/* * QEMU model for the AXIS devboard 88. * * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sysbus.h" #include "net.h" #include "flash.h" #include "boards.h" #include "sysemu.h" #include "etraxfs.h" #define D(x) #define DNAND(x) struct nand_state_t { NANDFlashState *nand; unsigned int rdy:1; unsigned int ale:1; unsigned int cle:1; unsigned int ce:1; }; static struct nand_state_t nand_state; static uint32_t nand_readl (void *opaque, target_phys_addr_t addr) { struct nand_state_t *s = opaque; uint32_t r; int rdy; r = nand_getio(s->nand); nand_getpins(s->nand, &rdy); s->rdy = rdy; DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r)); return r; } static void nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { struct nand_state_t *s = opaque; int rdy; DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value)); nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0); nand_setio(s->nand, value); nand_getpins(s->nand, &rdy); s->rdy = rdy; } static CPUReadMemoryFunc *nand_read[] = { &nand_readl, &nand_readl, &nand_readl, }; static CPUWriteMemoryFunc *nand_write[] = { &nand_writel, &nand_writel, &nand_writel, }; struct tempsensor_t { unsigned int shiftreg; unsigned int count; enum { ST_OUT, ST_IN, ST_Z } state; uint16_t regs[3]; }; static void tempsensor_clkedge(struct tempsensor_t *s, unsigned int clk, unsigned int data_in) { D(printf("%s clk=%d state=%d sr=%x\n", __func__, clk, s->state, s->shiftreg)); if (s->count == 0) { s->count = 16; s->state = ST_OUT; } switch (s->state) { case ST_OUT: /* Output reg is clocked at negedge. */ if (!clk) { s->count--; s->shiftreg <<= 1; if (s->count == 0) { s->shiftreg = 0; s->state = ST_IN; s->count = 16; } } break; case ST_Z: if (clk) { s->count--; if (s->count == 0) { s->shiftreg = 0; s->state = ST_OUT; s->count = 16; } } break; case ST_IN: /* Indata is sampled at posedge. */ if (clk) { s->count--; s->shiftreg <<= 1; s->shiftreg |= data_in & 1; if (s->count == 0) { D(printf("%s cfgreg=%x\n", __func__, s->shiftreg)); s->regs[0] = s->shiftreg; s->state = ST_OUT; s->count = 16; if ((s->regs[0] & 0xff) == 0) { /* 25 degrees celcius. */ s->shiftreg = 0x0b9f; } else if ((s->regs[0] & 0xff) == 0xff) { /* Sensor ID, 0x8100 LM70. */ s->shiftreg = 0x8100; } else printf("Invalid tempsens state %x\n", s->regs[0]); } } break; } } #define RW_PA_DOUT 0x00 #define R_PA_DIN 0x01 #define RW_PA_OE 0x02 #define RW_PD_DOUT 0x10 #define R_PD_DIN 0x11 #define RW_PD_OE 0x12 static struct gpio_state_t { struct nand_state_t *nand; struct tempsensor_t tempsensor; uint32_t regs[0x5c / 4]; } gpio_state; static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr) { struct gpio_state_t *s = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_PA_DIN: r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; /* Encode pins from the nand. */ r |= s->nand->rdy << 7; break; case R_PD_DIN: r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; /* Encode temp sensor pins. */ r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; break; default: r = s->regs[addr]; break; } return r; D(printf("%s %x=%x\n", __func__, addr, r)); } static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { struct gpio_state_t *s = opaque; D(printf("%s %x=%x\n", __func__, addr, value)); addr >>= 2; switch (addr) { case RW_PA_DOUT: /* Decode nand pins. */ s->nand->ale = !!(value & (1 << 6)); s->nand->cle = !!(value & (1 << 5)); s->nand->ce = !!(value & (1 << 4)); s->regs[addr] = value; break; case RW_PD_DOUT: /* Temp sensor clk. */ if ((s->regs[addr] ^ value) & 2) tempsensor_clkedge(&s->tempsensor, !!(value & 2), !!(value & 16)); s->regs[addr] = value; break; default: s->regs[addr] = value; break; } } static CPUReadMemoryFunc *gpio_read[] = { NULL, NULL, &gpio_readl, }; static CPUWriteMemoryFunc *gpio_write[] = { NULL, NULL, &gpio_writel, }; #define INTMEM_SIZE (128 * 1024) static uint32_t bootstrap_pc; static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->pc = bootstrap_pc; } static void axisdev88_init (ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env; DeviceState *dev; SysBusDevice *s; qemu_irq irq[30], nmi[2], *cpu_irq; void *etraxfs_dmac; struct etraxfs_dma_client *eth[2] = {NULL, NULL}; int kernel_size; int i; int nand_regs; int gpio_regs; ram_addr_t phys_ram; ram_addr_t phys_intmem; /* init CPUs */ if (cpu_model == NULL) { cpu_model = "crisv32"; } env = cpu_init(cpu_model); qemu_register_reset(main_cpu_reset, 0, env); /* allocate RAM */ phys_ram = qemu_ram_alloc(ram_size); cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM); /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the internal memory. */ phys_intmem = qemu_ram_alloc(INTMEM_SIZE); cpu_register_physical_memory(0x38000000, INTMEM_SIZE, phys_intmem | IO_MEM_RAM); /* Attach a NAND flash to CS1. */ nand_state.nand = nand_init(NAND_MFR_STMICRO, 0x39); nand_regs = cpu_register_io_memory(0, nand_read, nand_write, &nand_state); cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs); gpio_state.nand = &nand_state; gpio_regs = cpu_register_io_memory(0, gpio_read, gpio_write, &gpio_state); cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs); cpu_irq = cris_pic_init_cpu(env); dev = qdev_create(NULL, "etraxfs,pic"); /* FIXME: Is there a proper way to signal vectors to the CPU core? */ qdev_set_prop_ptr(dev, "interrupt_vector", &env->interrupt_vector); qdev_init(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, 0x3001c000); sysbus_connect_irq(s, 0, cpu_irq[0]); sysbus_connect_irq(s, 1, cpu_irq[1]); for (i = 0; i < 30; i++) { irq[i] = qdev_get_gpio_in(dev, i); } nmi[0] = qdev_get_gpio_in(dev, 30); nmi[1] = qdev_get_gpio_in(dev, 31); etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); for (i = 0; i < 10; i++) { /* On ETRAX, odd numbered channels are inputs. */ etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); } /* Add the two ethernet blocks. */ eth[0] = etraxfs_eth_init(&nd_table[0], 0x30034000, 1); if (nb_nics > 1) eth[1] = etraxfs_eth_init(&nd_table[1], 0x30036000, 2); /* The DMA Connector block is missing, hardwire things for now. */ etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]); etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1); if (eth[1]) { etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]); etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1); } /* 2 timers. */ sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL); sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL); for (i = 0; i < 4; i++) { sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000, irq[0x14 + i]); } if (kernel_filename) { uint64_t entry, high; int kcmdline_len; /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis devboard SDK. */ kernel_size = load_elf(kernel_filename, -0x80000000LL, &entry, NULL, &high); bootstrap_pc = entry; if (kernel_size < 0) { /* Takes a kimage from the axis devboard SDK. */ kernel_size = load_image_targphys(kernel_filename, 0x40004000, ram_size); bootstrap_pc = 0x40004000; env->regs[9] = 0x40004000 + kernel_size; } env->regs[8] = 0x56902387; /* RAM init magic. */ if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) { if (kcmdline_len > 256) { fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n"); exit(1); } /* Let the kernel know we are modifying the cmdline. */ env->regs[10] = 0x87109563; env->regs[11] = 0x40000000; pstrcpy_targphys(env->regs[11], 256, kernel_cmdline); } } env->pc = bootstrap_pc; printf ("pc =%x\n", env->pc); printf ("ram size =%ld\n", ram_size); } static QEMUMachine axisdev88_machine = { .name = "axis-dev88", .desc = "AXIS devboard 88", .init = axisdev88_init, }; static void axisdev88_machine_init(void) { qemu_register_machine(&axisdev88_machine); } machine_init(axisdev88_machine_init);