/* * ARM translation: AArch32 Neon instructions * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2005-2007 CodeSourcery * Copyright (c) 2007 OpenedHand, Ltd. * Copyright (c) 2020 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/exec-all.h" #include "exec/gen-icount.h" #include "translate.h" #include "translate-a32.h" /* Include the generated Neon decoder */ #include "decode-neon-dp.c.inc" #include "decode-neon-ls.c.inc" #include "decode-neon-shared.c.inc" static TCGv_ptr vfp_reg_ptr(bool dp, int reg) { TCGv_ptr ret = tcg_temp_new_ptr(); tcg_gen_addi_ptr(ret, cpu_env, vfp_reg_offset(dp, reg)); return ret; } static void neon_load_element(TCGv_i32 var, int reg, int ele, MemOp mop) { long offset = neon_element_offset(reg, ele, mop & MO_SIZE); switch (mop) { case MO_UB: tcg_gen_ld8u_i32(var, cpu_env, offset); break; case MO_UW: tcg_gen_ld16u_i32(var, cpu_env, offset); break; case MO_UL: tcg_gen_ld_i32(var, cpu_env, offset); break; default: g_assert_not_reached(); } } static void neon_load_element64(TCGv_i64 var, int reg, int ele, MemOp mop) { long offset = neon_element_offset(reg, ele, mop & MO_SIZE); switch (mop) { case MO_UB: tcg_gen_ld8u_i64(var, cpu_env, offset); break; case MO_UW: tcg_gen_ld16u_i64(var, cpu_env, offset); break; case MO_UL: tcg_gen_ld32u_i64(var, cpu_env, offset); break; case MO_UQ: tcg_gen_ld_i64(var, cpu_env, offset); break; default: g_assert_not_reached(); } } static void neon_store_element(int reg, int ele, MemOp size, TCGv_i32 var) { long offset = neon_element_offset(reg, ele, size); switch (size) { case MO_8: tcg_gen_st8_i32(var, cpu_env, offset); break; case MO_16: tcg_gen_st16_i32(var, cpu_env, offset); break; case MO_32: tcg_gen_st_i32(var, cpu_env, offset); break; default: g_assert_not_reached(); } } static void neon_store_element64(int reg, int ele, MemOp size, TCGv_i64 var) { long offset = neon_element_offset(reg, ele, size); switch (size) { case MO_8: tcg_gen_st8_i64(var, cpu_env, offset); break; case MO_16: tcg_gen_st16_i64(var, cpu_env, offset); break; case MO_32: tcg_gen_st32_i64(var, cpu_env, offset); break; case MO_64: tcg_gen_st_i64(var, cpu_env, offset); break; default: g_assert_not_reached(); } } static bool do_neon_ddda(DisasContext *s, int q, int vd, int vn, int vm, int data, gen_helper_gvec_4 *fn_gvec) { /* UNDEF accesses to D16-D31 if they don't exist. */ if (((vd | vn | vm) & 0x10) && !dc_isar_feature(aa32_simd_r32, s)) { return false; } /* * UNDEF accesses to odd registers for each bit of Q. * Q will be 0b111 for all Q-reg instructions, otherwise * when we have mixed Q- and D-reg inputs. */ if (((vd & 1) * 4 | (vn & 1) * 2 | (vm & 1)) & q) { return false; } if (!vfp_access_check(s)) { return true; } int opr_sz = q ? 16 : 8; tcg_gen_gvec_4_ool(vfp_reg_offset(1, vd), vfp_reg_offset(1, vn), vfp_reg_offset(1, vm), vfp_reg_offset(1, vd), opr_sz, opr_sz, data, fn_gvec); return true; } static bool do_neon_ddda_fpst(DisasContext *s, int q, int vd, int vn, int vm, int data, ARMFPStatusFlavour fp_flavour, gen_helper_gvec_4_ptr *fn_gvec_ptr) { /* UNDEF accesses to D16-D31 if they don't exist. */ if (((vd | vn | vm) & 0x10) && !dc_isar_feature(aa32_simd_r32, s)) { return false; } /* * UNDEF accesses to odd registers for each bit of Q. * Q will be 0b111 for all Q-reg instructions, otherwise * when we have mixed Q- and D-reg inputs. */ if (((vd & 1) * 4 | (vn & 1) * 2 | (vm & 1)) & q) { return false; } if (!vfp_access_check(s)) { return true; } int opr_sz = q ? 16 : 8; TCGv_ptr fpst = fpstatus_ptr(fp_flavour); tcg_gen_gvec_4_ptr(vfp_reg_offset(1, vd), vfp_reg_offset(1, vn), vfp_reg_offset(1, vm), vfp_reg_offset(1, vd), fpst, opr_sz, opr_sz, data, fn_gvec_ptr); return true; } static bool trans_VCMLA(DisasContext *s, arg_VCMLA *a) { if (!dc_isar_feature(aa32_vcma, s)) { return false; } if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } return do_neon_ddda_fpst(s, a->q * 7, a->vd, a->vn, a->vm, a->rot, FPST_STD_F16, gen_helper_gvec_fcmlah); } return do_neon_ddda_fpst(s, a->q * 7, a->vd, a->vn, a->vm, a->rot, FPST_STD, gen_helper_gvec_fcmlas); } static bool trans_VCADD(DisasContext *s, arg_VCADD *a) { int opr_sz; TCGv_ptr fpst; gen_helper_gvec_3_ptr *fn_gvec_ptr; if (!dc_isar_feature(aa32_vcma, s) || (a->size == MO_16 && !dc_isar_feature(aa32_fp16_arith, s))) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; fpst = fpstatus_ptr(a->size == MO_16 ? FPST_STD_F16 : FPST_STD); fn_gvec_ptr = (a->size == MO_16) ? gen_helper_gvec_fcaddh : gen_helper_gvec_fcadds; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), fpst, opr_sz, opr_sz, a->rot, fn_gvec_ptr); return true; } static bool trans_VSDOT(DisasContext *s, arg_VSDOT *a) { if (!dc_isar_feature(aa32_dp, s)) { return false; } return do_neon_ddda(s, a->q * 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_sdot_b); } static bool trans_VUDOT(DisasContext *s, arg_VUDOT *a) { if (!dc_isar_feature(aa32_dp, s)) { return false; } return do_neon_ddda(s, a->q * 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_udot_b); } static bool trans_VUSDOT(DisasContext *s, arg_VUSDOT *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, a->q * 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_usdot_b); } static bool trans_VDOT_b16(DisasContext *s, arg_VDOT_b16 *a) { if (!dc_isar_feature(aa32_bf16, s)) { return false; } return do_neon_ddda(s, a->q * 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_bfdot); } static bool trans_VFML(DisasContext *s, arg_VFML *a) { int opr_sz; if (!dc_isar_feature(aa32_fhm, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(a->q, a->vn), vfp_reg_offset(a->q, a->vm), cpu_env, opr_sz, opr_sz, a->s, /* is_2 == 0 */ gen_helper_gvec_fmlal_a32); return true; } static bool trans_VCMLA_scalar(DisasContext *s, arg_VCMLA_scalar *a) { int data = (a->index << 2) | a->rot; if (!dc_isar_feature(aa32_vcma, s)) { return false; } if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } return do_neon_ddda_fpst(s, a->q * 6, a->vd, a->vn, a->vm, data, FPST_STD_F16, gen_helper_gvec_fcmlah_idx); } return do_neon_ddda_fpst(s, a->q * 6, a->vd, a->vn, a->vm, data, FPST_STD, gen_helper_gvec_fcmlas_idx); } static bool trans_VSDOT_scalar(DisasContext *s, arg_VSDOT_scalar *a) { if (!dc_isar_feature(aa32_dp, s)) { return false; } return do_neon_ddda(s, a->q * 6, a->vd, a->vn, a->vm, a->index, gen_helper_gvec_sdot_idx_b); } static bool trans_VUDOT_scalar(DisasContext *s, arg_VUDOT_scalar *a) { if (!dc_isar_feature(aa32_dp, s)) { return false; } return do_neon_ddda(s, a->q * 6, a->vd, a->vn, a->vm, a->index, gen_helper_gvec_udot_idx_b); } static bool trans_VUSDOT_scalar(DisasContext *s, arg_VUSDOT_scalar *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, a->q * 6, a->vd, a->vn, a->vm, a->index, gen_helper_gvec_usdot_idx_b); } static bool trans_VSUDOT_scalar(DisasContext *s, arg_VSUDOT_scalar *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, a->q * 6, a->vd, a->vn, a->vm, a->index, gen_helper_gvec_sudot_idx_b); } static bool trans_VDOT_b16_scal(DisasContext *s, arg_VDOT_b16_scal *a) { if (!dc_isar_feature(aa32_bf16, s)) { return false; } return do_neon_ddda(s, a->q * 6, a->vd, a->vn, a->vm, a->index, gen_helper_gvec_bfdot_idx); } static bool trans_VFML_scalar(DisasContext *s, arg_VFML_scalar *a) { int opr_sz; if (!dc_isar_feature(aa32_fhm, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd & 0x10) || (a->q && (a->vn & 0x10)))) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } opr_sz = (1 + a->q) * 8; tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(a->q, a->vn), vfp_reg_offset(a->q, a->rm), cpu_env, opr_sz, opr_sz, (a->index << 2) | a->s, /* is_2 == 0 */ gen_helper_gvec_fmlal_idx_a32); return true; } static struct { int nregs; int interleave; int spacing; } const neon_ls_element_type[11] = { {1, 4, 1}, {1, 4, 2}, {4, 1, 1}, {2, 2, 2}, {1, 3, 1}, {1, 3, 2}, {3, 1, 1}, {1, 1, 1}, {1, 2, 1}, {1, 2, 2}, {2, 1, 1} }; static void gen_neon_ldst_base_update(DisasContext *s, int rm, int rn, int stride) { if (rm != 15) { TCGv_i32 base; base = load_reg(s, rn); if (rm == 13) { tcg_gen_addi_i32(base, base, stride); } else { TCGv_i32 index; index = load_reg(s, rm); tcg_gen_add_i32(base, base, index); } store_reg(s, rn, base); } } static bool trans_VLDST_multiple(DisasContext *s, arg_VLDST_multiple *a) { /* Neon load/store multiple structures */ int nregs, interleave, spacing, reg, n; MemOp mop, align, endian; int mmu_idx = get_mem_index(s); int size = a->size; TCGv_i64 tmp64; TCGv_i32 addr; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->itype > 10) { return false; } /* Catch UNDEF cases for bad values of align field */ switch (a->itype & 0xc) { case 4: if (a->align >= 2) { return false; } break; case 8: if (a->align == 3) { return false; } break; default: break; } nregs = neon_ls_element_type[a->itype].nregs; interleave = neon_ls_element_type[a->itype].interleave; spacing = neon_ls_element_type[a->itype].spacing; if (size == 3 && (interleave | spacing) != 1) { return false; } if (!vfp_access_check(s)) { return true; } /* For our purposes, bytes are always little-endian. */ endian = s->be_data; if (size == 0) { endian = MO_LE; } /* Enforce alignment requested by the instruction */ if (a->align) { align = pow2_align(a->align + 2); /* 4 ** a->align */ } else { align = s->align_mem ? MO_ALIGN : 0; } /* * Consecutive little-endian elements from a single register * can be promoted to a larger little-endian operation. */ if (interleave == 1 && endian == MO_LE) { /* Retain any natural alignment. */ if (align == MO_ALIGN) { align = pow2_align(size); } size = 3; } tmp64 = tcg_temp_new_i64(); addr = tcg_temp_new_i32(); load_reg_var(s, addr, a->rn); mop = endian | size | align; for (reg = 0; reg < nregs; reg++) { for (n = 0; n < 8 >> size; n++) { int xs; for (xs = 0; xs < interleave; xs++) { int tt = a->vd + reg + spacing * xs; if (a->l) { gen_aa32_ld_internal_i64(s, tmp64, addr, mmu_idx, mop); neon_store_element64(tt, n, size, tmp64); } else { neon_load_element64(tmp64, tt, n, size); gen_aa32_st_internal_i64(s, tmp64, addr, mmu_idx, mop); } tcg_gen_addi_i32(addr, addr, 1 << size); /* Subsequent memory operations inherit alignment */ mop &= ~MO_AMASK; } } } gen_neon_ldst_base_update(s, a->rm, a->rn, nregs * interleave * 8); return true; } static bool trans_VLD_all_lanes(DisasContext *s, arg_VLD_all_lanes *a) { /* Neon load single structure to all lanes */ int reg, stride, vec_size; int vd = a->vd; int size = a->size; int nregs = a->n + 1; TCGv_i32 addr, tmp; MemOp mop, align; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } align = 0; if (size == 3) { if (nregs != 4 || a->a == 0) { return false; } /* For VLD4 size == 3 a == 1 means 32 bits at 16 byte alignment */ size = MO_32; align = MO_ALIGN_16; } else if (a->a) { switch (nregs) { case 1: if (size == 0) { return false; } align = MO_ALIGN; break; case 2: align = pow2_align(size + 1); break; case 3: return false; case 4: if (size == 2) { align = pow2_align(3); } else { align = pow2_align(size + 2); } break; default: g_assert_not_reached(); } } if (!vfp_access_check(s)) { return true; } /* * VLD1 to all lanes: T bit indicates how many Dregs to write. * VLD2/3/4 to all lanes: T bit indicates register stride. */ stride = a->t ? 2 : 1; vec_size = nregs == 1 ? stride * 8 : 8; mop = size | align; tmp = tcg_temp_new_i32(); addr = tcg_temp_new_i32(); load_reg_var(s, addr, a->rn); for (reg = 0; reg < nregs; reg++) { gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop); if ((vd & 1) && vec_size == 16) { /* * We cannot write 16 bytes at once because the * destination is unaligned. */ tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(vd), 8, 8, tmp); tcg_gen_gvec_mov(0, neon_full_reg_offset(vd + 1), neon_full_reg_offset(vd), 8, 8); } else { tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(vd), vec_size, vec_size, tmp); } tcg_gen_addi_i32(addr, addr, 1 << size); vd += stride; /* Subsequent memory operations inherit alignment */ mop &= ~MO_AMASK; } gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << size) * nregs); return true; } static bool trans_VLDST_single(DisasContext *s, arg_VLDST_single *a) { /* Neon load/store single structure to one lane */ int reg; int nregs = a->n + 1; int vd = a->vd; TCGv_i32 addr, tmp; MemOp mop; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } /* Catch the UNDEF cases. This is unavoidably a bit messy. */ switch (nregs) { case 1: if (a->stride != 1) { return false; } if (((a->align & (1 << a->size)) != 0) || (a->size == 2 && (a->align == 1 || a->align == 2))) { return false; } break; case 2: if (a->size == 2 && (a->align & 2) != 0) { return false; } break; case 3: if (a->align != 0) { return false; } break; case 4: if (a->size == 2 && a->align == 3) { return false; } break; default: g_assert_not_reached(); } if ((vd + a->stride * (nregs - 1)) > 31) { /* * Attempts to write off the end of the register file are * UNPREDICTABLE; we choose to UNDEF because otherwise we would * access off the end of the array that holds the register data. */ return false; } if (!vfp_access_check(s)) { return true; } /* Pick up SCTLR settings */ mop = finalize_memop(s, a->size); if (a->align) { MemOp align_op; switch (nregs) { case 1: /* For VLD1, use natural alignment. */ align_op = MO_ALIGN; break; case 2: /* For VLD2, use double alignment. */ align_op = pow2_align(a->size + 1); break; case 4: if (a->size == MO_32) { /* * For VLD4.32, align = 1 is double alignment, align = 2 is * quad alignment; align = 3 is rejected above. */ align_op = pow2_align(a->size + a->align); } else { /* For VLD4.8 and VLD.16, we want quad alignment. */ align_op = pow2_align(a->size + 2); } break; default: /* For VLD3, the alignment field is zero and rejected above. */ g_assert_not_reached(); } mop = (mop & ~MO_AMASK) | align_op; } tmp = tcg_temp_new_i32(); addr = tcg_temp_new_i32(); load_reg_var(s, addr, a->rn); for (reg = 0; reg < nregs; reg++) { if (a->l) { gen_aa32_ld_internal_i32(s, tmp, addr, get_mem_index(s), mop); neon_store_element(vd, a->reg_idx, a->size, tmp); } else { /* Store */ neon_load_element(tmp, vd, a->reg_idx, a->size); gen_aa32_st_internal_i32(s, tmp, addr, get_mem_index(s), mop); } vd += a->stride; tcg_gen_addi_i32(addr, addr, 1 << a->size); /* Subsequent memory operations inherit alignment */ mop &= ~MO_AMASK; } gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << a->size) * nregs); return true; } static bool do_3same(DisasContext *s, arg_3same *a, GVecGen3Fn fn) { int vec_size = a->q ? 16 : 8; int rd_ofs = neon_full_reg_offset(a->vd); int rn_ofs = neon_full_reg_offset(a->vn); int rm_ofs = neon_full_reg_offset(a->vm); if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn(a->size, rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size); return true; } #define DO_3SAME(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ return do_3same(s, a, FUNC); \ } DO_3SAME(VADD, tcg_gen_gvec_add) DO_3SAME(VSUB, tcg_gen_gvec_sub) DO_3SAME(VAND, tcg_gen_gvec_and) DO_3SAME(VBIC, tcg_gen_gvec_andc) DO_3SAME(VORR, tcg_gen_gvec_or) DO_3SAME(VORN, tcg_gen_gvec_orc) DO_3SAME(VEOR, tcg_gen_gvec_xor) DO_3SAME(VSHL_S, gen_gvec_sshl) DO_3SAME(VSHL_U, gen_gvec_ushl) DO_3SAME(VQADD_S, gen_gvec_sqadd_qc) DO_3SAME(VQADD_U, gen_gvec_uqadd_qc) DO_3SAME(VQSUB_S, gen_gvec_sqsub_qc) DO_3SAME(VQSUB_U, gen_gvec_uqsub_qc) /* These insns are all gvec_bitsel but with the inputs in various orders. */ #define DO_3SAME_BITSEL(INSN, O1, O2, O3) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_bitsel(vece, rd_ofs, O1, O2, O3, oprsz, maxsz); \ } \ DO_3SAME(INSN, gen_##INSN##_3s) DO_3SAME_BITSEL(VBSL, rd_ofs, rn_ofs, rm_ofs) DO_3SAME_BITSEL(VBIT, rm_ofs, rn_ofs, rd_ofs) DO_3SAME_BITSEL(VBIF, rm_ofs, rd_ofs, rn_ofs) #define DO_3SAME_NO_SZ_3(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size == 3) { \ return false; \ } \ return do_3same(s, a, FUNC); \ } DO_3SAME_NO_SZ_3(VMAX_S, tcg_gen_gvec_smax) DO_3SAME_NO_SZ_3(VMAX_U, tcg_gen_gvec_umax) DO_3SAME_NO_SZ_3(VMIN_S, tcg_gen_gvec_smin) DO_3SAME_NO_SZ_3(VMIN_U, tcg_gen_gvec_umin) DO_3SAME_NO_SZ_3(VMUL, tcg_gen_gvec_mul) DO_3SAME_NO_SZ_3(VMLA, gen_gvec_mla) DO_3SAME_NO_SZ_3(VMLS, gen_gvec_mls) DO_3SAME_NO_SZ_3(VTST, gen_gvec_cmtst) DO_3SAME_NO_SZ_3(VABD_S, gen_gvec_sabd) DO_3SAME_NO_SZ_3(VABA_S, gen_gvec_saba) DO_3SAME_NO_SZ_3(VABD_U, gen_gvec_uabd) DO_3SAME_NO_SZ_3(VABA_U, gen_gvec_uaba) #define DO_3SAME_CMP(INSN, COND) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_cmp(COND, vece, rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz); \ } \ DO_3SAME_NO_SZ_3(INSN, gen_##INSN##_3s) DO_3SAME_CMP(VCGT_S, TCG_COND_GT) DO_3SAME_CMP(VCGT_U, TCG_COND_GTU) DO_3SAME_CMP(VCGE_S, TCG_COND_GE) DO_3SAME_CMP(VCGE_U, TCG_COND_GEU) DO_3SAME_CMP(VCEQ, TCG_COND_EQ) #define WRAP_OOL_FN(WRAPNAME, FUNC) \ static void WRAPNAME(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, \ uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) \ { \ tcg_gen_gvec_3_ool(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, 0, FUNC); \ } WRAP_OOL_FN(gen_VMUL_p_3s, gen_helper_gvec_pmul_b) static bool trans_VMUL_p_3s(DisasContext *s, arg_3same *a) { if (a->size != 0) { return false; } return do_3same(s, a, gen_VMUL_p_3s); } #define DO_VQRDMLAH(INSN, FUNC) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_rdm, s)) { \ return false; \ } \ if (a->size != 1 && a->size != 2) { \ return false; \ } \ return do_3same(s, a, FUNC); \ } DO_VQRDMLAH(VQRDMLAH, gen_gvec_sqrdmlah_qc) DO_VQRDMLAH(VQRDMLSH, gen_gvec_sqrdmlsh_qc) #define DO_SHA1(NAME, FUNC) \ WRAP_OOL_FN(gen_##NAME##_3s, FUNC) \ static bool trans_##NAME##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_sha1, s)) { \ return false; \ } \ return do_3same(s, a, gen_##NAME##_3s); \ } DO_SHA1(SHA1C, gen_helper_crypto_sha1c) DO_SHA1(SHA1P, gen_helper_crypto_sha1p) DO_SHA1(SHA1M, gen_helper_crypto_sha1m) DO_SHA1(SHA1SU0, gen_helper_crypto_sha1su0) #define DO_SHA2(NAME, FUNC) \ WRAP_OOL_FN(gen_##NAME##_3s, FUNC) \ static bool trans_##NAME##_3s(DisasContext *s, arg_3same *a) \ { \ if (!dc_isar_feature(aa32_sha2, s)) { \ return false; \ } \ return do_3same(s, a, gen_##NAME##_3s); \ } DO_SHA2(SHA256H, gen_helper_crypto_sha256h) DO_SHA2(SHA256H2, gen_helper_crypto_sha256h2) DO_SHA2(SHA256SU1, gen_helper_crypto_sha256su1) #define DO_3SAME_64(INSN, FUNC) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 op = { .fni8 = FUNC }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &op); \ } \ DO_3SAME(INSN, gen_##INSN##_3s) #define DO_3SAME_64_ENV(INSN, FUNC) \ static void gen_##INSN##_elt(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) \ { \ FUNC(d, cpu_env, n, m); \ } \ DO_3SAME_64(INSN, gen_##INSN##_elt) DO_3SAME_64(VRSHL_S64, gen_helper_neon_rshl_s64) DO_3SAME_64(VRSHL_U64, gen_helper_neon_rshl_u64) DO_3SAME_64_ENV(VQSHL_S64, gen_helper_neon_qshl_s64) DO_3SAME_64_ENV(VQSHL_U64, gen_helper_neon_qshl_u64) DO_3SAME_64_ENV(VQRSHL_S64, gen_helper_neon_qrshl_s64) DO_3SAME_64_ENV(VQRSHL_U64, gen_helper_neon_qrshl_u64) #define DO_3SAME_32(INSN, FUNC) \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[4] = { \ { .fni4 = gen_helper_neon_##FUNC##8 }, \ { .fni4 = gen_helper_neon_##FUNC##16 }, \ { .fni4 = gen_helper_neon_##FUNC##32 }, \ { 0 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size > 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } /* * Some helper functions need to be passed the cpu_env. In order * to use those with the gvec APIs like tcg_gen_gvec_3() we need * to create wrapper functions whose prototype is a NeonGenTwoOpFn() * and which call a NeonGenTwoOpEnvFn(). */ #define WRAP_ENV_FN(WRAPNAME, FUNC) \ static void WRAPNAME(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m) \ { \ FUNC(d, cpu_env, n, m); \ } #define DO_3SAME_32_ENV(INSN, FUNC) \ WRAP_ENV_FN(gen_##INSN##_tramp8, gen_helper_neon_##FUNC##8); \ WRAP_ENV_FN(gen_##INSN##_tramp16, gen_helper_neon_##FUNC##16); \ WRAP_ENV_FN(gen_##INSN##_tramp32, gen_helper_neon_##FUNC##32); \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[4] = { \ { .fni4 = gen_##INSN##_tramp8 }, \ { .fni4 = gen_##INSN##_tramp16 }, \ { .fni4 = gen_##INSN##_tramp32 }, \ { 0 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size > 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } DO_3SAME_32(VHADD_S, hadd_s) DO_3SAME_32(VHADD_U, hadd_u) DO_3SAME_32(VHSUB_S, hsub_s) DO_3SAME_32(VHSUB_U, hsub_u) DO_3SAME_32(VRHADD_S, rhadd_s) DO_3SAME_32(VRHADD_U, rhadd_u) DO_3SAME_32(VRSHL_S, rshl_s) DO_3SAME_32(VRSHL_U, rshl_u) DO_3SAME_32_ENV(VQSHL_S, qshl_s) DO_3SAME_32_ENV(VQSHL_U, qshl_u) DO_3SAME_32_ENV(VQRSHL_S, qrshl_s) DO_3SAME_32_ENV(VQRSHL_U, qrshl_u) static bool do_3same_pair(DisasContext *s, arg_3same *a, NeonGenTwoOpFn *fn) { /* Operations handled pairwise 32 bits at a time */ TCGv_i32 tmp, tmp2, tmp3; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (a->size == 3) { return false; } if (!vfp_access_check(s)) { return true; } assert(a->q == 0); /* enforced by decode patterns */ /* * Note that we have to be careful not to clobber the source operands * in the "vm == vd" case by storing the result of the first pass too * early. Since Q is 0 there are always just two passes, so instead * of a complicated loop over each pass we just unroll. */ tmp = tcg_temp_new_i32(); tmp2 = tcg_temp_new_i32(); tmp3 = tcg_temp_new_i32(); read_neon_element32(tmp, a->vn, 0, MO_32); read_neon_element32(tmp2, a->vn, 1, MO_32); fn(tmp, tmp, tmp2); read_neon_element32(tmp3, a->vm, 0, MO_32); read_neon_element32(tmp2, a->vm, 1, MO_32); fn(tmp3, tmp3, tmp2); write_neon_element32(tmp, a->vd, 0, MO_32); write_neon_element32(tmp3, a->vd, 1, MO_32); return true; } #define DO_3SAME_PAIR(INSN, func) \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ static NeonGenTwoOpFn * const fns[] = { \ gen_helper_neon_##func##8, \ gen_helper_neon_##func##16, \ gen_helper_neon_##func##32, \ }; \ if (a->size > 2) { \ return false; \ } \ return do_3same_pair(s, a, fns[a->size]); \ } /* 32-bit pairwise ops end up the same as the elementwise versions. */ #define gen_helper_neon_pmax_s32 tcg_gen_smax_i32 #define gen_helper_neon_pmax_u32 tcg_gen_umax_i32 #define gen_helper_neon_pmin_s32 tcg_gen_smin_i32 #define gen_helper_neon_pmin_u32 tcg_gen_umin_i32 #define gen_helper_neon_padd_u32 tcg_gen_add_i32 DO_3SAME_PAIR(VPMAX_S, pmax_s) DO_3SAME_PAIR(VPMIN_S, pmin_s) DO_3SAME_PAIR(VPMAX_U, pmax_u) DO_3SAME_PAIR(VPMIN_U, pmin_u) DO_3SAME_PAIR(VPADD, padd_u) #define DO_3SAME_VQDMULH(INSN, FUNC) \ WRAP_ENV_FN(gen_##INSN##_tramp16, gen_helper_neon_##FUNC##_s16); \ WRAP_ENV_FN(gen_##INSN##_tramp32, gen_helper_neon_##FUNC##_s32); \ static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static const GVecGen3 ops[2] = { \ { .fni4 = gen_##INSN##_tramp16 }, \ { .fni4 = gen_##INSN##_tramp32 }, \ }; \ tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, oprsz, maxsz, &ops[vece - 1]); \ } \ static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size != 1 && a->size != 2) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_3s); \ } DO_3SAME_VQDMULH(VQDMULH, qdmulh) DO_3SAME_VQDMULH(VQRDMULH, qrdmulh) #define WRAP_FP_GVEC(WRAPNAME, FPST, FUNC) \ static void WRAPNAME(unsigned vece, uint32_t rd_ofs, \ uint32_t rn_ofs, uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ TCGv_ptr fpst = fpstatus_ptr(FPST); \ tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, fpst, \ oprsz, maxsz, 0, FUNC); \ } #define DO_3S_FP_GVEC(INSN,SFUNC,HFUNC) \ WRAP_FP_GVEC(gen_##INSN##_fp32_3s, FPST_STD, SFUNC) \ WRAP_FP_GVEC(gen_##INSN##_fp16_3s, FPST_STD_F16, HFUNC) \ static bool trans_##INSN##_fp_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size == MO_16) { \ if (!dc_isar_feature(aa32_fp16_arith, s)) { \ return false; \ } \ return do_3same(s, a, gen_##INSN##_fp16_3s); \ } \ return do_3same(s, a, gen_##INSN##_fp32_3s); \ } DO_3S_FP_GVEC(VADD, gen_helper_gvec_fadd_s, gen_helper_gvec_fadd_h) DO_3S_FP_GVEC(VSUB, gen_helper_gvec_fsub_s, gen_helper_gvec_fsub_h) DO_3S_FP_GVEC(VABD, gen_helper_gvec_fabd_s, gen_helper_gvec_fabd_h) DO_3S_FP_GVEC(VMUL, gen_helper_gvec_fmul_s, gen_helper_gvec_fmul_h) DO_3S_FP_GVEC(VCEQ, gen_helper_gvec_fceq_s, gen_helper_gvec_fceq_h) DO_3S_FP_GVEC(VCGE, gen_helper_gvec_fcge_s, gen_helper_gvec_fcge_h) DO_3S_FP_GVEC(VCGT, gen_helper_gvec_fcgt_s, gen_helper_gvec_fcgt_h) DO_3S_FP_GVEC(VACGE, gen_helper_gvec_facge_s, gen_helper_gvec_facge_h) DO_3S_FP_GVEC(VACGT, gen_helper_gvec_facgt_s, gen_helper_gvec_facgt_h) DO_3S_FP_GVEC(VMAX, gen_helper_gvec_fmax_s, gen_helper_gvec_fmax_h) DO_3S_FP_GVEC(VMIN, gen_helper_gvec_fmin_s, gen_helper_gvec_fmin_h) DO_3S_FP_GVEC(VMLA, gen_helper_gvec_fmla_s, gen_helper_gvec_fmla_h) DO_3S_FP_GVEC(VMLS, gen_helper_gvec_fmls_s, gen_helper_gvec_fmls_h) DO_3S_FP_GVEC(VFMA, gen_helper_gvec_vfma_s, gen_helper_gvec_vfma_h) DO_3S_FP_GVEC(VFMS, gen_helper_gvec_vfms_s, gen_helper_gvec_vfms_h) DO_3S_FP_GVEC(VRECPS, gen_helper_gvec_recps_nf_s, gen_helper_gvec_recps_nf_h) DO_3S_FP_GVEC(VRSQRTS, gen_helper_gvec_rsqrts_nf_s, gen_helper_gvec_rsqrts_nf_h) WRAP_FP_GVEC(gen_VMAXNM_fp32_3s, FPST_STD, gen_helper_gvec_fmaxnum_s) WRAP_FP_GVEC(gen_VMAXNM_fp16_3s, FPST_STD_F16, gen_helper_gvec_fmaxnum_h) WRAP_FP_GVEC(gen_VMINNM_fp32_3s, FPST_STD, gen_helper_gvec_fminnum_s) WRAP_FP_GVEC(gen_VMINNM_fp16_3s, FPST_STD_F16, gen_helper_gvec_fminnum_h) static bool trans_VMAXNM_fp_3s(DisasContext *s, arg_3same *a) { if (!arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } return do_3same(s, a, gen_VMAXNM_fp16_3s); } return do_3same(s, a, gen_VMAXNM_fp32_3s); } static bool trans_VMINNM_fp_3s(DisasContext *s, arg_3same *a) { if (!arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } return do_3same(s, a, gen_VMINNM_fp16_3s); } return do_3same(s, a, gen_VMINNM_fp32_3s); } static bool do_3same_fp_pair(DisasContext *s, arg_3same *a, gen_helper_gvec_3_ptr *fn) { /* FP pairwise operations */ TCGv_ptr fpstatus; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } assert(a->q == 0); /* enforced by decode patterns */ fpstatus = fpstatus_ptr(a->size == MO_16 ? FPST_STD_F16 : FPST_STD); tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd), vfp_reg_offset(1, a->vn), vfp_reg_offset(1, a->vm), fpstatus, 8, 8, 0, fn); return true; } /* * For all the functions using this macro, size == 1 means fp16, * which is an architecture extension we don't implement yet. */ #define DO_3S_FP_PAIR(INSN,FUNC) \ static bool trans_##INSN##_fp_3s(DisasContext *s, arg_3same *a) \ { \ if (a->size == MO_16) { \ if (!dc_isar_feature(aa32_fp16_arith, s)) { \ return false; \ } \ return do_3same_fp_pair(s, a, FUNC##h); \ } \ return do_3same_fp_pair(s, a, FUNC##s); \ } DO_3S_FP_PAIR(VPADD, gen_helper_neon_padd) DO_3S_FP_PAIR(VPMAX, gen_helper_neon_pmax) DO_3S_FP_PAIR(VPMIN, gen_helper_neon_pmin) static bool do_vector_2sh(DisasContext *s, arg_2reg_shift *a, GVecGen2iFn *fn) { /* Handle a 2-reg-shift insn which can be vectorized. */ int vec_size = a->q ? 16 : 8; int rd_ofs = neon_full_reg_offset(a->vd); int rm_ofs = neon_full_reg_offset(a->vm); if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn(a->size, rd_ofs, rm_ofs, a->shift, vec_size, vec_size); return true; } #define DO_2SH(INSN, FUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_vector_2sh(s, a, FUNC); \ } \ DO_2SH(VSHL, tcg_gen_gvec_shli) DO_2SH(VSLI, gen_gvec_sli) DO_2SH(VSRI, gen_gvec_sri) DO_2SH(VSRA_S, gen_gvec_ssra) DO_2SH(VSRA_U, gen_gvec_usra) DO_2SH(VRSHR_S, gen_gvec_srshr) DO_2SH(VRSHR_U, gen_gvec_urshr) DO_2SH(VRSRA_S, gen_gvec_srsra) DO_2SH(VRSRA_U, gen_gvec_ursra) static bool trans_VSHR_S_2sh(DisasContext *s, arg_2reg_shift *a) { /* Signed shift out of range results in all-sign-bits */ a->shift = MIN(a->shift, (8 << a->size) - 1); return do_vector_2sh(s, a, tcg_gen_gvec_sari); } static void gen_zero_rd_2sh(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_dup_imm(vece, rd_ofs, oprsz, maxsz, 0); } static bool trans_VSHR_U_2sh(DisasContext *s, arg_2reg_shift *a) { /* Shift out of range is architecturally valid and results in zero. */ if (a->shift >= (8 << a->size)) { return do_vector_2sh(s, a, gen_zero_rd_2sh); } else { return do_vector_2sh(s, a, tcg_gen_gvec_shri); } } static bool do_2shift_env_64(DisasContext *s, arg_2reg_shift *a, NeonGenTwo64OpEnvFn *fn) { /* * 2-reg-and-shift operations, size == 3 case, where the * function needs to be passed cpu_env. */ TCGv_i64 constimm; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } /* * To avoid excessive duplication of ops we implement shift * by immediate using the variable shift operations. */ constimm = tcg_constant_i64(dup_const(a->size, a->shift)); for (pass = 0; pass < a->q + 1; pass++) { TCGv_i64 tmp = tcg_temp_new_i64(); read_neon_element64(tmp, a->vm, pass, MO_64); fn(tmp, cpu_env, tmp, constimm); write_neon_element64(tmp, a->vd, pass, MO_64); } return true; } static bool do_2shift_env_32(DisasContext *s, arg_2reg_shift *a, NeonGenTwoOpEnvFn *fn) { /* * 2-reg-and-shift operations, size < 3 case, where the * helper needs to be passed cpu_env. */ TCGv_i32 constimm, tmp; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } /* * To avoid excessive duplication of ops we implement shift * by immediate using the variable shift operations. */ constimm = tcg_constant_i32(dup_const(a->size, a->shift)); tmp = tcg_temp_new_i32(); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { read_neon_element32(tmp, a->vm, pass, MO_32); fn(tmp, cpu_env, tmp, constimm); write_neon_element32(tmp, a->vd, pass, MO_32); } return true; } #define DO_2SHIFT_ENV(INSN, FUNC) \ static bool trans_##INSN##_64_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_env_64(s, a, gen_helper_neon_##FUNC##64); \ } \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ static NeonGenTwoOpEnvFn * const fns[] = { \ gen_helper_neon_##FUNC##8, \ gen_helper_neon_##FUNC##16, \ gen_helper_neon_##FUNC##32, \ }; \ assert(a->size < ARRAY_SIZE(fns)); \ return do_2shift_env_32(s, a, fns[a->size]); \ } DO_2SHIFT_ENV(VQSHLU, qshlu_s) DO_2SHIFT_ENV(VQSHL_U, qshl_u) DO_2SHIFT_ENV(VQSHL_S, qshl_s) static bool do_2shift_narrow_64(DisasContext *s, arg_2reg_shift *a, NeonGenTwo64OpFn *shiftfn, NeonGenNarrowEnvFn *narrowfn) { /* 2-reg-and-shift narrowing-shift operations, size == 3 case */ TCGv_i64 constimm, rm1, rm2; TCGv_i32 rd; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vm & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is always a right shift, and the shiftfn is always a * left-shift helper, which thus needs the negated shift count. */ constimm = tcg_constant_i64(-a->shift); rm1 = tcg_temp_new_i64(); rm2 = tcg_temp_new_i64(); rd = tcg_temp_new_i32(); /* Load both inputs first to avoid potential overwrite if rm == rd */ read_neon_element64(rm1, a->vm, 0, MO_64); read_neon_element64(rm2, a->vm, 1, MO_64); shiftfn(rm1, rm1, constimm); narrowfn(rd, cpu_env, rm1); write_neon_element32(rd, a->vd, 0, MO_32); shiftfn(rm2, rm2, constimm); narrowfn(rd, cpu_env, rm2); write_neon_element32(rd, a->vd, 1, MO_32); return true; } static bool do_2shift_narrow_32(DisasContext *s, arg_2reg_shift *a, NeonGenTwoOpFn *shiftfn, NeonGenNarrowEnvFn *narrowfn) { /* 2-reg-and-shift narrowing-shift operations, size < 3 case */ TCGv_i32 constimm, rm1, rm2, rm3, rm4; TCGv_i64 rtmp; uint32_t imm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vm & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is always a right shift, and the shiftfn is always a * left-shift helper, which thus needs the negated shift count * duplicated into each lane of the immediate value. */ if (a->size == 1) { imm = (uint16_t)(-a->shift); imm |= imm << 16; } else { /* size == 2 */ imm = -a->shift; } constimm = tcg_constant_i32(imm); /* Load all inputs first to avoid potential overwrite */ rm1 = tcg_temp_new_i32(); rm2 = tcg_temp_new_i32(); rm3 = tcg_temp_new_i32(); rm4 = tcg_temp_new_i32(); read_neon_element32(rm1, a->vm, 0, MO_32); read_neon_element32(rm2, a->vm, 1, MO_32); read_neon_element32(rm3, a->vm, 2, MO_32); read_neon_element32(rm4, a->vm, 3, MO_32); rtmp = tcg_temp_new_i64(); shiftfn(rm1, rm1, constimm); shiftfn(rm2, rm2, constimm); tcg_gen_concat_i32_i64(rtmp, rm1, rm2); narrowfn(rm1, cpu_env, rtmp); write_neon_element32(rm1, a->vd, 0, MO_32); shiftfn(rm3, rm3, constimm); shiftfn(rm4, rm4, constimm); tcg_gen_concat_i32_i64(rtmp, rm3, rm4); narrowfn(rm3, cpu_env, rtmp); write_neon_element32(rm3, a->vd, 1, MO_32); return true; } #define DO_2SN_64(INSN, FUNC, NARROWFUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_narrow_64(s, a, FUNC, NARROWFUNC); \ } #define DO_2SN_32(INSN, FUNC, NARROWFUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_2shift_narrow_32(s, a, FUNC, NARROWFUNC); \ } static void gen_neon_narrow_u32(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { tcg_gen_extrl_i64_i32(dest, src); } static void gen_neon_narrow_u16(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { gen_helper_neon_narrow_u16(dest, src); } static void gen_neon_narrow_u8(TCGv_i32 dest, TCGv_ptr env, TCGv_i64 src) { gen_helper_neon_narrow_u8(dest, src); } DO_2SN_64(VSHRN_64, gen_ushl_i64, gen_neon_narrow_u32) DO_2SN_32(VSHRN_32, gen_ushl_i32, gen_neon_narrow_u16) DO_2SN_32(VSHRN_16, gen_helper_neon_shl_u16, gen_neon_narrow_u8) DO_2SN_64(VRSHRN_64, gen_helper_neon_rshl_u64, gen_neon_narrow_u32) DO_2SN_32(VRSHRN_32, gen_helper_neon_rshl_u32, gen_neon_narrow_u16) DO_2SN_32(VRSHRN_16, gen_helper_neon_rshl_u16, gen_neon_narrow_u8) DO_2SN_64(VQSHRUN_64, gen_sshl_i64, gen_helper_neon_unarrow_sat32) DO_2SN_32(VQSHRUN_32, gen_sshl_i32, gen_helper_neon_unarrow_sat16) DO_2SN_32(VQSHRUN_16, gen_helper_neon_shl_s16, gen_helper_neon_unarrow_sat8) DO_2SN_64(VQRSHRUN_64, gen_helper_neon_rshl_s64, gen_helper_neon_unarrow_sat32) DO_2SN_32(VQRSHRUN_32, gen_helper_neon_rshl_s32, gen_helper_neon_unarrow_sat16) DO_2SN_32(VQRSHRUN_16, gen_helper_neon_rshl_s16, gen_helper_neon_unarrow_sat8) DO_2SN_64(VQSHRN_S64, gen_sshl_i64, gen_helper_neon_narrow_sat_s32) DO_2SN_32(VQSHRN_S32, gen_sshl_i32, gen_helper_neon_narrow_sat_s16) DO_2SN_32(VQSHRN_S16, gen_helper_neon_shl_s16, gen_helper_neon_narrow_sat_s8) DO_2SN_64(VQRSHRN_S64, gen_helper_neon_rshl_s64, gen_helper_neon_narrow_sat_s32) DO_2SN_32(VQRSHRN_S32, gen_helper_neon_rshl_s32, gen_helper_neon_narrow_sat_s16) DO_2SN_32(VQRSHRN_S16, gen_helper_neon_rshl_s16, gen_helper_neon_narrow_sat_s8) DO_2SN_64(VQSHRN_U64, gen_ushl_i64, gen_helper_neon_narrow_sat_u32) DO_2SN_32(VQSHRN_U32, gen_ushl_i32, gen_helper_neon_narrow_sat_u16) DO_2SN_32(VQSHRN_U16, gen_helper_neon_shl_u16, gen_helper_neon_narrow_sat_u8) DO_2SN_64(VQRSHRN_U64, gen_helper_neon_rshl_u64, gen_helper_neon_narrow_sat_u32) DO_2SN_32(VQRSHRN_U32, gen_helper_neon_rshl_u32, gen_helper_neon_narrow_sat_u16) DO_2SN_32(VQRSHRN_U16, gen_helper_neon_rshl_u16, gen_helper_neon_narrow_sat_u8) static bool do_vshll_2sh(DisasContext *s, arg_2reg_shift *a, NeonGenWidenFn *widenfn, bool u) { TCGv_i64 tmp; TCGv_i32 rm0, rm1; uint64_t widen_mask = 0; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vd & 1) { return false; } if (!vfp_access_check(s)) { return true; } /* * This is a widen-and-shift operation. The shift is always less * than the width of the source type, so after widening the input * vector we can simply shift the whole 64-bit widened register, * and then clear the potential overflow bits resulting from left * bits of the narrow input appearing as right bits of the left * neighbour narrow input. Calculate a mask of bits to clear. */ if ((a->shift != 0) && (a->size < 2 || u)) { int esize = 8 << a->size; widen_mask = MAKE_64BIT_MASK(0, esize); widen_mask >>= esize - a->shift; widen_mask = dup_const(a->size + 1, widen_mask); } rm0 = tcg_temp_new_i32(); rm1 = tcg_temp_new_i32(); read_neon_element32(rm0, a->vm, 0, MO_32); read_neon_element32(rm1, a->vm, 1, MO_32); tmp = tcg_temp_new_i64(); widenfn(tmp, rm0); if (a->shift != 0) { tcg_gen_shli_i64(tmp, tmp, a->shift); tcg_gen_andi_i64(tmp, tmp, ~widen_mask); } write_neon_element64(tmp, a->vd, 0, MO_64); widenfn(tmp, rm1); if (a->shift != 0) { tcg_gen_shli_i64(tmp, tmp, a->shift); tcg_gen_andi_i64(tmp, tmp, ~widen_mask); } write_neon_element64(tmp, a->vd, 1, MO_64); return true; } static bool trans_VSHLL_S_2sh(DisasContext *s, arg_2reg_shift *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_s8, gen_helper_neon_widen_s16, tcg_gen_ext_i32_i64, }; return do_vshll_2sh(s, a, widenfn[a->size], false); } static bool trans_VSHLL_U_2sh(DisasContext *s, arg_2reg_shift *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, }; return do_vshll_2sh(s, a, widenfn[a->size], true); } static bool do_fp_2sh(DisasContext *s, arg_2reg_shift *a, gen_helper_gvec_2_ptr *fn) { /* FP operations in 2-reg-and-shift group */ int vec_size = a->q ? 16 : 8; int rd_ofs = neon_full_reg_offset(a->vd); int rm_ofs = neon_full_reg_offset(a->vm); TCGv_ptr fpst; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm | a->vd) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(a->size == MO_16 ? FPST_STD_F16 : FPST_STD); tcg_gen_gvec_2_ptr(rd_ofs, rm_ofs, fpst, vec_size, vec_size, a->shift, fn); return true; } #define DO_FP_2SH(INSN, FUNC) \ static bool trans_##INSN##_2sh(DisasContext *s, arg_2reg_shift *a) \ { \ return do_fp_2sh(s, a, FUNC); \ } DO_FP_2SH(VCVT_SF, gen_helper_gvec_vcvt_sf) DO_FP_2SH(VCVT_UF, gen_helper_gvec_vcvt_uf) DO_FP_2SH(VCVT_FS, gen_helper_gvec_vcvt_fs) DO_FP_2SH(VCVT_FU, gen_helper_gvec_vcvt_fu) DO_FP_2SH(VCVT_SH, gen_helper_gvec_vcvt_sh) DO_FP_2SH(VCVT_UH, gen_helper_gvec_vcvt_uh) DO_FP_2SH(VCVT_HS, gen_helper_gvec_vcvt_hs) DO_FP_2SH(VCVT_HU, gen_helper_gvec_vcvt_hu) static bool do_1reg_imm(DisasContext *s, arg_1reg_imm *a, GVecGen2iFn *fn) { uint64_t imm; int reg_ofs, vec_size; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } reg_ofs = neon_full_reg_offset(a->vd); vec_size = a->q ? 16 : 8; imm = asimd_imm_const(a->imm, a->cmode, a->op); fn(MO_64, reg_ofs, reg_ofs, imm, vec_size, vec_size); return true; } static void gen_VMOV_1r(unsigned vece, uint32_t dofs, uint32_t aofs, int64_t c, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c); } static bool trans_Vimm_1r(DisasContext *s, arg_1reg_imm *a) { /* Handle decode of cmode/op here between VORR/VBIC/VMOV */ GVecGen2iFn *fn; if ((a->cmode & 1) && a->cmode < 12) { /* for op=1, the imm will be inverted, so BIC becomes AND. */ fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori; } else { /* There is one unallocated cmode/op combination in this space */ if (a->cmode == 15 && a->op == 1) { return false; } fn = gen_VMOV_1r; } return do_1reg_imm(s, a, fn); } static bool do_prewiden_3d(DisasContext *s, arg_3diff *a, NeonGenWidenFn *widenfn, NeonGenTwo64OpFn *opfn, int src1_mop, int src2_mop) { /* 3-regs different lengths, prewidening case (VADDL/VSUBL/VAADW/VSUBW) */ TCGv_i64 rn0_64, rn1_64, rm_64; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if ((a->vd & 1) || (src1_mop == MO_UQ && (a->vn & 1))) { return false; } if (!vfp_access_check(s)) { return true; } rn0_64 = tcg_temp_new_i64(); rn1_64 = tcg_temp_new_i64(); rm_64 = tcg_temp_new_i64(); if (src1_mop >= 0) { read_neon_element64(rn0_64, a->vn, 0, src1_mop); } else { TCGv_i32 tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vn, 0, MO_32); widenfn(rn0_64, tmp); } if (src2_mop >= 0) { read_neon_element64(rm_64, a->vm, 0, src2_mop); } else { TCGv_i32 tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vm, 0, MO_32); widenfn(rm_64, tmp); } opfn(rn0_64, rn0_64, rm_64); /* * Load second pass inputs before storing the first pass result, to * avoid incorrect results if a narrow input overlaps with the result. */ if (src1_mop >= 0) { read_neon_element64(rn1_64, a->vn, 1, src1_mop); } else { TCGv_i32 tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vn, 1, MO_32); widenfn(rn1_64, tmp); } if (src2_mop >= 0) { read_neon_element64(rm_64, a->vm, 1, src2_mop); } else { TCGv_i32 tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vm, 1, MO_32); widenfn(rm_64, tmp); } write_neon_element64(rn0_64, a->vd, 0, MO_64); opfn(rn1_64, rn1_64, rm_64); write_neon_element64(rn1_64, a->vd, 1, MO_64); return true; } #define DO_PREWIDEN(INSN, S, OP, SRC1WIDE, SIGN) \ static bool trans_##INSN##_3d(DisasContext *s, arg_3diff *a) \ { \ static NeonGenWidenFn * const widenfn[] = { \ gen_helper_neon_widen_##S##8, \ gen_helper_neon_widen_##S##16, \ NULL, NULL, \ }; \ static NeonGenTwo64OpFn * const addfn[] = { \ gen_helper_neon_##OP##l_u16, \ gen_helper_neon_##OP##l_u32, \ tcg_gen_##OP##_i64, \ NULL, \ }; \ int narrow_mop = a->size == MO_32 ? MO_32 | SIGN : -1; \ return do_prewiden_3d(s, a, widenfn[a->size], addfn[a->size], \ SRC1WIDE ? MO_UQ : narrow_mop, \ narrow_mop); \ } DO_PREWIDEN(VADDL_S, s, add, false, MO_SIGN) DO_PREWIDEN(VADDL_U, u, add, false, 0) DO_PREWIDEN(VSUBL_S, s, sub, false, MO_SIGN) DO_PREWIDEN(VSUBL_U, u, sub, false, 0) DO_PREWIDEN(VADDW_S, s, add, true, MO_SIGN) DO_PREWIDEN(VADDW_U, u, add, true, 0) DO_PREWIDEN(VSUBW_S, s, sub, true, MO_SIGN) DO_PREWIDEN(VSUBW_U, u, sub, true, 0) static bool do_narrow_3d(DisasContext *s, arg_3diff *a, NeonGenTwo64OpFn *opfn, NeonGenNarrowFn *narrowfn) { /* 3-regs different lengths, narrowing (VADDHN/VSUBHN/VRADDHN/VRSUBHN) */ TCGv_i64 rn_64, rm_64; TCGv_i32 rd0, rd1; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn || !narrowfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if ((a->vn | a->vm) & 1) { return false; } if (!vfp_access_check(s)) { return true; } rn_64 = tcg_temp_new_i64(); rm_64 = tcg_temp_new_i64(); rd0 = tcg_temp_new_i32(); rd1 = tcg_temp_new_i32(); read_neon_element64(rn_64, a->vn, 0, MO_64); read_neon_element64(rm_64, a->vm, 0, MO_64); opfn(rn_64, rn_64, rm_64); narrowfn(rd0, rn_64); read_neon_element64(rn_64, a->vn, 1, MO_64); read_neon_element64(rm_64, a->vm, 1, MO_64); opfn(rn_64, rn_64, rm_64); narrowfn(rd1, rn_64); write_neon_element32(rd0, a->vd, 0, MO_32); write_neon_element32(rd1, a->vd, 1, MO_32); return true; } #define DO_NARROW_3D(INSN, OP, NARROWTYPE, EXTOP) \ static bool trans_##INSN##_3d(DisasContext *s, arg_3diff *a) \ { \ static NeonGenTwo64OpFn * const addfn[] = { \ gen_helper_neon_##OP##l_u16, \ gen_helper_neon_##OP##l_u32, \ tcg_gen_##OP##_i64, \ NULL, \ }; \ static NeonGenNarrowFn * const narrowfn[] = { \ gen_helper_neon_##NARROWTYPE##_high_u8, \ gen_helper_neon_##NARROWTYPE##_high_u16, \ EXTOP, \ NULL, \ }; \ return do_narrow_3d(s, a, addfn[a->size], narrowfn[a->size]); \ } static void gen_narrow_round_high_u32(TCGv_i32 rd, TCGv_i64 rn) { tcg_gen_addi_i64(rn, rn, 1u << 31); tcg_gen_extrh_i64_i32(rd, rn); } DO_NARROW_3D(VADDHN, add, narrow, tcg_gen_extrh_i64_i32) DO_NARROW_3D(VSUBHN, sub, narrow, tcg_gen_extrh_i64_i32) DO_NARROW_3D(VRADDHN, add, narrow_round, gen_narrow_round_high_u32) DO_NARROW_3D(VRSUBHN, sub, narrow_round, gen_narrow_round_high_u32) static bool do_long_3d(DisasContext *s, arg_3diff *a, NeonGenTwoOpWidenFn *opfn, NeonGenTwo64OpFn *accfn) { /* * 3-regs different lengths, long operations. * These perform an operation on two inputs that returns a double-width * result, and then possibly perform an accumulation operation of * that result into the double-width destination. */ TCGv_i64 rd0, rd1, tmp; TCGv_i32 rn, rm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* size == 3 case, which is an entirely different insn group */ return false; } if (a->vd & 1) { return false; } if (!vfp_access_check(s)) { return true; } rd0 = tcg_temp_new_i64(); rd1 = tcg_temp_new_i64(); rn = tcg_temp_new_i32(); rm = tcg_temp_new_i32(); read_neon_element32(rn, a->vn, 0, MO_32); read_neon_element32(rm, a->vm, 0, MO_32); opfn(rd0, rn, rm); read_neon_element32(rn, a->vn, 1, MO_32); read_neon_element32(rm, a->vm, 1, MO_32); opfn(rd1, rn, rm); /* Don't store results until after all loads: they might overlap */ if (accfn) { tmp = tcg_temp_new_i64(); read_neon_element64(tmp, a->vd, 0, MO_64); accfn(rd0, tmp, rd0); read_neon_element64(tmp, a->vd, 1, MO_64); accfn(rd1, tmp, rd1); } write_neon_element64(rd0, a->vd, 0, MO_64); write_neon_element64(rd1, a->vd, 1, MO_64); return true; } static bool trans_VABDL_S_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_s16, gen_helper_neon_abdl_s32, gen_helper_neon_abdl_s64, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static bool trans_VABDL_U_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_u16, gen_helper_neon_abdl_u32, gen_helper_neon_abdl_u64, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static bool trans_VABAL_S_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_s16, gen_helper_neon_abdl_s32, gen_helper_neon_abdl_s64, NULL, }; static NeonGenTwo64OpFn * const addfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_long_3d(s, a, opfn[a->size], addfn[a->size]); } static bool trans_VABAL_U_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_abdl_u16, gen_helper_neon_abdl_u32, gen_helper_neon_abdl_u64, NULL, }; static NeonGenTwo64OpFn * const addfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_long_3d(s, a, opfn[a->size], addfn[a->size]); } static void gen_mull_s32(TCGv_i64 rd, TCGv_i32 rn, TCGv_i32 rm) { TCGv_i32 lo = tcg_temp_new_i32(); TCGv_i32 hi = tcg_temp_new_i32(); tcg_gen_muls2_i32(lo, hi, rn, rm); tcg_gen_concat_i32_i64(rd, lo, hi); } static void gen_mull_u32(TCGv_i64 rd, TCGv_i32 rn, TCGv_i32 rm) { TCGv_i32 lo = tcg_temp_new_i32(); TCGv_i32 hi = tcg_temp_new_i32(); tcg_gen_mulu2_i32(lo, hi, rn, rm); tcg_gen_concat_i32_i64(rd, lo, hi); } static bool trans_VMULL_S_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_mull_s8, gen_helper_neon_mull_s16, gen_mull_s32, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static bool trans_VMULL_U_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { gen_helper_neon_mull_u8, gen_helper_neon_mull_u16, gen_mull_u32, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } #define DO_VMLAL(INSN,MULL,ACC) \ static bool trans_##INSN##_3d(DisasContext *s, arg_3diff *a) \ { \ static NeonGenTwoOpWidenFn * const opfn[] = { \ gen_helper_neon_##MULL##8, \ gen_helper_neon_##MULL##16, \ gen_##MULL##32, \ NULL, \ }; \ static NeonGenTwo64OpFn * const accfn[] = { \ gen_helper_neon_##ACC##l_u16, \ gen_helper_neon_##ACC##l_u32, \ tcg_gen_##ACC##_i64, \ NULL, \ }; \ return do_long_3d(s, a, opfn[a->size], accfn[a->size]); \ } DO_VMLAL(VMLAL_S,mull_s,add) DO_VMLAL(VMLAL_U,mull_u,add) DO_VMLAL(VMLSL_S,mull_s,sub) DO_VMLAL(VMLSL_U,mull_u,sub) static void gen_VQDMULL_16(TCGv_i64 rd, TCGv_i32 rn, TCGv_i32 rm) { gen_helper_neon_mull_s16(rd, rn, rm); gen_helper_neon_addl_saturate_s32(rd, cpu_env, rd, rd); } static void gen_VQDMULL_32(TCGv_i64 rd, TCGv_i32 rn, TCGv_i32 rm) { gen_mull_s32(rd, rn, rm); gen_helper_neon_addl_saturate_s64(rd, cpu_env, rd, rd); } static bool trans_VQDMULL_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; return do_long_3d(s, a, opfn[a->size], NULL); } static void gen_VQDMLAL_acc_16(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { gen_helper_neon_addl_saturate_s32(rd, cpu_env, rn, rm); } static void gen_VQDMLAL_acc_32(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { gen_helper_neon_addl_saturate_s64(rd, cpu_env, rn, rm); } static bool trans_VQDMLAL_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { NULL, gen_VQDMLAL_acc_16, gen_VQDMLAL_acc_32, NULL, }; return do_long_3d(s, a, opfn[a->size], accfn[a->size]); } static void gen_VQDMLSL_acc_16(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { gen_helper_neon_negl_u32(rm, rm); gen_helper_neon_addl_saturate_s32(rd, cpu_env, rn, rm); } static void gen_VQDMLSL_acc_32(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { tcg_gen_neg_i64(rm, rm); gen_helper_neon_addl_saturate_s64(rd, cpu_env, rn, rm); } static bool trans_VQDMLSL_3d(DisasContext *s, arg_3diff *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { NULL, gen_VQDMLSL_acc_16, gen_VQDMLSL_acc_32, NULL, }; return do_long_3d(s, a, opfn[a->size], accfn[a->size]); } static bool trans_VMULL_P_3d(DisasContext *s, arg_3diff *a) { gen_helper_gvec_3 *fn_gvec; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (a->vd & 1) { return false; } switch (a->size) { case 0: fn_gvec = gen_helper_neon_pmull_h; break; case 2: if (!dc_isar_feature(aa32_pmull, s)) { return false; } fn_gvec = gen_helper_gvec_pmull_q; break; default: return false; } if (!vfp_access_check(s)) { return true; } tcg_gen_gvec_3_ool(neon_full_reg_offset(a->vd), neon_full_reg_offset(a->vn), neon_full_reg_offset(a->vm), 16, 16, 0, fn_gvec); return true; } static void gen_neon_dup_low16(TCGv_i32 var) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_ext16u_i32(var, var); tcg_gen_shli_i32(tmp, var, 16); tcg_gen_or_i32(var, var, tmp); } static void gen_neon_dup_high16(TCGv_i32 var) { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_andi_i32(var, var, 0xffff0000); tcg_gen_shri_i32(tmp, var, 16); tcg_gen_or_i32(var, var, tmp); } static inline TCGv_i32 neon_get_scalar(int size, int reg) { TCGv_i32 tmp = tcg_temp_new_i32(); if (size == MO_16) { read_neon_element32(tmp, reg & 7, reg >> 4, MO_32); if (reg & 8) { gen_neon_dup_high16(tmp); } else { gen_neon_dup_low16(tmp); } } else { read_neon_element32(tmp, reg & 15, reg >> 4, MO_32); } return tmp; } static bool do_2scalar(DisasContext *s, arg_2scalar *a, NeonGenTwoOpFn *opfn, NeonGenTwoOpFn *accfn) { /* * Two registers and a scalar: perform an operation between * the input elements and the scalar, and then possibly * perform an accumulation operation of that result into the * destination. */ TCGv_i32 scalar, tmp; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* Bad size (including size == 3, which is a different insn group) */ return false; } if (a->q && ((a->vd | a->vn) & 1)) { return false; } if (!vfp_access_check(s)) { return true; } scalar = neon_get_scalar(a->size, a->vm); tmp = tcg_temp_new_i32(); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { read_neon_element32(tmp, a->vn, pass, MO_32); opfn(tmp, tmp, scalar); if (accfn) { TCGv_i32 rd = tcg_temp_new_i32(); read_neon_element32(rd, a->vd, pass, MO_32); accfn(tmp, rd, tmp); } write_neon_element32(tmp, a->vd, pass, MO_32); } return true; } static bool trans_VMUL_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpFn * const opfn[] = { NULL, gen_helper_neon_mul_u16, tcg_gen_mul_i32, NULL, }; return do_2scalar(s, a, opfn[a->size], NULL); } static bool trans_VMLA_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpFn * const opfn[] = { NULL, gen_helper_neon_mul_u16, tcg_gen_mul_i32, NULL, }; static NeonGenTwoOpFn * const accfn[] = { NULL, gen_helper_neon_add_u16, tcg_gen_add_i32, NULL, }; return do_2scalar(s, a, opfn[a->size], accfn[a->size]); } static bool trans_VMLS_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpFn * const opfn[] = { NULL, gen_helper_neon_mul_u16, tcg_gen_mul_i32, NULL, }; static NeonGenTwoOpFn * const accfn[] = { NULL, gen_helper_neon_sub_u16, tcg_gen_sub_i32, NULL, }; return do_2scalar(s, a, opfn[a->size], accfn[a->size]); } static bool do_2scalar_fp_vec(DisasContext *s, arg_2scalar *a, gen_helper_gvec_3_ptr *fn) { /* Two registers and a scalar, using gvec */ int vec_size = a->q ? 16 : 8; int rd_ofs = neon_full_reg_offset(a->vd); int rn_ofs = neon_full_reg_offset(a->vn); int rm_ofs; int idx; TCGv_ptr fpstatus; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!fn) { /* Bad size (including size == 3, which is a different insn group) */ return false; } if (a->q && ((a->vd | a->vn) & 1)) { return false; } if (!vfp_access_check(s)) { return true; } /* a->vm is M:Vm, which encodes both register and index */ idx = extract32(a->vm, a->size + 2, 2); a->vm = extract32(a->vm, 0, a->size + 2); rm_ofs = neon_full_reg_offset(a->vm); fpstatus = fpstatus_ptr(a->size == 1 ? FPST_STD_F16 : FPST_STD); tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, fpstatus, vec_size, vec_size, idx, fn); return true; } #define DO_VMUL_F_2sc(NAME, FUNC) \ static bool trans_##NAME##_F_2sc(DisasContext *s, arg_2scalar *a) \ { \ static gen_helper_gvec_3_ptr * const opfn[] = { \ NULL, \ gen_helper_##FUNC##_h, \ gen_helper_##FUNC##_s, \ NULL, \ }; \ if (a->size == MO_16 && !dc_isar_feature(aa32_fp16_arith, s)) { \ return false; \ } \ return do_2scalar_fp_vec(s, a, opfn[a->size]); \ } DO_VMUL_F_2sc(VMUL, gvec_fmul_idx) DO_VMUL_F_2sc(VMLA, gvec_fmla_nf_idx) DO_VMUL_F_2sc(VMLS, gvec_fmls_nf_idx) WRAP_ENV_FN(gen_VQDMULH_16, gen_helper_neon_qdmulh_s16) WRAP_ENV_FN(gen_VQDMULH_32, gen_helper_neon_qdmulh_s32) WRAP_ENV_FN(gen_VQRDMULH_16, gen_helper_neon_qrdmulh_s16) WRAP_ENV_FN(gen_VQRDMULH_32, gen_helper_neon_qrdmulh_s32) static bool trans_VQDMULH_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpFn * const opfn[] = { NULL, gen_VQDMULH_16, gen_VQDMULH_32, NULL, }; return do_2scalar(s, a, opfn[a->size], NULL); } static bool trans_VQRDMULH_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpFn * const opfn[] = { NULL, gen_VQRDMULH_16, gen_VQRDMULH_32, NULL, }; return do_2scalar(s, a, opfn[a->size], NULL); } static bool do_vqrdmlah_2sc(DisasContext *s, arg_2scalar *a, NeonGenThreeOpEnvFn *opfn) { /* * VQRDMLAH/VQRDMLSH: this is like do_2scalar, but the opfn * performs a kind of fused op-then-accumulate using a helper * function that takes all of rd, rn and the scalar at once. */ TCGv_i32 scalar, rn, rd; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } if (!dc_isar_feature(aa32_rdm, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* Bad size (including size == 3, which is a different insn group) */ return false; } if (a->q && ((a->vd | a->vn) & 1)) { return false; } if (!vfp_access_check(s)) { return true; } scalar = neon_get_scalar(a->size, a->vm); rn = tcg_temp_new_i32(); rd = tcg_temp_new_i32(); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { read_neon_element32(rn, a->vn, pass, MO_32); read_neon_element32(rd, a->vd, pass, MO_32); opfn(rd, cpu_env, rn, scalar, rd); write_neon_element32(rd, a->vd, pass, MO_32); } return true; } static bool trans_VQRDMLAH_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenThreeOpEnvFn *opfn[] = { NULL, gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32, NULL, }; return do_vqrdmlah_2sc(s, a, opfn[a->size]); } static bool trans_VQRDMLSH_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenThreeOpEnvFn *opfn[] = { NULL, gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32, NULL, }; return do_vqrdmlah_2sc(s, a, opfn[a->size]); } static bool do_2scalar_long(DisasContext *s, arg_2scalar *a, NeonGenTwoOpWidenFn *opfn, NeonGenTwo64OpFn *accfn) { /* * Two registers and a scalar, long operations: perform an * operation on the input elements and the scalar which produces * a double-width result, and then possibly perform an accumulation * operation of that result into the destination. */ TCGv_i32 scalar, rn; TCGv_i64 rn0_64, rn1_64; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!opfn) { /* Bad size (including size == 3, which is a different insn group) */ return false; } if (a->vd & 1) { return false; } if (!vfp_access_check(s)) { return true; } scalar = neon_get_scalar(a->size, a->vm); /* Load all inputs before writing any outputs, in case of overlap */ rn = tcg_temp_new_i32(); read_neon_element32(rn, a->vn, 0, MO_32); rn0_64 = tcg_temp_new_i64(); opfn(rn0_64, rn, scalar); read_neon_element32(rn, a->vn, 1, MO_32); rn1_64 = tcg_temp_new_i64(); opfn(rn1_64, rn, scalar); if (accfn) { TCGv_i64 t64 = tcg_temp_new_i64(); read_neon_element64(t64, a->vd, 0, MO_64); accfn(rn0_64, t64, rn0_64); read_neon_element64(t64, a->vd, 1, MO_64); accfn(rn1_64, t64, rn1_64); } write_neon_element64(rn0_64, a->vd, 0, MO_64); write_neon_element64(rn1_64, a->vd, 1, MO_64); return true; } static bool trans_VMULL_S_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_helper_neon_mull_s16, gen_mull_s32, NULL, }; return do_2scalar_long(s, a, opfn[a->size], NULL); } static bool trans_VMULL_U_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_helper_neon_mull_u16, gen_mull_u32, NULL, }; return do_2scalar_long(s, a, opfn[a->size], NULL); } #define DO_VMLAL_2SC(INSN, MULL, ACC) \ static bool trans_##INSN##_2sc(DisasContext *s, arg_2scalar *a) \ { \ static NeonGenTwoOpWidenFn * const opfn[] = { \ NULL, \ gen_helper_neon_##MULL##16, \ gen_##MULL##32, \ NULL, \ }; \ static NeonGenTwo64OpFn * const accfn[] = { \ NULL, \ gen_helper_neon_##ACC##l_u32, \ tcg_gen_##ACC##_i64, \ NULL, \ }; \ return do_2scalar_long(s, a, opfn[a->size], accfn[a->size]); \ } DO_VMLAL_2SC(VMLAL_S, mull_s, add) DO_VMLAL_2SC(VMLAL_U, mull_u, add) DO_VMLAL_2SC(VMLSL_S, mull_s, sub) DO_VMLAL_2SC(VMLSL_U, mull_u, sub) static bool trans_VQDMULL_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; return do_2scalar_long(s, a, opfn[a->size], NULL); } static bool trans_VQDMLAL_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { NULL, gen_VQDMLAL_acc_16, gen_VQDMLAL_acc_32, NULL, }; return do_2scalar_long(s, a, opfn[a->size], accfn[a->size]); } static bool trans_VQDMLSL_2sc(DisasContext *s, arg_2scalar *a) { static NeonGenTwoOpWidenFn * const opfn[] = { NULL, gen_VQDMULL_16, gen_VQDMULL_32, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { NULL, gen_VQDMLSL_acc_16, gen_VQDMLSL_acc_32, NULL, }; return do_2scalar_long(s, a, opfn[a->size], accfn[a->size]); } static bool trans_VEXT(DisasContext *s, arg_VEXT *a) { if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn | a->vm | a->vd) & a->q) { return false; } if (a->imm > 7 && !a->q) { return false; } if (!vfp_access_check(s)) { return true; } if (!a->q) { /* Extract 64 bits from <Vm:Vn> */ TCGv_i64 left, right, dest; left = tcg_temp_new_i64(); right = tcg_temp_new_i64(); dest = tcg_temp_new_i64(); read_neon_element64(right, a->vn, 0, MO_64); read_neon_element64(left, a->vm, 0, MO_64); tcg_gen_extract2_i64(dest, right, left, a->imm * 8); write_neon_element64(dest, a->vd, 0, MO_64); } else { /* Extract 128 bits from <Vm+1:Vm:Vn+1:Vn> */ TCGv_i64 left, middle, right, destleft, destright; left = tcg_temp_new_i64(); middle = tcg_temp_new_i64(); right = tcg_temp_new_i64(); destleft = tcg_temp_new_i64(); destright = tcg_temp_new_i64(); if (a->imm < 8) { read_neon_element64(right, a->vn, 0, MO_64); read_neon_element64(middle, a->vn, 1, MO_64); tcg_gen_extract2_i64(destright, right, middle, a->imm * 8); read_neon_element64(left, a->vm, 0, MO_64); tcg_gen_extract2_i64(destleft, middle, left, a->imm * 8); } else { read_neon_element64(right, a->vn, 1, MO_64); read_neon_element64(middle, a->vm, 0, MO_64); tcg_gen_extract2_i64(destright, right, middle, (a->imm - 8) * 8); read_neon_element64(left, a->vm, 1, MO_64); tcg_gen_extract2_i64(destleft, middle, left, (a->imm - 8) * 8); } write_neon_element64(destright, a->vd, 0, MO_64); write_neon_element64(destleft, a->vd, 1, MO_64); } return true; } static bool trans_VTBL(DisasContext *s, arg_VTBL *a) { TCGv_i64 val, def; TCGv_i32 desc; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if ((a->vn + a->len + 1) > 32) { /* * This is UNPREDICTABLE; we choose to UNDEF to avoid the * helper function running off the end of the register file. */ return false; } if (!vfp_access_check(s)) { return true; } desc = tcg_constant_i32((a->vn << 2) | a->len); def = tcg_temp_new_i64(); if (a->op) { read_neon_element64(def, a->vd, 0, MO_64); } else { tcg_gen_movi_i64(def, 0); } val = tcg_temp_new_i64(); read_neon_element64(val, a->vm, 0, MO_64); gen_helper_neon_tbl(val, cpu_env, desc, val, def); write_neon_element64(val, a->vd, 0, MO_64); return true; } static bool trans_VDUP_scalar(DisasContext *s, arg_VDUP_scalar *a) { if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vd & a->q) { return false; } if (!vfp_access_check(s)) { return true; } tcg_gen_gvec_dup_mem(a->size, neon_full_reg_offset(a->vd), neon_element_offset(a->vm, a->index, a->size), a->q ? 16 : 8, a->q ? 16 : 8); return true; } static bool trans_VREV64(DisasContext *s, arg_VREV64 *a) { int pass, half; TCGv_i32 tmp[2]; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (a->size == 3) { return false; } if (!vfp_access_check(s)) { return true; } tmp[0] = tcg_temp_new_i32(); tmp[1] = tcg_temp_new_i32(); for (pass = 0; pass < (a->q ? 2 : 1); pass++) { for (half = 0; half < 2; half++) { read_neon_element32(tmp[half], a->vm, pass * 2 + half, MO_32); switch (a->size) { case 0: tcg_gen_bswap32_i32(tmp[half], tmp[half]); break; case 1: gen_swap_half(tmp[half], tmp[half]); break; case 2: break; default: g_assert_not_reached(); } } write_neon_element32(tmp[1], a->vd, pass * 2, MO_32); write_neon_element32(tmp[0], a->vd, pass * 2 + 1, MO_32); } return true; } static bool do_2misc_pairwise(DisasContext *s, arg_2misc *a, NeonGenWidenFn *widenfn, NeonGenTwo64OpFn *opfn, NeonGenTwo64OpFn *accfn) { /* * Pairwise long operations: widen both halves of the pair, * combine the pairs with the opfn, and then possibly accumulate * into the destination with the accfn. */ int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (!widenfn) { return false; } if (!vfp_access_check(s)) { return true; } for (pass = 0; pass < a->q + 1; pass++) { TCGv_i32 tmp; TCGv_i64 rm0_64, rm1_64, rd_64; rm0_64 = tcg_temp_new_i64(); rm1_64 = tcg_temp_new_i64(); rd_64 = tcg_temp_new_i64(); tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vm, pass * 2, MO_32); widenfn(rm0_64, tmp); read_neon_element32(tmp, a->vm, pass * 2 + 1, MO_32); widenfn(rm1_64, tmp); opfn(rd_64, rm0_64, rm1_64); if (accfn) { TCGv_i64 tmp64 = tcg_temp_new_i64(); read_neon_element64(tmp64, a->vd, pass, MO_64); accfn(rd_64, tmp64, rd_64); } write_neon_element64(rd_64, a->vd, pass, MO_64); } return true; } static bool trans_VPADDL_S(DisasContext *s, arg_2misc *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_s8, gen_helper_neon_widen_s16, tcg_gen_ext_i32_i64, NULL, }; static NeonGenTwo64OpFn * const opfn[] = { gen_helper_neon_paddl_u16, gen_helper_neon_paddl_u32, tcg_gen_add_i64, NULL, }; return do_2misc_pairwise(s, a, widenfn[a->size], opfn[a->size], NULL); } static bool trans_VPADDL_U(DisasContext *s, arg_2misc *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, NULL, }; static NeonGenTwo64OpFn * const opfn[] = { gen_helper_neon_paddl_u16, gen_helper_neon_paddl_u32, tcg_gen_add_i64, NULL, }; return do_2misc_pairwise(s, a, widenfn[a->size], opfn[a->size], NULL); } static bool trans_VPADAL_S(DisasContext *s, arg_2misc *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_s8, gen_helper_neon_widen_s16, tcg_gen_ext_i32_i64, NULL, }; static NeonGenTwo64OpFn * const opfn[] = { gen_helper_neon_paddl_u16, gen_helper_neon_paddl_u32, tcg_gen_add_i64, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_2misc_pairwise(s, a, widenfn[a->size], opfn[a->size], accfn[a->size]); } static bool trans_VPADAL_U(DisasContext *s, arg_2misc *a) { static NeonGenWidenFn * const widenfn[] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, NULL, }; static NeonGenTwo64OpFn * const opfn[] = { gen_helper_neon_paddl_u16, gen_helper_neon_paddl_u32, tcg_gen_add_i64, NULL, }; static NeonGenTwo64OpFn * const accfn[] = { gen_helper_neon_addl_u16, gen_helper_neon_addl_u32, tcg_gen_add_i64, NULL, }; return do_2misc_pairwise(s, a, widenfn[a->size], opfn[a->size], accfn[a->size]); } typedef void ZipFn(TCGv_ptr, TCGv_ptr); static bool do_zip_uzp(DisasContext *s, arg_2misc *a, ZipFn *fn) { TCGv_ptr pd, pm; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (!fn) { /* Bad size or size/q combination */ return false; } if (!vfp_access_check(s)) { return true; } pd = vfp_reg_ptr(true, a->vd); pm = vfp_reg_ptr(true, a->vm); fn(pd, pm); return true; } static bool trans_VUZP(DisasContext *s, arg_2misc *a) { static ZipFn * const fn[2][4] = { { gen_helper_neon_unzip8, gen_helper_neon_unzip16, NULL, NULL, }, { gen_helper_neon_qunzip8, gen_helper_neon_qunzip16, gen_helper_neon_qunzip32, NULL, } }; return do_zip_uzp(s, a, fn[a->q][a->size]); } static bool trans_VZIP(DisasContext *s, arg_2misc *a) { static ZipFn * const fn[2][4] = { { gen_helper_neon_zip8, gen_helper_neon_zip16, NULL, NULL, }, { gen_helper_neon_qzip8, gen_helper_neon_qzip16, gen_helper_neon_qzip32, NULL, } }; return do_zip_uzp(s, a, fn[a->q][a->size]); } static bool do_vmovn(DisasContext *s, arg_2misc *a, NeonGenNarrowEnvFn *narrowfn) { TCGv_i64 rm; TCGv_i32 rd0, rd1; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vm & 1) { return false; } if (!narrowfn) { return false; } if (!vfp_access_check(s)) { return true; } rm = tcg_temp_new_i64(); rd0 = tcg_temp_new_i32(); rd1 = tcg_temp_new_i32(); read_neon_element64(rm, a->vm, 0, MO_64); narrowfn(rd0, cpu_env, rm); read_neon_element64(rm, a->vm, 1, MO_64); narrowfn(rd1, cpu_env, rm); write_neon_element32(rd0, a->vd, 0, MO_32); write_neon_element32(rd1, a->vd, 1, MO_32); return true; } #define DO_VMOVN(INSN, FUNC) \ static bool trans_##INSN(DisasContext *s, arg_2misc *a) \ { \ static NeonGenNarrowEnvFn * const narrowfn[] = { \ FUNC##8, \ FUNC##16, \ FUNC##32, \ NULL, \ }; \ return do_vmovn(s, a, narrowfn[a->size]); \ } DO_VMOVN(VMOVN, gen_neon_narrow_u) DO_VMOVN(VQMOVUN, gen_helper_neon_unarrow_sat) DO_VMOVN(VQMOVN_S, gen_helper_neon_narrow_sat_s) DO_VMOVN(VQMOVN_U, gen_helper_neon_narrow_sat_u) static bool trans_VSHLL(DisasContext *s, arg_2misc *a) { TCGv_i32 rm0, rm1; TCGv_i64 rd; static NeonGenWidenFn * const widenfns[] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, NULL, }; NeonGenWidenFn *widenfn = widenfns[a->size]; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->vd & 1) { return false; } if (!widenfn) { return false; } if (!vfp_access_check(s)) { return true; } rd = tcg_temp_new_i64(); rm0 = tcg_temp_new_i32(); rm1 = tcg_temp_new_i32(); read_neon_element32(rm0, a->vm, 0, MO_32); read_neon_element32(rm1, a->vm, 1, MO_32); widenfn(rd, rm0); tcg_gen_shli_i64(rd, rd, 8 << a->size); write_neon_element64(rd, a->vd, 0, MO_64); widenfn(rd, rm1); tcg_gen_shli_i64(rd, rd, 8 << a->size); write_neon_element64(rd, a->vd, 1, MO_64); return true; } static bool trans_VCVT_B16_F32(DisasContext *s, arg_2misc *a) { TCGv_ptr fpst; TCGv_i64 tmp; TCGv_i32 dst0, dst1; if (!dc_isar_feature(aa32_bf16, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm & 1) || (a->size != 1)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_STD); tmp = tcg_temp_new_i64(); dst0 = tcg_temp_new_i32(); dst1 = tcg_temp_new_i32(); read_neon_element64(tmp, a->vm, 0, MO_64); gen_helper_bfcvt_pair(dst0, tmp, fpst); read_neon_element64(tmp, a->vm, 1, MO_64); gen_helper_bfcvt_pair(dst1, tmp, fpst); write_neon_element32(dst0, a->vd, 0, MO_32); write_neon_element32(dst1, a->vd, 1, MO_32); return true; } static bool trans_VCVT_F16_F32(DisasContext *s, arg_2misc *a) { TCGv_ptr fpst; TCGv_i32 ahp, tmp, tmp2, tmp3; if (!arm_dc_feature(s, ARM_FEATURE_NEON) || !dc_isar_feature(aa32_fp16_spconv, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vm & 1) || (a->size != 1)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_STD); ahp = get_ahp_flag(); tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vm, 0, MO_32); gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp); tmp2 = tcg_temp_new_i32(); read_neon_element32(tmp2, a->vm, 1, MO_32); gen_helper_vfp_fcvt_f32_to_f16(tmp2, tmp2, fpst, ahp); tcg_gen_shli_i32(tmp2, tmp2, 16); tcg_gen_or_i32(tmp2, tmp2, tmp); read_neon_element32(tmp, a->vm, 2, MO_32); gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp); tmp3 = tcg_temp_new_i32(); read_neon_element32(tmp3, a->vm, 3, MO_32); write_neon_element32(tmp2, a->vd, 0, MO_32); gen_helper_vfp_fcvt_f32_to_f16(tmp3, tmp3, fpst, ahp); tcg_gen_shli_i32(tmp3, tmp3, 16); tcg_gen_or_i32(tmp3, tmp3, tmp); write_neon_element32(tmp3, a->vd, 1, MO_32); return true; } static bool trans_VCVT_F32_F16(DisasContext *s, arg_2misc *a) { TCGv_ptr fpst; TCGv_i32 ahp, tmp, tmp2, tmp3; if (!arm_dc_feature(s, ARM_FEATURE_NEON) || !dc_isar_feature(aa32_fp16_spconv, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vd & 1) || (a->size != 1)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_STD); ahp = get_ahp_flag(); tmp3 = tcg_temp_new_i32(); tmp2 = tcg_temp_new_i32(); tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vm, 0, MO_32); read_neon_element32(tmp2, a->vm, 1, MO_32); tcg_gen_ext16u_i32(tmp3, tmp); gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp); write_neon_element32(tmp3, a->vd, 0, MO_32); tcg_gen_shri_i32(tmp, tmp, 16); gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp); write_neon_element32(tmp, a->vd, 1, MO_32); tcg_gen_ext16u_i32(tmp3, tmp2); gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp); write_neon_element32(tmp3, a->vd, 2, MO_32); tcg_gen_shri_i32(tmp2, tmp2, 16); gen_helper_vfp_fcvt_f16_to_f32(tmp2, tmp2, fpst, ahp); write_neon_element32(tmp2, a->vd, 3, MO_32); return true; } static bool do_2misc_vec(DisasContext *s, arg_2misc *a, GVecGen2Fn *fn) { int vec_size = a->q ? 16 : 8; int rd_ofs = neon_full_reg_offset(a->vd); int rm_ofs = neon_full_reg_offset(a->vm); if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->size == 3) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } fn(a->size, rd_ofs, rm_ofs, vec_size, vec_size); return true; } #define DO_2MISC_VEC(INSN, FN) \ static bool trans_##INSN(DisasContext *s, arg_2misc *a) \ { \ return do_2misc_vec(s, a, FN); \ } DO_2MISC_VEC(VNEG, tcg_gen_gvec_neg) DO_2MISC_VEC(VABS, tcg_gen_gvec_abs) DO_2MISC_VEC(VCEQ0, gen_gvec_ceq0) DO_2MISC_VEC(VCGT0, gen_gvec_cgt0) DO_2MISC_VEC(VCLE0, gen_gvec_cle0) DO_2MISC_VEC(VCGE0, gen_gvec_cge0) DO_2MISC_VEC(VCLT0, gen_gvec_clt0) static bool trans_VMVN(DisasContext *s, arg_2misc *a) { if (a->size != 0) { return false; } return do_2misc_vec(s, a, tcg_gen_gvec_not); } #define WRAP_2M_3_OOL_FN(WRAPNAME, FUNC, DATA) \ static void WRAPNAME(unsigned vece, uint32_t rd_ofs, \ uint32_t rm_ofs, uint32_t oprsz, \ uint32_t maxsz) \ { \ tcg_gen_gvec_3_ool(rd_ofs, rd_ofs, rm_ofs, oprsz, maxsz, \ DATA, FUNC); \ } #define WRAP_2M_2_OOL_FN(WRAPNAME, FUNC, DATA) \ static void WRAPNAME(unsigned vece, uint32_t rd_ofs, \ uint32_t rm_ofs, uint32_t oprsz, \ uint32_t maxsz) \ { \ tcg_gen_gvec_2_ool(rd_ofs, rm_ofs, oprsz, maxsz, DATA, FUNC); \ } WRAP_2M_3_OOL_FN(gen_AESE, gen_helper_crypto_aese, 0) WRAP_2M_3_OOL_FN(gen_AESD, gen_helper_crypto_aese, 1) WRAP_2M_2_OOL_FN(gen_AESMC, gen_helper_crypto_aesmc, 0) WRAP_2M_2_OOL_FN(gen_AESIMC, gen_helper_crypto_aesmc, 1) WRAP_2M_2_OOL_FN(gen_SHA1H, gen_helper_crypto_sha1h, 0) WRAP_2M_2_OOL_FN(gen_SHA1SU1, gen_helper_crypto_sha1su1, 0) WRAP_2M_2_OOL_FN(gen_SHA256SU0, gen_helper_crypto_sha256su0, 0) #define DO_2M_CRYPTO(INSN, FEATURE, SIZE) \ static bool trans_##INSN(DisasContext *s, arg_2misc *a) \ { \ if (!dc_isar_feature(FEATURE, s) || a->size != SIZE) { \ return false; \ } \ return do_2misc_vec(s, a, gen_##INSN); \ } DO_2M_CRYPTO(AESE, aa32_aes, 0) DO_2M_CRYPTO(AESD, aa32_aes, 0) DO_2M_CRYPTO(AESMC, aa32_aes, 0) DO_2M_CRYPTO(AESIMC, aa32_aes, 0) DO_2M_CRYPTO(SHA1H, aa32_sha1, 2) DO_2M_CRYPTO(SHA1SU1, aa32_sha1, 2) DO_2M_CRYPTO(SHA256SU0, aa32_sha2, 2) static bool do_2misc(DisasContext *s, arg_2misc *a, NeonGenOneOpFn *fn) { TCGv_i32 tmp; int pass; /* Handle a 2-reg-misc operation by iterating 32 bits at a time */ if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (!fn) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); for (pass = 0; pass < (a->q ? 4 : 2); pass++) { read_neon_element32(tmp, a->vm, pass, MO_32); fn(tmp, tmp); write_neon_element32(tmp, a->vd, pass, MO_32); } return true; } static bool trans_VREV32(DisasContext *s, arg_2misc *a) { static NeonGenOneOpFn * const fn[] = { tcg_gen_bswap32_i32, gen_swap_half, NULL, NULL, }; return do_2misc(s, a, fn[a->size]); } static bool trans_VREV16(DisasContext *s, arg_2misc *a) { if (a->size != 0) { return false; } return do_2misc(s, a, gen_rev16); } static bool trans_VCLS(DisasContext *s, arg_2misc *a) { static NeonGenOneOpFn * const fn[] = { gen_helper_neon_cls_s8, gen_helper_neon_cls_s16, gen_helper_neon_cls_s32, NULL, }; return do_2misc(s, a, fn[a->size]); } static void do_VCLZ_32(TCGv_i32 rd, TCGv_i32 rm) { tcg_gen_clzi_i32(rd, rm, 32); } static bool trans_VCLZ(DisasContext *s, arg_2misc *a) { static NeonGenOneOpFn * const fn[] = { gen_helper_neon_clz_u8, gen_helper_neon_clz_u16, do_VCLZ_32, NULL, }; return do_2misc(s, a, fn[a->size]); } static bool trans_VCNT(DisasContext *s, arg_2misc *a) { if (a->size != 0) { return false; } return do_2misc(s, a, gen_helper_neon_cnt_u8); } static void gen_VABS_F(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_andi(vece, rd_ofs, rm_ofs, vece == MO_16 ? 0x7fff : 0x7fffffff, oprsz, maxsz); } static bool trans_VABS_F(DisasContext *s, arg_2misc *a) { if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } } else if (a->size != MO_32) { return false; } return do_2misc_vec(s, a, gen_VABS_F); } static void gen_VNEG_F(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t oprsz, uint32_t maxsz) { tcg_gen_gvec_xori(vece, rd_ofs, rm_ofs, vece == MO_16 ? 0x8000 : 0x80000000, oprsz, maxsz); } static bool trans_VNEG_F(DisasContext *s, arg_2misc *a) { if (a->size == MO_16) { if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } } else if (a->size != MO_32) { return false; } return do_2misc_vec(s, a, gen_VNEG_F); } static bool trans_VRECPE(DisasContext *s, arg_2misc *a) { if (a->size != 2) { return false; } return do_2misc(s, a, gen_helper_recpe_u32); } static bool trans_VRSQRTE(DisasContext *s, arg_2misc *a) { if (a->size != 2) { return false; } return do_2misc(s, a, gen_helper_rsqrte_u32); } #define WRAP_1OP_ENV_FN(WRAPNAME, FUNC) \ static void WRAPNAME(TCGv_i32 d, TCGv_i32 m) \ { \ FUNC(d, cpu_env, m); \ } WRAP_1OP_ENV_FN(gen_VQABS_s8, gen_helper_neon_qabs_s8) WRAP_1OP_ENV_FN(gen_VQABS_s16, gen_helper_neon_qabs_s16) WRAP_1OP_ENV_FN(gen_VQABS_s32, gen_helper_neon_qabs_s32) WRAP_1OP_ENV_FN(gen_VQNEG_s8, gen_helper_neon_qneg_s8) WRAP_1OP_ENV_FN(gen_VQNEG_s16, gen_helper_neon_qneg_s16) WRAP_1OP_ENV_FN(gen_VQNEG_s32, gen_helper_neon_qneg_s32) static bool trans_VQABS(DisasContext *s, arg_2misc *a) { static NeonGenOneOpFn * const fn[] = { gen_VQABS_s8, gen_VQABS_s16, gen_VQABS_s32, NULL, }; return do_2misc(s, a, fn[a->size]); } static bool trans_VQNEG(DisasContext *s, arg_2misc *a) { static NeonGenOneOpFn * const fn[] = { gen_VQNEG_s8, gen_VQNEG_s16, gen_VQNEG_s32, NULL, }; return do_2misc(s, a, fn[a->size]); } #define DO_2MISC_FP_VEC(INSN, HFUNC, SFUNC) \ static void gen_##INSN(unsigned vece, uint32_t rd_ofs, \ uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static gen_helper_gvec_2_ptr * const fns[4] = { \ NULL, HFUNC, SFUNC, NULL, \ }; \ TCGv_ptr fpst; \ fpst = fpstatus_ptr(vece == MO_16 ? FPST_STD_F16 : FPST_STD); \ tcg_gen_gvec_2_ptr(rd_ofs, rm_ofs, fpst, oprsz, maxsz, 0, \ fns[vece]); \ } \ static bool trans_##INSN(DisasContext *s, arg_2misc *a) \ { \ if (a->size == MO_16) { \ if (!dc_isar_feature(aa32_fp16_arith, s)) { \ return false; \ } \ } else if (a->size != MO_32) { \ return false; \ } \ return do_2misc_vec(s, a, gen_##INSN); \ } DO_2MISC_FP_VEC(VRECPE_F, gen_helper_gvec_frecpe_h, gen_helper_gvec_frecpe_s) DO_2MISC_FP_VEC(VRSQRTE_F, gen_helper_gvec_frsqrte_h, gen_helper_gvec_frsqrte_s) DO_2MISC_FP_VEC(VCGT0_F, gen_helper_gvec_fcgt0_h, gen_helper_gvec_fcgt0_s) DO_2MISC_FP_VEC(VCGE0_F, gen_helper_gvec_fcge0_h, gen_helper_gvec_fcge0_s) DO_2MISC_FP_VEC(VCEQ0_F, gen_helper_gvec_fceq0_h, gen_helper_gvec_fceq0_s) DO_2MISC_FP_VEC(VCLT0_F, gen_helper_gvec_fclt0_h, gen_helper_gvec_fclt0_s) DO_2MISC_FP_VEC(VCLE0_F, gen_helper_gvec_fcle0_h, gen_helper_gvec_fcle0_s) DO_2MISC_FP_VEC(VCVT_FS, gen_helper_gvec_sstoh, gen_helper_gvec_sitos) DO_2MISC_FP_VEC(VCVT_FU, gen_helper_gvec_ustoh, gen_helper_gvec_uitos) DO_2MISC_FP_VEC(VCVT_SF, gen_helper_gvec_tosszh, gen_helper_gvec_tosizs) DO_2MISC_FP_VEC(VCVT_UF, gen_helper_gvec_touszh, gen_helper_gvec_touizs) DO_2MISC_FP_VEC(VRINTX_impl, gen_helper_gvec_vrintx_h, gen_helper_gvec_vrintx_s) static bool trans_VRINTX(DisasContext *s, arg_2misc *a) { if (!arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } return trans_VRINTX_impl(s, a); } #define DO_VEC_RMODE(INSN, RMODE, OP) \ static void gen_##INSN(unsigned vece, uint32_t rd_ofs, \ uint32_t rm_ofs, \ uint32_t oprsz, uint32_t maxsz) \ { \ static gen_helper_gvec_2_ptr * const fns[4] = { \ NULL, \ gen_helper_gvec_##OP##h, \ gen_helper_gvec_##OP##s, \ NULL, \ }; \ TCGv_ptr fpst; \ fpst = fpstatus_ptr(vece == 1 ? FPST_STD_F16 : FPST_STD); \ tcg_gen_gvec_2_ptr(rd_ofs, rm_ofs, fpst, oprsz, maxsz, \ arm_rmode_to_sf(RMODE), fns[vece]); \ } \ static bool trans_##INSN(DisasContext *s, arg_2misc *a) \ { \ if (!arm_dc_feature(s, ARM_FEATURE_V8)) { \ return false; \ } \ if (a->size == MO_16) { \ if (!dc_isar_feature(aa32_fp16_arith, s)) { \ return false; \ } \ } else if (a->size != MO_32) { \ return false; \ } \ return do_2misc_vec(s, a, gen_##INSN); \ } DO_VEC_RMODE(VCVTAU, FPROUNDING_TIEAWAY, vcvt_rm_u) DO_VEC_RMODE(VCVTAS, FPROUNDING_TIEAWAY, vcvt_rm_s) DO_VEC_RMODE(VCVTNU, FPROUNDING_TIEEVEN, vcvt_rm_u) DO_VEC_RMODE(VCVTNS, FPROUNDING_TIEEVEN, vcvt_rm_s) DO_VEC_RMODE(VCVTPU, FPROUNDING_POSINF, vcvt_rm_u) DO_VEC_RMODE(VCVTPS, FPROUNDING_POSINF, vcvt_rm_s) DO_VEC_RMODE(VCVTMU, FPROUNDING_NEGINF, vcvt_rm_u) DO_VEC_RMODE(VCVTMS, FPROUNDING_NEGINF, vcvt_rm_s) DO_VEC_RMODE(VRINTN, FPROUNDING_TIEEVEN, vrint_rm_) DO_VEC_RMODE(VRINTA, FPROUNDING_TIEAWAY, vrint_rm_) DO_VEC_RMODE(VRINTZ, FPROUNDING_ZERO, vrint_rm_) DO_VEC_RMODE(VRINTM, FPROUNDING_NEGINF, vrint_rm_) DO_VEC_RMODE(VRINTP, FPROUNDING_POSINF, vrint_rm_) static bool trans_VSWP(DisasContext *s, arg_2misc *a) { TCGv_i64 rm, rd; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (a->size != 0) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (!vfp_access_check(s)) { return true; } rm = tcg_temp_new_i64(); rd = tcg_temp_new_i64(); for (pass = 0; pass < (a->q ? 2 : 1); pass++) { read_neon_element64(rm, a->vm, pass, MO_64); read_neon_element64(rd, a->vd, pass, MO_64); write_neon_element64(rm, a->vd, pass, MO_64); write_neon_element64(rd, a->vm, pass, MO_64); } return true; } static void gen_neon_trn_u8(TCGv_i32 t0, TCGv_i32 t1) { TCGv_i32 rd, tmp; rd = tcg_temp_new_i32(); tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(rd, t0, 8); tcg_gen_andi_i32(rd, rd, 0xff00ff00); tcg_gen_andi_i32(tmp, t1, 0x00ff00ff); tcg_gen_or_i32(rd, rd, tmp); tcg_gen_shri_i32(t1, t1, 8); tcg_gen_andi_i32(t1, t1, 0x00ff00ff); tcg_gen_andi_i32(tmp, t0, 0xff00ff00); tcg_gen_or_i32(t1, t1, tmp); tcg_gen_mov_i32(t0, rd); } static void gen_neon_trn_u16(TCGv_i32 t0, TCGv_i32 t1) { TCGv_i32 rd, tmp; rd = tcg_temp_new_i32(); tmp = tcg_temp_new_i32(); tcg_gen_shli_i32(rd, t0, 16); tcg_gen_andi_i32(tmp, t1, 0xffff); tcg_gen_or_i32(rd, rd, tmp); tcg_gen_shri_i32(t1, t1, 16); tcg_gen_andi_i32(tmp, t0, 0xffff0000); tcg_gen_or_i32(t1, t1, tmp); tcg_gen_mov_i32(t0, rd); } static bool trans_VTRN(DisasContext *s, arg_2misc *a) { TCGv_i32 tmp, tmp2; int pass; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if ((a->vd | a->vm) & a->q) { return false; } if (a->size == 3) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); tmp2 = tcg_temp_new_i32(); if (a->size == MO_32) { for (pass = 0; pass < (a->q ? 4 : 2); pass += 2) { read_neon_element32(tmp, a->vm, pass, MO_32); read_neon_element32(tmp2, a->vd, pass + 1, MO_32); write_neon_element32(tmp2, a->vm, pass, MO_32); write_neon_element32(tmp, a->vd, pass + 1, MO_32); } } else { for (pass = 0; pass < (a->q ? 4 : 2); pass++) { read_neon_element32(tmp, a->vm, pass, MO_32); read_neon_element32(tmp2, a->vd, pass, MO_32); if (a->size == MO_8) { gen_neon_trn_u8(tmp, tmp2); } else { gen_neon_trn_u16(tmp, tmp2); } write_neon_element32(tmp2, a->vm, pass, MO_32); write_neon_element32(tmp, a->vd, pass, MO_32); } } return true; } static bool trans_VSMMLA(DisasContext *s, arg_VSMMLA *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_smmla_b); } static bool trans_VUMMLA(DisasContext *s, arg_VUMMLA *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_ummla_b); } static bool trans_VUSMMLA(DisasContext *s, arg_VUSMMLA *a) { if (!dc_isar_feature(aa32_i8mm, s)) { return false; } return do_neon_ddda(s, 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_usmmla_b); } static bool trans_VMMLA_b16(DisasContext *s, arg_VMMLA_b16 *a) { if (!dc_isar_feature(aa32_bf16, s)) { return false; } return do_neon_ddda(s, 7, a->vd, a->vn, a->vm, 0, gen_helper_gvec_bfmmla); } static bool trans_VFMA_b16(DisasContext *s, arg_VFMA_b16 *a) { if (!dc_isar_feature(aa32_bf16, s)) { return false; } return do_neon_ddda_fpst(s, 7, a->vd, a->vn, a->vm, a->q, FPST_STD, gen_helper_gvec_bfmlal); } static bool trans_VFMA_b16_scal(DisasContext *s, arg_VFMA_b16_scal *a) { if (!dc_isar_feature(aa32_bf16, s)) { return false; } return do_neon_ddda_fpst(s, 6, a->vd, a->vn, a->vm, (a->index << 1) | a->q, FPST_STD, gen_helper_gvec_bfmlal_idx); }