new(); tcg_gen_add_tl(tmp, s1, s2); tcg_gen_andi_tl(dst, tmp, -8); tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, tmp, 0, 3); #else g_assert_not_reached(); #endif } static void gen_op_alignaddrl(TCGv dst, TCGv s1, TCGv s2) { #ifdef TARGET_SPARC64 TCGv tmp = tcg_temp_new(); tcg_gen_add_tl(tmp, s1, s2); tcg_gen_andi_tl(dst, tmp, -8); tcg_gen_neg_tl(tmp, tmp); tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, tmp, 0, 3); #else g_assert_not_reached(); #endif } TRANS(ALIGNADDR, VIS1, do_rrr, a, gen_op_alignaddr) TRANS(ALIGNADDRL, VIS1, do_rrr, a, gen_op_alignaddrl) static void gen_op_bmask(TCGv dst, TCGv s1, TCGv s2) { #ifdef TARGET_SPARC64 tcg_gen_add_tl(dst, s1, s2); tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, dst, 32, 32); #else g_assert_not_reached(); #endif } TRANS(BMASK, VIS2, do_rrr, a, gen_op_bmask) static bool do_shift_r(DisasContext *dc, arg_shiftr *a, bool l, bool u) { TCGv dst, src1, src2; /* Reject 64-bit shifts for sparc32. */ if (avail_32(dc) && a->x) { return false; } src2 = tcg_temp_new(); tcg_gen_andi_tl(src2, gen_load_gpr(dc, a->rs2), a->x ? 63 : 31); src1 = gen_load_gpr(dc, a->rs1); dst = gen_dest_gpr(dc, a->rd); if (l) { tcg_gen_shl_tl(dst, src1, src2); if (!a->x) { tcg_gen_ext32u_tl(dst, dst); } } else if (u) { if (!a->x) { tcg_gen_ext32u_tl(dst, src1); src1 = dst; } tcg_gen_shr_tl(dst, src1, src2); } else { if (!a->x) { tcg_gen_ext32s_tl(dst, src1); src1 = dst; } tcg_gen_sar_tl(dst, src1, src2); } gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } TRANS(SLL_r, ALL, do_shift_r, a, true, true) TRANS(SRL_r, ALL, do_shift_r, a, false, true) TRANS(SRA_r, ALL, do_shift_r, a, false, false) static bool do_shift_i(DisasContext *dc, arg_shifti *a, bool l, bool u) { TCGv dst, src1; /* Reject 64-bit shifts for sparc32. */ if (avail_32(dc) && (a->x || a->i >= 32)) { return false; } src1 = gen_load_gpr(dc, a->rs1); dst = gen_dest_gpr(dc, a->rd); if (avail_32(dc) || a->x) { if (l) { tcg_gen_shli_tl(dst, src1, a->i); } else if (u) { tcg_gen_shri_tl(dst, src1, a->i); } else { tcg_gen_sari_tl(dst, src1, a->i); } } else { if (l) { tcg_gen_deposit_z_tl(dst, src1, a->i, 32 - a->i); } else if (u) { tcg_gen_extract_tl(dst, src1, a->i, 32 - a->i); } else { tcg_gen_sextract_tl(dst, src1, a->i, 32 - a->i); } } gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } TRANS(SLL_i, ALL, do_shift_i, a, true, true) TRANS(SRL_i, ALL, do_shift_i, a, false, true) TRANS(SRA_i, ALL, do_shift_i, a, false, false) static TCGv gen_rs2_or_imm(DisasContext *dc, bool imm, int rs2_or_imm) { /* For simplicity, we under-decoded the rs2 form. */ if (!imm && rs2_or_imm & ~0x1f) { return NULL; } if (imm || rs2_or_imm == 0) { return tcg_constant_tl(rs2_or_imm); } else { return cpu_regs[rs2_or_imm]; } } static bool do_mov_cond(DisasContext *dc, DisasCompare *cmp, int rd, TCGv src2) { TCGv dst = gen_load_gpr(dc, rd); TCGv c2 = tcg_constant_tl(cmp->c2); tcg_gen_movcond_tl(cmp->cond, dst, cmp->c1, c2, src2, dst); gen_store_gpr(dc, rd, dst); return advance_pc(dc); } static bool trans_MOVcc(DisasContext *dc, arg_MOVcc *a) { TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm); DisasCompare cmp; if (src2 == NULL) { return false; } gen_compare(&cmp, a->cc, a->cond, dc); return do_mov_cond(dc, &cmp, a->rd, src2); } static bool trans_MOVfcc(DisasContext *dc, arg_MOVfcc *a) { TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm); DisasCompare cmp; if (src2 == NULL) { return false; } gen_fcompare(&cmp, a->cc, a->cond); return do_mov_cond(dc, &cmp, a->rd, src2); } static bool trans_MOVR(DisasContext *dc, arg_MOVR *a) { TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm); DisasCompare cmp; if (src2 == NULL) { return false; } if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) { return false; } return do_mov_cond(dc, &cmp, a->rd, src2); } static bool do_add_special(DisasContext *dc, arg_r_r_ri *a, bool (*func)(DisasContext *dc, int rd, TCGv src)) { TCGv src1, sum; /* For simplicity, we under-decoded the rs2 form. */ if (!a->imm && a->rs2_or_imm & ~0x1f) { return false; } /* * Always load the sum into a new temporary. * This is required to capture the value across a window change, * e.g. SAVE and RESTORE, and may be optimized away otherwise. */ sum = tcg_temp_new(); src1 = gen_load_gpr(dc, a->rs1); if (a->imm || a->rs2_or_imm == 0) { tcg_gen_addi_tl(sum, src1, a->rs2_or_imm); } else { tcg_gen_add_tl(sum, src1, cpu_regs[a->rs2_or_imm]); } return func(dc, a->rd, sum); } static bool do_jmpl(DisasContext *dc, int rd, TCGv src) { /* * Preserve pc across advance, so that we can delay * the writeback to rd until after src is consumed. */ target_ulong cur_pc = dc->pc; gen_check_align(dc, src, 3); gen_mov_pc_npc(dc); tcg_gen_mov_tl(cpu_npc, src); gen_address_mask(dc, cpu_npc); gen_store_gpr(dc, rd, tcg_constant_tl(cur_pc)); dc->npc = DYNAMIC_PC_LOOKUP; return true; } TRANS(JMPL, ALL, do_add_special, a, do_jmpl) static bool do_rett(DisasContext *dc, int rd, TCGv src) { if (!supervisor(dc)) { return raise_priv(dc); } gen_check_align(dc, src, 3); gen_mov_pc_npc(dc); tcg_gen_mov_tl(cpu_npc, src); gen_helper_rett(tcg_env); dc->npc = DYNAMIC_PC; return true; } TRANS(RETT, 32, do_add_special, a, do_rett) static bool do_return(DisasContext *dc, int rd, TCGv src) { gen_check_align(dc, src, 3); gen_helper_restore(tcg_env); gen_mov_pc_npc(dc); tcg_gen_mov_tl(cpu_npc, src); gen_address_mask(dc, cpu_npc); dc->npc = DYNAMIC_PC_LOOKUP; return true; } TRANS(RETURN, 64, do_add_special, a, do_return) static bool do_save(DisasContext *dc, int rd, TCGv src) { gen_helper_save(tcg_env); gen_store_gpr(dc, rd, src); return advance_pc(dc); } TRANS(SAVE, ALL, do_add_special, a, do_save) static bool do_restore(DisasContext *dc, int rd, TCGv src) { gen_helper_restore(tcg_env); gen_store_gpr(dc, rd, src); return advance_pc(dc); } TRANS(RESTORE, ALL, do_add_special, a, do_restore) static bool do_done_retry(DisasContext *dc, bool done) { if (!supervisor(dc)) { return raise_priv(dc); } dc->npc = DYNAMIC_PC; dc->pc = DYNAMIC_PC; translator_io_start(&dc->base); if (done) { gen_helper_done(tcg_env); } else { gen_helper_retry(tcg_env); } return true; } TRANS(DONE, 64, do_done_retry, true) TRANS(RETRY, 64, do_done_retry, false) /* * Major opcode 11 -- load and store instructions */ static TCGv gen_ldst_addr(DisasContext *dc, int rs1, bool imm, int rs2_or_imm) { TCGv addr, tmp = NULL; /* For simplicity, we under-decoded the rs2 form. */ if (!imm && rs2_or_imm & ~0x1f) { return NULL; } addr = gen_load_gpr(dc, rs1); if (rs2_or_imm) { tmp = tcg_temp_new(); if (imm) { tcg_gen_addi_tl(tmp, addr, rs2_or_imm); } else { tcg_gen_add_tl(tmp, addr, cpu_regs[rs2_or_imm]); } addr = tmp; } if (AM_CHECK(dc)) { if (!tmp) { tmp = tcg_temp_new(); } tcg_gen_ext32u_tl(tmp, addr); addr = tmp; } return addr; } static bool do_ld_gpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop) { TCGv reg, addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); DisasASI da; if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, mop); reg = gen_dest_gpr(dc, a->rd); gen_ld_asi(dc, &da, reg, addr); gen_store_gpr(dc, a->rd, reg); return advance_pc(dc); } TRANS(LDUW, ALL, do_ld_gpr, a, MO_TEUL) TRANS(LDUB, ALL, do_ld_gpr, a, MO_UB) TRANS(LDUH, ALL, do_ld_gpr, a, MO_TEUW) TRANS(LDSB, ALL, do_ld_gpr, a, MO_SB) TRANS(LDSH, ALL, do_ld_gpr, a, MO_TESW) TRANS(LDSW, 64, do_ld_gpr, a, MO_TESL) TRANS(LDX, 64, do_ld_gpr, a, MO_TEUQ) static bool do_st_gpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop) { TCGv reg, addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); DisasASI da; if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, mop); reg = gen_load_gpr(dc, a->rd); gen_st_asi(dc, &da, reg, addr); return advance_pc(dc); } TRANS(STW, ALL, do_st_gpr, a, MO_TEUL) TRANS(STB, ALL, do_st_gpr, a, MO_UB) TRANS(STH, ALL, do_st_gpr, a, MO_TEUW) TRANS(STX, 64, do_st_gpr, a, MO_TEUQ) static bool trans_LDD(DisasContext *dc, arg_r_r_ri_asi *a) { TCGv addr; DisasASI da; if (a->rd & 1) { return false; } addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, MO_TEUQ); gen_ldda_asi(dc, &da, addr, a->rd); return advance_pc(dc); } static bool trans_STD(DisasContext *dc, arg_r_r_ri_asi *a) { TCGv addr; DisasASI da; if (a->rd & 1) { return false; } addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, MO_TEUQ); gen_stda_asi(dc, &da, addr, a->rd); return advance_pc(dc); } static bool trans_LDSTUB(DisasContext *dc, arg_r_r_ri_asi *a) { TCGv addr, reg; DisasASI da; addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, MO_UB); reg = gen_dest_gpr(dc, a->rd); gen_ldstub_asi(dc, &da, reg, addr); gen_store_gpr(dc, a->rd, reg); return advance_pc(dc); } static bool trans_SWAP(DisasContext *dc, arg_r_r_ri_asi *a) { TCGv addr, dst, src; DisasASI da; addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, MO_TEUL); dst = gen_dest_gpr(dc, a->rd); src = gen_load_gpr(dc, a->rd); gen_swap_asi(dc, &da, dst, src, addr); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } static bool do_casa(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop) { TCGv addr, o, n, c; DisasASI da; addr = gen_ldst_addr(dc, a->rs1, true, 0); if (addr == NULL) { return false; } da = resolve_asi(dc, a->asi, mop); o = gen_dest_gpr(dc, a->rd); n = gen_load_gpr(dc, a->rd); c = gen_load_gpr(dc, a->rs2_or_imm); gen_cas_asi(dc, &da, o, n, c, addr); gen_store_gpr(dc, a->rd, o); return advance_pc(dc); } TRANS(CASA, CASA, do_casa, a, MO_TEUL) TRANS(CASXA, 64, do_casa, a, MO_TEUQ) static bool do_ld_fpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp sz) { TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); DisasASI da; if (addr == NULL) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } if (sz == MO_128 && gen_trap_float128(dc)) { return true; } da = resolve_asi(dc, a->asi, MO_TE | sz); gen_ldf_asi(dc, &da, sz, addr, a->rd); gen_update_fprs_dirty(dc, a->rd); return advance_pc(dc); } TRANS(LDF, ALL, do_ld_fpr, a, MO_32) TRANS(LDDF, ALL, do_ld_fpr, a, MO_64) TRANS(LDQF, ALL, do_ld_fpr, a, MO_128) TRANS(LDFA, 64, do_ld_fpr, a, MO_32) TRANS(LDDFA, 64, do_ld_fpr, a, MO_64) TRANS(LDQFA, 64, do_ld_fpr, a, MO_128) static bool do_st_fpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp sz) { TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); DisasASI da; if (addr == NULL) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } if (sz == MO_128 && gen_trap_float128(dc)) { return true; } da = resolve_asi(dc, a->asi, MO_TE | sz); gen_stf_asi(dc, &da, sz, addr, a->rd); return advance_pc(dc); } TRANS(STF, ALL, do_st_fpr, a, MO_32) TRANS(STDF, ALL, do_st_fpr, a, MO_64) TRANS(STQF, ALL, do_st_fpr, a, MO_128) TRANS(STFA, 64, do_st_fpr, a, MO_32) TRANS(STDFA, 64, do_st_fpr, a, MO_64) TRANS(STQFA, 64, do_st_fpr, a, MO_128) static bool trans_STDFQ(DisasContext *dc, arg_STDFQ *a) { if (!avail_32(dc)) { return false; } if (!supervisor(dc)) { return raise_priv(dc); } if (gen_trap_ifnofpu(dc)) { return true; } gen_op_fpexception_im(dc, FSR_FTT_SEQ_ERROR); return true; } static bool trans_LDFSR(DisasContext *dc, arg_r_r_ri *a) { TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); TCGv_i32 tmp; if (addr == NULL) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } tmp = tcg_temp_new_i32(); tcg_gen_qemu_ld_i32(tmp, addr, dc->mem_idx, MO_TEUL | MO_ALIGN); tcg_gen_extract_i32(cpu_fcc[0], tmp, FSR_FCC0_SHIFT, 2); /* LDFSR does not change FCC[1-3]. */ gen_helper_set_fsr_nofcc_noftt(tcg_env, tmp); return advance_pc(dc); } static bool trans_LDXFSR(DisasContext *dc, arg_r_r_ri *a) { #ifdef TARGET_SPARC64 TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); TCGv_i64 t64; TCGv_i32 lo, hi; if (addr == NULL) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } t64 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(t64, addr, dc->mem_idx, MO_TEUQ | MO_ALIGN); lo = tcg_temp_new_i32(); hi = cpu_fcc[3]; tcg_gen_extr_i64_i32(lo, hi, t64); tcg_gen_extract_i32(cpu_fcc[0], lo, FSR_FCC0_SHIFT, 2); tcg_gen_extract_i32(cpu_fcc[1], hi, FSR_FCC1_SHIFT - 32, 2); tcg_gen_extract_i32(cpu_fcc[2], hi, FSR_FCC2_SHIFT - 32, 2); tcg_gen_extract_i32(cpu_fcc[3], hi, FSR_FCC3_SHIFT - 32, 2); gen_helper_set_fsr_nofcc_noftt(tcg_env, lo); return advance_pc(dc); #else return false; #endif } static bool do_stfsr(DisasContext *dc, arg_r_r_ri *a, MemOp mop) { TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm); TCGv fsr; if (addr == NULL) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } fsr = tcg_temp_new(); gen_helper_get_fsr(fsr, tcg_env); tcg_gen_qemu_st_tl(fsr, addr, dc->mem_idx, mop | MO_ALIGN); return advance_pc(dc); } TRANS(STFSR, ALL, do_stfsr, a, MO_TEUL) TRANS(STXFSR, 64, do_stfsr, a, MO_TEUQ) static bool do_fc(DisasContext *dc, int rd, bool c) { uint64_t mask; if (gen_trap_ifnofpu(dc)) { return true; } if (rd & 1) { mask = MAKE_64BIT_MASK(0, 32); } else { mask = MAKE_64BIT_MASK(32, 32); } if (c) { tcg_gen_ori_i64(cpu_fpr[rd / 2], cpu_fpr[rd / 2], mask); } else { tcg_gen_andi_i64(cpu_fpr[rd / 2], cpu_fpr[rd / 2], ~mask); } gen_update_fprs_dirty(dc, rd); return advance_pc(dc); } TRANS(FZEROs, VIS1, do_fc, a->rd, 0) TRANS(FONEs, VIS1, do_fc, a->rd, 1) static bool do_dc(DisasContext *dc, int rd, int64_t c) { if (gen_trap_ifnofpu(dc)) { return true; } tcg_gen_movi_i64(cpu_fpr[rd / 2], c); gen_update_fprs_dirty(dc, rd); return advance_pc(dc); } TRANS(FZEROd, VIS1, do_dc, a->rd, 0) TRANS(FONEd, VIS1, do_dc, a->rd, -1) static bool do_ff(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i32, TCGv_i32)) { TCGv_i32 tmp; if (gen_trap_ifnofpu(dc)) { return true; } tmp = gen_load_fpr_F(dc, a->rs); func(tmp, tmp); gen_store_fpr_F(dc, a->rd, tmp); return advance_pc(dc); } TRANS(FMOVs, ALL, do_ff, a, gen_op_fmovs) TRANS(FNEGs, ALL, do_ff, a, gen_op_fnegs) TRANS(FABSs, ALL, do_ff, a, gen_op_fabss) TRANS(FSRCs, VIS1, do_ff, a, tcg_gen_mov_i32) TRANS(FNOTs, VIS1, do_ff, a, tcg_gen_not_i32) static bool do_fd(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i32, TCGv_i64)) { TCGv_i32 dst; TCGv_i64 src; if (gen_trap_ifnofpu(dc)) { return true; } dst = tcg_temp_new_i32(); src = gen_load_fpr_D(dc, a->rs); func(dst, src); gen_store_fpr_F(dc, a->rd, dst); return advance_pc(dc); } TRANS(FPACK16, VIS1, do_fd, a, gen_op_fpack16) TRANS(FPACKFIX, VIS1, do_fd, a, gen_op_fpackfix) static bool do_env_ff(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i32, TCGv_env, TCGv_i32)) { TCGv_i32 tmp; if (gen_trap_ifnofpu(dc)) { return true; } tmp = gen_load_fpr_F(dc, a->rs); func(tmp, tcg_env, tmp); gen_store_fpr_F(dc, a->rd, tmp); return advance_pc(dc); } TRANS(FSQRTs, ALL, do_env_ff, a, gen_helper_fsqrts) TRANS(FiTOs, ALL, do_env_ff, a, gen_helper_fitos) TRANS(FsTOi, ALL, do_env_ff, a, gen_helper_fstoi) static bool do_env_fd(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i32, TCGv_env, TCGv_i64)) { TCGv_i32 dst; TCGv_i64 src; if (gen_trap_ifnofpu(dc)) { return true; } dst = tcg_temp_new_i32(); src = gen_load_fpr_D(dc, a->rs); func(dst, tcg_env, src); gen_store_fpr_F(dc, a->rd, dst); return advance_pc(dc); } TRANS(FdTOs, ALL, do_env_fd, a, gen_helper_fdtos) TRANS(FdTOi, ALL, do_env_fd, a, gen_helper_fdtoi) TRANS(FxTOs, 64, do_env_fd, a, gen_helper_fxtos) static bool do_dd(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i64, TCGv_i64)) { TCGv_i64 dst, src; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src = gen_load_fpr_D(dc, a->rs); func(dst, src); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FMOVd, 64, do_dd, a, gen_op_fmovd) TRANS(FNEGd, 64, do_dd, a, gen_op_fnegd) TRANS(FABSd, 64, do_dd, a, gen_op_fabsd) TRANS(FSRCd, VIS1, do_dd, a, tcg_gen_mov_i64) TRANS(FNOTd, VIS1, do_dd, a, tcg_gen_not_i64) static bool do_env_dd(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i64, TCGv_env, TCGv_i64)) { TCGv_i64 dst, src; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src = gen_load_fpr_D(dc, a->rs); func(dst, tcg_env, src); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FSQRTd, ALL, do_env_dd, a, gen_helper_fsqrtd) TRANS(FxTOd, 64, do_env_dd, a, gen_helper_fxtod) TRANS(FdTOx, 64, do_env_dd, a, gen_helper_fdtox) static bool do_df(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i64, TCGv_i32)) { TCGv_i64 dst; TCGv_i32 src; if (gen_trap_ifnofpu(dc)) { return true; } dst = tcg_temp_new_i64(); src = gen_load_fpr_F(dc, a->rs); func(dst, src); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FEXPAND, VIS1, do_df, a, gen_helper_fexpand) static bool do_env_df(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i64, TCGv_env, TCGv_i32)) { TCGv_i64 dst; TCGv_i32 src; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src = gen_load_fpr_F(dc, a->rs); func(dst, tcg_env, src); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FiTOd, ALL, do_env_df, a, gen_helper_fitod) TRANS(FsTOd, ALL, do_env_df, a, gen_helper_fstod) TRANS(FsTOx, 64, do_env_df, a, gen_helper_fstox) static bool do_qq(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i128, TCGv_i128)) { TCGv_i128 t; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } gen_op_clear_ieee_excp_and_FTT(); t = gen_load_fpr_Q(dc, a->rs); func(t, t); gen_store_fpr_Q(dc, a->rd, t); return advance_pc(dc); } TRANS(FMOVq, 64, do_qq, a, tcg_gen_mov_i128) TRANS(FNEGq, 64, do_qq, a, gen_op_fnegq) TRANS(FABSq, 64, do_qq, a, gen_op_fabsq) static bool do_env_qq(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i128, TCGv_env, TCGv_i128)) { TCGv_i128 t; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } t = gen_load_fpr_Q(dc, a->rs); func(t, tcg_env, t); gen_store_fpr_Q(dc, a->rd, t); return advance_pc(dc); } TRANS(FSQRTq, ALL, do_env_qq, a, gen_helper_fsqrtq) static bool do_env_fq(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i32, TCGv_env, TCGv_i128)) { TCGv_i128 src; TCGv_i32 dst; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src = gen_load_fpr_Q(dc, a->rs); dst = tcg_temp_new_i32(); func(dst, tcg_env, src); gen_store_fpr_F(dc, a->rd, dst); return advance_pc(dc); } TRANS(FqTOs, ALL, do_env_fq, a, gen_helper_fqtos) TRANS(FqTOi, ALL, do_env_fq, a, gen_helper_fqtoi) static bool do_env_dq(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i64, TCGv_env, TCGv_i128)) { TCGv_i128 src; TCGv_i64 dst; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src = gen_load_fpr_Q(dc, a->rs); dst = gen_dest_fpr_D(dc, a->rd); func(dst, tcg_env, src); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FqTOd, ALL, do_env_dq, a, gen_helper_fqtod) TRANS(FqTOx, 64, do_env_dq, a, gen_helper_fqtox) static bool do_env_qf(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i128, TCGv_env, TCGv_i32)) { TCGv_i32 src; TCGv_i128 dst; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src = gen_load_fpr_F(dc, a->rs); dst = tcg_temp_new_i128(); func(dst, tcg_env, src); gen_store_fpr_Q(dc, a->rd, dst); return advance_pc(dc); } TRANS(FiTOq, ALL, do_env_qf, a, gen_helper_fitoq) TRANS(FsTOq, ALL, do_env_qf, a, gen_helper_fstoq) static bool do_env_qd(DisasContext *dc, arg_r_r *a, void (*func)(TCGv_i128, TCGv_env, TCGv_i64)) { TCGv_i64 src; TCGv_i128 dst; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src = gen_load_fpr_D(dc, a->rs); dst = tcg_temp_new_i128(); func(dst, tcg_env, src); gen_store_fpr_Q(dc, a->rd, dst); return advance_pc(dc); } TRANS(FdTOq, ALL, do_env_qd, a, gen_helper_fdtoq) TRANS(FxTOq, 64, do_env_qd, a, gen_helper_fxtoq) static bool do_fff(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i32, TCGv_i32, TCGv_i32)) { TCGv_i32 src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_F(dc, a->rs2); func(src1, src1, src2); gen_store_fpr_F(dc, a->rd, src1); return advance_pc(dc); } TRANS(FPADD16s, VIS1, do_fff, a, tcg_gen_vec_add16_i32) TRANS(FPADD32s, VIS1, do_fff, a, tcg_gen_add_i32) TRANS(FPSUB16s, VIS1, do_fff, a, tcg_gen_vec_sub16_i32) TRANS(FPSUB32s, VIS1, do_fff, a, tcg_gen_sub_i32) TRANS(FNORs, VIS1, do_fff, a, tcg_gen_nor_i32) TRANS(FANDNOTs, VIS1, do_fff, a, tcg_gen_andc_i32) TRANS(FXORs, VIS1, do_fff, a, tcg_gen_xor_i32) TRANS(FNANDs, VIS1, do_fff, a, tcg_gen_nand_i32) TRANS(FANDs, VIS1, do_fff, a, tcg_gen_and_i32) TRANS(FXNORs, VIS1, do_fff, a, tcg_gen_eqv_i32) TRANS(FORNOTs, VIS1, do_fff, a, tcg_gen_orc_i32) TRANS(FORs, VIS1, do_fff, a, tcg_gen_or_i32) static bool do_env_fff(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) { TCGv_i32 src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_F(dc, a->rs2); func(src1, tcg_env, src1, src2); gen_store_fpr_F(dc, a->rd, src1); return advance_pc(dc); } TRANS(FADDs, ALL, do_env_fff, a, gen_helper_fadds) TRANS(FSUBs, ALL, do_env_fff, a, gen_helper_fsubs) TRANS(FMULs, ALL, do_env_fff, a, gen_helper_fmuls) TRANS(FDIVs, ALL, do_env_fff, a, gen_helper_fdivs) static bool do_dff(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i64, TCGv_i32, TCGv_i32)) { TCGv_i64 dst; TCGv_i32 src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_F(dc, a->rs2); func(dst, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FMUL8x16AU, VIS1, do_dff, a, gen_op_fmul8x16au) TRANS(FMUL8x16AL, VIS1, do_dff, a, gen_op_fmul8x16al) TRANS(FMULD8SUx16, VIS1, do_dff, a, gen_op_fmuld8sux16) TRANS(FMULD8ULx16, VIS1, do_dff, a, gen_op_fmuld8ulx16) TRANS(FPMERGE, VIS1, do_dff, a, gen_helper_fpmerge) static bool do_dfd(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i64, TCGv_i32, TCGv_i64)) { TCGv_i64 dst, src2; TCGv_i32 src1; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); func(dst, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FMUL8x16, VIS1, do_dfd, a, gen_helper_fmul8x16) static bool do_ddd(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i64, TCGv_i64, TCGv_i64)) { TCGv_i64 dst, src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); func(dst, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FMUL8SUx16, VIS1, do_ddd, a, gen_helper_fmul8sux16) TRANS(FMUL8ULx16, VIS1, do_ddd, a, gen_helper_fmul8ulx16) TRANS(FPADD16, VIS1, do_ddd, a, tcg_gen_vec_add16_i64) TRANS(FPADD32, VIS1, do_ddd, a, tcg_gen_vec_add32_i64) TRANS(FPSUB16, VIS1, do_ddd, a, tcg_gen_vec_sub16_i64) TRANS(FPSUB32, VIS1, do_ddd, a, tcg_gen_vec_sub32_i64) TRANS(FNORd, VIS1, do_ddd, a, tcg_gen_nor_i64) TRANS(FANDNOTd, VIS1, do_ddd, a, tcg_gen_andc_i64) TRANS(FXORd, VIS1, do_ddd, a, tcg_gen_xor_i64) TRANS(FNANDd, VIS1, do_ddd, a, tcg_gen_nand_i64) TRANS(FANDd, VIS1, do_ddd, a, tcg_gen_and_i64) TRANS(FXNORd, VIS1, do_ddd, a, tcg_gen_eqv_i64) TRANS(FORNOTd, VIS1, do_ddd, a, tcg_gen_orc_i64) TRANS(FORd, VIS1, do_ddd, a, tcg_gen_or_i64) TRANS(FPACK32, VIS1, do_ddd, a, gen_op_fpack32) TRANS(FALIGNDATAg, VIS1, do_ddd, a, gen_op_faligndata) TRANS(BSHUFFLE, VIS2, do_ddd, a, gen_op_bshuffle) static bool do_rdd(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv, TCGv_i64, TCGv_i64)) { TCGv_i64 src1, src2; TCGv dst; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_gpr(dc, a->rd); src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); func(dst, src1, src2); gen_store_gpr(dc, a->rd, dst); return advance_pc(dc); } TRANS(FPCMPLE16, VIS1, do_rdd, a, gen_helper_fcmple16) TRANS(FPCMPNE16, VIS1, do_rdd, a, gen_helper_fcmpne16) TRANS(FPCMPGT16, VIS1, do_rdd, a, gen_helper_fcmpgt16) TRANS(FPCMPEQ16, VIS1, do_rdd, a, gen_helper_fcmpeq16) TRANS(FPCMPLE32, VIS1, do_rdd, a, gen_helper_fcmple32) TRANS(FPCMPNE32, VIS1, do_rdd, a, gen_helper_fcmpne32) TRANS(FPCMPGT32, VIS1, do_rdd, a, gen_helper_fcmpgt32) TRANS(FPCMPEQ32, VIS1, do_rdd, a, gen_helper_fcmpeq32) static bool do_env_ddd(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64)) { TCGv_i64 dst, src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); func(dst, tcg_env, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(FADDd, ALL, do_env_ddd, a, gen_helper_faddd) TRANS(FSUBd, ALL, do_env_ddd, a, gen_helper_fsubd) TRANS(FMULd, ALL, do_env_ddd, a, gen_helper_fmuld) TRANS(FDIVd, ALL, do_env_ddd, a, gen_helper_fdivd) static bool trans_FsMULd(DisasContext *dc, arg_r_r_r *a) { TCGv_i64 dst; TCGv_i32 src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } if (!(dc->def->features & CPU_FEATURE_FSMULD)) { return raise_unimpfpop(dc); } dst = gen_dest_fpr_D(dc, a->rd); src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_F(dc, a->rs2); gen_helper_fsmuld(dst, tcg_env, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } static bool do_dddd(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) { TCGv_i64 dst, src0, src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } dst = gen_dest_fpr_D(dc, a->rd); src0 = gen_load_fpr_D(dc, a->rd); src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); func(dst, src0, src1, src2); gen_store_fpr_D(dc, a->rd, dst); return advance_pc(dc); } TRANS(PDIST, VIS1, do_dddd, a, gen_helper_pdist) static bool do_env_qqq(DisasContext *dc, arg_r_r_r *a, void (*func)(TCGv_i128, TCGv_env, TCGv_i128, TCGv_i128)) { TCGv_i128 src1, src2; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src1 = gen_load_fpr_Q(dc, a->rs1); src2 = gen_load_fpr_Q(dc, a->rs2); func(src1, tcg_env, src1, src2); gen_store_fpr_Q(dc, a->rd, src1); return advance_pc(dc); } TRANS(FADDq, ALL, do_env_qqq, a, gen_helper_faddq) TRANS(FSUBq, ALL, do_env_qqq, a, gen_helper_fsubq) TRANS(FMULq, ALL, do_env_qqq, a, gen_helper_fmulq) TRANS(FDIVq, ALL, do_env_qqq, a, gen_helper_fdivq) static bool trans_FdMULq(DisasContext *dc, arg_r_r_r *a) { TCGv_i64 src1, src2; TCGv_i128 dst; if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); dst = tcg_temp_new_i128(); gen_helper_fdmulq(dst, tcg_env, src1, src2); gen_store_fpr_Q(dc, a->rd, dst); return advance_pc(dc); } static bool do_fmovr(DisasContext *dc, arg_FMOVRs *a, bool is_128, void (*func)(DisasContext *, DisasCompare *, int, int)) { DisasCompare cmp; if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } if (is_128 && gen_trap_float128(dc)) { return true; } gen_op_clear_ieee_excp_and_FTT(); func(dc, &cmp, a->rd, a->rs2); return advance_pc(dc); } TRANS(FMOVRs, 64, do_fmovr, a, false, gen_fmovs) TRANS(FMOVRd, 64, do_fmovr, a, false, gen_fmovd) TRANS(FMOVRq, 64, do_fmovr, a, true, gen_fmovq) static bool do_fmovcc(DisasContext *dc, arg_FMOVscc *a, bool is_128, void (*func)(DisasContext *, DisasCompare *, int, int)) { DisasCompare cmp; if (gen_trap_ifnofpu(dc)) { return true; } if (is_128 && gen_trap_float128(dc)) { return true; } gen_op_clear_ieee_excp_and_FTT(); gen_compare(&cmp, a->cc, a->cond, dc); func(dc, &cmp, a->rd, a->rs2); return advance_pc(dc); } TRANS(FMOVscc, 64, do_fmovcc, a, false, gen_fmovs) TRANS(FMOVdcc, 64, do_fmovcc, a, false, gen_fmovd) TRANS(FMOVqcc, 64, do_fmovcc, a, true, gen_fmovq) static bool do_fmovfcc(DisasContext *dc, arg_FMOVsfcc *a, bool is_128, void (*func)(DisasContext *, DisasCompare *, int, int)) { DisasCompare cmp; if (gen_trap_ifnofpu(dc)) { return true; } if (is_128 && gen_trap_float128(dc)) { return true; } gen_op_clear_ieee_excp_and_FTT(); gen_fcompare(&cmp, a->cc, a->cond); func(dc, &cmp, a->rd, a->rs2); return advance_pc(dc); } TRANS(FMOVsfcc, 64, do_fmovfcc, a, false, gen_fmovs) TRANS(FMOVdfcc, 64, do_fmovfcc, a, false, gen_fmovd) TRANS(FMOVqfcc, 64, do_fmovfcc, a, true, gen_fmovq) static bool do_fcmps(DisasContext *dc, arg_FCMPs *a, bool e) { TCGv_i32 src1, src2; if (avail_32(dc) && a->cc != 0) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } src1 = gen_load_fpr_F(dc, a->rs1); src2 = gen_load_fpr_F(dc, a->rs2); if (e) { gen_helper_fcmpes(cpu_fcc[a->cc], tcg_env, src1, src2); } else { gen_helper_fcmps(cpu_fcc[a->cc], tcg_env, src1, src2); } return advance_pc(dc); } TRANS(FCMPs, ALL, do_fcmps, a, false) TRANS(FCMPEs, ALL, do_fcmps, a, true) static bool do_fcmpd(DisasContext *dc, arg_FCMPd *a, bool e) { TCGv_i64 src1, src2; if (avail_32(dc) && a->cc != 0) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } src1 = gen_load_fpr_D(dc, a->rs1); src2 = gen_load_fpr_D(dc, a->rs2); if (e) { gen_helper_fcmped(cpu_fcc[a->cc], tcg_env, src1, src2); } else { gen_helper_fcmpd(cpu_fcc[a->cc], tcg_env, src1, src2); } return advance_pc(dc); } TRANS(FCMPd, ALL, do_fcmpd, a, false) TRANS(FCMPEd, ALL, do_fcmpd, a, true) static bool do_fcmpq(DisasContext *dc, arg_FCMPq *a, bool e) { TCGv_i128 src1, src2; if (avail_32(dc) && a->cc != 0) { return false; } if (gen_trap_ifnofpu(dc)) { return true; } if (gen_trap_float128(dc)) { return true; } src1 = gen_load_fpr_Q(dc, a->rs1); src2 = gen_load_fpr_Q(dc, a->rs2); if (e) { gen_helper_fcmpeq(cpu_fcc[a->cc], tcg_env, src1, src2); } else { gen_helper_fcmpq(cpu_fcc[a->cc], tcg_env, src1, src2); } return advance_pc(dc); } TRANS(FCMPq, ALL, do_fcmpq, a, false) TRANS(FCMPEq, ALL, do_fcmpq, a, true) static void sparc_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); int bound; dc->pc = dc->base.pc_first; dc->npc = (target_ulong)dc->base.tb->cs_base; dc->mem_idx = dc->base.tb->flags & TB_FLAG_MMU_MASK; dc->def = &cpu_env(cs)->def; dc->fpu_enabled = tb_fpu_enabled(dc->base.tb->flags); dc->address_mask_32bit = tb_am_enabled(dc->base.tb->flags); #ifndef CONFIG_USER_ONLY dc->supervisor = (dc->base.tb->flags & TB_FLAG_SUPER) != 0; #endif #ifdef TARGET_SPARC64 dc->fprs_dirty = 0; dc->asi = (dc->base.tb->flags >> TB_FLAG_ASI_SHIFT) & 0xff; #ifndef CONFIG_USER_ONLY dc->hypervisor = (dc->base.tb->flags & TB_FLAG_HYPER) != 0; #endif #endif /* * if we reach a page boundary, we stop generation so that the * PC of a TT_TFAULT exception is always in the right page */ bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; dc->base.max_insns = MIN(dc->base.max_insns, bound); } static void sparc_tr_tb_start(DisasContextBase *db, CPUState *cs) { } static void sparc_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); target_ulong npc = dc->npc; if (npc & 3) { switch (npc) { case JUMP_PC: assert(dc->jump_pc[1] == dc->pc + 4); npc = dc->jump_pc[0] | JUMP_PC; break; case DYNAMIC_PC: case DYNAMIC_PC_LOOKUP: npc = DYNAMIC_PC; break; default: g_assert_not_reached(); } } tcg_gen_insn_start(dc->pc, npc); } static void sparc_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); unsigned int insn; insn = translator_ldl(cpu_env(cs), &dc->base, dc->pc); dc->base.pc_next += 4; if (!decode(dc, insn)) { gen_exception(dc, TT_ILL_INSN); } if (dc->base.is_jmp == DISAS_NORETURN) { return; } if (dc->pc != dc->base.pc_next) { dc->base.is_jmp = DISAS_TOO_MANY; } } static void sparc_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); DisasDelayException *e, *e_next; bool may_lookup; finishing_insn(dc); switch (dc->base.is_jmp) { case DISAS_NEXT: case DISAS_TOO_MANY: if (((dc->pc | dc->npc) & 3) == 0) { /* static PC and NPC: we can use direct chaining */ gen_goto_tb(dc, 0, dc->pc, dc->npc); break; } may_lookup = true; if (dc->pc & 3) { switch (dc->pc) { case DYNAMIC_PC_LOOKUP: break; case DYNAMIC_PC: may_lookup = false; break; default: g_assert_not_reached(); } } else { tcg_gen_movi_tl(cpu_pc, dc->pc); } if (dc->npc & 3) { switch (dc->npc) { case JUMP_PC: gen_generic_branch(dc); break; case DYNAMIC_PC: may_lookup = false; break; case DYNAMIC_PC_LOOKUP: break; default: g_assert_not_reached(); } } else { tcg_gen_movi_tl(cpu_npc, dc->npc); } if (may_lookup) { tcg_gen_lookup_and_goto_ptr(); } else { tcg_gen_exit_tb(NULL, 0); } break; case DISAS_NORETURN: break; case DISAS_EXIT: /* Exit TB */ save_state(dc); tcg_gen_exit_tb(NULL, 0); break; default: g_assert_not_reached(); } for (e = dc->delay_excp_list; e ; e = e_next) { gen_set_label(e->lab); tcg_gen_movi_tl(cpu_pc, e->pc); if (e->npc % 4 == 0) { tcg_gen_movi_tl(cpu_npc, e->npc); } gen_helper_raise_exception(tcg_env, e->excp); e_next = e->next; g_free(e); } } static void sparc_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu, FILE *logfile) { fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); } static const TranslatorOps sparc_tr_ops = { .init_disas_context = sparc_tr_init_disas_context, .tb_start = sparc_tr_tb_start, .insn_start = sparc_tr_insn_start, .translate_insn = sparc_tr_translate_insn, .tb_stop = sparc_tr_tb_stop, .disas_log = sparc_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, vaddr pc, void *host_pc) { DisasContext dc = {}; translator_loop(cs, tb, max_insns, pc, host_pc, &sparc_tr_ops, &dc.base); } void sparc_tcg_init(void) { static const char gregnames[32][4] = { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", "o0", "o1", "o2", "o3", "o4", "o5", "o6", "o7", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", }; static const char fregnames[32][4] = { "f0", "f2", "f4", "f6", "f8", "f10", "f12", "f14", "f16", "f18", "f20", "f22", "f24", "f26", "f28", "f30", "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", }; static const struct { TCGv_i32 *ptr; int off; const char *name; } r32[] = { #ifdef TARGET_SPARC64 { &cpu_fprs, offsetof(CPUSPARCState, fprs), "fprs" }, { &cpu_fcc[0], offsetof(CPUSPARCState, fcc[0]), "fcc0" }, { &cpu_fcc[1], offsetof(CPUSPARCState, fcc[1]), "fcc1" }, { &cpu_fcc[2], offsetof(CPUSPARCState, fcc[2]), "fcc2" }, { &cpu_fcc[3], offsetof(CPUSPARCState, fcc[3]), "fcc3" }, #else { &cpu_fcc[0], offsetof(CPUSPARCState, fcc[0]), "fcc" }, #endif }; static const struct { TCGv *ptr; int off; const char *name; } rtl[] = { #ifdef TARGET_SPARC64 { &cpu_gsr, offsetof(CPUSPARCState, gsr), "gsr" }, { &cpu_xcc_Z, offsetof(CPUSPARCState, xcc_Z), "xcc_Z" }, { &cpu_xcc_C, offsetof(CPUSPARCState, xcc_C), "xcc_C" }, #endif { &cpu_cc_N, offsetof(CPUSPARCState, cc_N), "cc_N" }, { &cpu_cc_V, offsetof(CPUSPARCState, cc_V), "cc_V" }, { &cpu_icc_Z, offsetof(CPUSPARCState, icc_Z), "icc_Z" }, { &cpu_icc_C, offsetof(CPUSPARCState, icc_C), "icc_C" }, { &cpu_cond, offsetof(CPUSPARCState, cond), "cond" }, { &cpu_pc, offsetof(CPUSPARCState, pc), "pc" }, { &cpu_npc, offsetof(CPUSPARCState, npc), "npc" }, { &cpu_y, offsetof(CPUSPARCState, y), "y" }, { &cpu_tbr, offsetof(CPUSPARCState, tbr), "tbr" }, }; unsigned int i; cpu_regwptr = tcg_global_mem_new_ptr(tcg_env, offsetof(CPUSPARCState, regwptr), "regwptr"); for (i = 0; i < ARRAY_SIZE(r32); ++i) { *r32[i].ptr = tcg_global_mem_new_i32(tcg_env, r32[i].off, r32[i].name); } for (i = 0; i < ARRAY_SIZE(rtl); ++i) { *rtl[i].ptr = tcg_global_mem_new(tcg_env, rtl[i].off, rtl[i].name); } cpu_regs[0] = NULL; for (i = 1; i < 8; ++i) { cpu_regs[i] = tcg_global_mem_new(tcg_env, offsetof(CPUSPARCState, gregs[i]), gregnames[i]); } for (i = 8; i < 32; ++i) { cpu_regs[i] = tcg_global_mem_new(cpu_regwptr, (i - 8) * sizeof(target_ulong), gregnames[i]); } for (i = 0; i < TARGET_DPREGS; i++) { cpu_fpr[i] = tcg_global_mem_new_i64(tcg_env, offsetof(CPUSPARCState, fpr[i]), fregnames[i]); } } void sparc_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { CPUSPARCState *env = cpu_env(cs); target_ulong pc = data[0]; target_ulong npc = data[1]; env->pc = pc; if (npc == DYNAMIC_PC) { /* dynamic NPC: already stored */ } else if (npc & JUMP_PC) { /* jump PC: use 'cond' and the jump targets of the translation */ if (env->cond) { env->npc = npc & ~3; } else { env->npc = pc + 4; } } else { env->npc = npc; } }