/* * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from * Samsung Electronic. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski <balrog@zabor.org> * * Support for additional features based on "MT29F2G16ABCWP 2Gx16" * datasheet from Micron Technology and "NAND02G-B2C" datasheet * from ST Microelectronics. * * This code is licensed under the GNU GPL v2. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #ifndef NAND_IO #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/block/flash.h" #include "sysemu/block-backend.h" #include "hw/qdev.h" #include "qapi/error.h" #include "qemu/error-report.h" # define NAND_CMD_READ0 0x00 # define NAND_CMD_READ1 0x01 # define NAND_CMD_READ2 0x50 # define NAND_CMD_LPREAD2 0x30 # define NAND_CMD_NOSERIALREAD2 0x35 # define NAND_CMD_RANDOMREAD1 0x05 # define NAND_CMD_RANDOMREAD2 0xe0 # define NAND_CMD_READID 0x90 # define NAND_CMD_RESET 0xff # define NAND_CMD_PAGEPROGRAM1 0x80 # define NAND_CMD_PAGEPROGRAM2 0x10 # define NAND_CMD_CACHEPROGRAM2 0x15 # define NAND_CMD_BLOCKERASE1 0x60 # define NAND_CMD_BLOCKERASE2 0xd0 # define NAND_CMD_READSTATUS 0x70 # define NAND_CMD_COPYBACKPRG1 0x85 # define NAND_IOSTATUS_ERROR (1 << 0) # define NAND_IOSTATUS_PLANE0 (1 << 1) # define NAND_IOSTATUS_PLANE1 (1 << 2) # define NAND_IOSTATUS_PLANE2 (1 << 3) # define NAND_IOSTATUS_PLANE3 (1 << 4) # define NAND_IOSTATUS_READY (1 << 6) # define NAND_IOSTATUS_UNPROTCT (1 << 7) # define MAX_PAGE 0x800 # define MAX_OOB 0x40 typedef struct NANDFlashState NANDFlashState; struct NANDFlashState { DeviceState parent_obj; uint8_t manf_id, chip_id; uint8_t buswidth; /* in BYTES */ int size, pages; int page_shift, oob_shift, erase_shift, addr_shift; uint8_t *storage; BlockBackend *blk; int mem_oob; uint8_t cle, ale, ce, wp, gnd; uint8_t io[MAX_PAGE + MAX_OOB + 0x400]; uint8_t *ioaddr; int iolen; uint32_t cmd; uint64_t addr; int addrlen; int status; int offset; void (*blk_write)(NANDFlashState *s); void (*blk_erase)(NANDFlashState *s); void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset); uint32_t ioaddr_vmstate; }; #define TYPE_NAND "nand" #define NAND(obj) \ OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND) static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) { /* Like memcpy() but we logical-AND the data into the destination */ int i; for (i = 0; i < n; i++) { dest[i] &= src[i]; } } # define NAND_NO_AUTOINCR 0x00000001 # define NAND_BUSWIDTH_16 0x00000002 # define NAND_NO_PADDING 0x00000004 # define NAND_CACHEPRG 0x00000008 # define NAND_COPYBACK 0x00000010 # define NAND_IS_AND 0x00000020 # define NAND_4PAGE_ARRAY 0x00000040 # define NAND_NO_READRDY 0x00000100 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK) # define NAND_IO # define PAGE(addr) ((addr) >> ADDR_SHIFT) # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE)) # define PAGE_MASK ((1 << ADDR_SHIFT) - 1) # define OOB_SHIFT (PAGE_SHIFT - 5) # define OOB_SIZE (1 << OOB_SHIFT) # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT)) # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8)) # define PAGE_SIZE 256 # define PAGE_SHIFT 8 # define PAGE_SECTORS 1 # define ADDR_SHIFT 8 # include "nand.c" # define PAGE_SIZE 512 # define PAGE_SHIFT 9 # define PAGE_SECTORS 1 # define ADDR_SHIFT 8 # include "nand.c" # define PAGE_SIZE 2048 # define PAGE_SHIFT 11 # define PAGE_SECTORS 4 # define ADDR_SHIFT 16 # include "nand.c" /* Information based on Linux drivers/mtd/nand/nand_ids.c */ static const struct { int size; int width; int page_shift; int erase_shift; uint32_t options; } nand_flash_ids[0x100] = { [0 ... 0xff] = { 0 }, [0x6e] = { 1, 8, 8, 4, 0 }, [0x64] = { 2, 8, 8, 4, 0 }, [0x6b] = { 4, 8, 9, 4, 0 }, [0xe8] = { 1, 8, 8, 4, 0 }, [0xec] = { 1, 8, 8, 4, 0 }, [0xea] = { 2, 8, 8, 4, 0 }, [0xd5] = { 4, 8, 9, 4, 0 }, [0xe3] = { 4, 8, 9, 4, 0 }, [0xe5] = { 4, 8, 9, 4, 0 }, [0xd6] = { 8, 8, 9, 4, 0 }, [0x39] = { 8, 8, 9, 4, 0 }, [0xe6] = { 8, 8, 9, 4, 0 }, [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, [0x33] = { 16, 8, 9, 5, 0 }, [0x73] = { 16, 8, 9, 5, 0 }, [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x35] = { 32, 8, 9, 5, 0 }, [0x75] = { 32, 8, 9, 5, 0 }, [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x36] = { 64, 8, 9, 5, 0 }, [0x76] = { 64, 8, 9, 5, 0 }, [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x78] = { 128, 8, 9, 5, 0 }, [0x39] = { 128, 8, 9, 5, 0 }, [0x79] = { 128, 8, 9, 5, 0 }, [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x71] = { 256, 8, 9, 5, 0 }, /* * These are the new chips with large page size. The pagesize and the * erasesize is determined from the extended id bytes */ # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR) # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) /* 512 Megabit */ [0xa2] = { 64, 8, 0, 0, LP_OPTIONS }, [0xf2] = { 64, 8, 0, 0, LP_OPTIONS }, [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 }, [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 }, /* 1 Gigabit */ [0xa1] = { 128, 8, 0, 0, LP_OPTIONS }, [0xf1] = { 128, 8, 0, 0, LP_OPTIONS }, [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 }, [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 }, /* 2 Gigabit */ [0xaa] = { 256, 8, 0, 0, LP_OPTIONS }, [0xda] = { 256, 8, 0, 0, LP_OPTIONS }, [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 }, [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 }, /* 4 Gigabit */ [0xac] = { 512, 8, 0, 0, LP_OPTIONS }, [0xdc] = { 512, 8, 0, 0, LP_OPTIONS }, [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 }, [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 }, /* 8 Gigabit */ [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS }, [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS }, [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, /* 16 Gigabit */ [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS }, [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS }, [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, }; static void nand_reset(DeviceState *dev) { NANDFlashState *s = NAND(dev); s->cmd = NAND_CMD_READ0; s->addr = 0; s->addrlen = 0; s->iolen = 0; s->offset = 0; s->status &= NAND_IOSTATUS_UNPROTCT; s->status |= NAND_IOSTATUS_READY; } static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value) { s->ioaddr[s->iolen++] = value; for (value = s->buswidth; --value;) { s->ioaddr[s->iolen++] = 0; } } static void nand_command(NANDFlashState *s) { unsigned int offset; switch (s->cmd) { case NAND_CMD_READ0: s->iolen = 0; break; case NAND_CMD_READID: s->ioaddr = s->io; s->iolen = 0; nand_pushio_byte(s, s->manf_id); nand_pushio_byte(s, s->chip_id); nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */ if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { /* Page Size, Block Size, Spare Size; bit 6 indicates * 8 vs 16 bit width NAND. */ nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15); } else { nand_pushio_byte(s, 0xc0); /* Multi-plane */ } break; case NAND_CMD_RANDOMREAD2: case NAND_CMD_NOSERIALREAD2: if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)) break; offset = s->addr & ((1 << s->addr_shift) - 1); s->blk_load(s, s->addr, offset); if (s->gnd) s->iolen = (1 << s->page_shift) - offset; else s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; break; case NAND_CMD_RESET: nand_reset(DEVICE(s)); break; case NAND_CMD_PAGEPROGRAM1: s->ioaddr = s->io; s->iolen = 0; break; case NAND_CMD_PAGEPROGRAM2: if (s->wp) { s->blk_write(s); } break; case NAND_CMD_BLOCKERASE1: break; case NAND_CMD_BLOCKERASE2: s->addr &= (1ull << s->addrlen * 8) - 1; s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ? 16 : 8; if (s->wp) { s->blk_erase(s); } break; case NAND_CMD_READSTATUS: s->ioaddr = s->io; s->iolen = 0; nand_pushio_byte(s, s->status); break; default: printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd); } } static int nand_pre_save(void *opaque) { NANDFlashState *s = NAND(opaque); s->ioaddr_vmstate = s->ioaddr - s->io; return 0; } static int nand_post_load(void *opaque, int version_id) { NANDFlashState *s = NAND(opaque); if (s->ioaddr_vmstate > sizeof(s->io)) { return -EINVAL; } s->ioaddr = s->io + s->ioaddr_vmstate; return 0; } static const VMStateDescription vmstate_nand = { .name = "nand", .version_id = 1, .minimum_version_id = 1, .pre_save = nand_pre_save, .post_load = nand_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(cle, NANDFlashState), VMSTATE_UINT8(ale, NANDFlashState), VMSTATE_UINT8(ce, NANDFlashState), VMSTATE_UINT8(wp, NANDFlashState), VMSTATE_UINT8(gnd, NANDFlashState), VMSTATE_BUFFER(io, NANDFlashState), VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState), VMSTATE_INT32(iolen, NANDFlashState), VMSTATE_UINT32(cmd, NANDFlashState), VMSTATE_UINT64(addr, NANDFlashState), VMSTATE_INT32(addrlen, NANDFlashState), VMSTATE_INT32(status, NANDFlashState), VMSTATE_INT32(offset, NANDFlashState), /* XXX: do we want to save s->storage too? */ VMSTATE_END_OF_LIST() } }; static void nand_realize(DeviceState *dev, Error **errp) { int pagesize; NANDFlashState *s = NAND(dev); int ret; s->buswidth = nand_flash_ids[s->chip_id].width >> 3; s->size = nand_flash_ids[s->chip_id].size << 20; if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { s->page_shift = 11; s->erase_shift = 6; } else { s->page_shift = nand_flash_ids[s->chip_id].page_shift; s->erase_shift = nand_flash_ids[s->chip_id].erase_shift; } switch (1 << s->page_shift) { case 256: nand_init_256(s); break; case 512: nand_init_512(s); break; case 2048: nand_init_2048(s); break; default: error_setg(errp, "Unsupported NAND block size %#x", 1 << s->page_shift); return; } pagesize = 1 << s->oob_shift; s->mem_oob = 1; if (s->blk) { if (blk_is_read_only(s->blk)) { error_setg(errp, "Can't use a read-only drive"); return; } ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, BLK_PERM_ALL, errp); if (ret < 0) { return; } if (blk_getlength(s->blk) >= (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { pagesize = 0; s->mem_oob = 0; } } else { pagesize += 1 << s->page_shift; } if (pagesize) { s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize), 0xff, s->pages * pagesize); } /* Give s->ioaddr a sane value in case we save state before it is used. */ s->ioaddr = s->io; } static Property nand_properties[] = { DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0), DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0), DEFINE_PROP_DRIVE("drive", NANDFlashState, blk), DEFINE_PROP_END_OF_LIST(), }; static void nand_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = nand_realize; dc->reset = nand_reset; dc->vmsd = &vmstate_nand; dc->props = nand_properties; } static const TypeInfo nand_info = { .name = TYPE_NAND, .parent = TYPE_DEVICE, .instance_size = sizeof(NANDFlashState), .class_init = nand_class_init, }; static void nand_register_types(void) { type_register_static(&nand_info); } /* * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip * outputs are R/B and eight I/O pins. * * CE, WP and R/B are active low. */ void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, uint8_t ce, uint8_t wp, uint8_t gnd) { NANDFlashState *s = NAND(dev); s->cle = cle; s->ale = ale; s->ce = ce; s->wp = wp; s->gnd = gnd; if (wp) { s->status |= NAND_IOSTATUS_UNPROTCT; } else { s->status &= ~NAND_IOSTATUS_UNPROTCT; } } void nand_getpins(DeviceState *dev, int *rb) { *rb = 1; } void nand_setio(DeviceState *dev, uint32_t value) { int i; NANDFlashState *s = NAND(dev); if (!s->ce && s->cle) { if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) return; if (value == NAND_CMD_RANDOMREAD1) { s->addr &= ~((1 << s->addr_shift) - 1); s->addrlen = 0; return; } } if (value == NAND_CMD_READ0) { s->offset = 0; } else if (value == NAND_CMD_READ1) { s->offset = 0x100; value = NAND_CMD_READ0; } else if (value == NAND_CMD_READ2) { s->offset = 1 << s->page_shift; value = NAND_CMD_READ0; } s->cmd = value; if (s->cmd == NAND_CMD_READSTATUS || s->cmd == NAND_CMD_PAGEPROGRAM2 || s->cmd == NAND_CMD_BLOCKERASE1 || s->cmd == NAND_CMD_BLOCKERASE2 || s->cmd == NAND_CMD_NOSERIALREAD2 || s->cmd == NAND_CMD_RANDOMREAD2 || s->cmd == NAND_CMD_RESET) { nand_command(s); } if (s->cmd != NAND_CMD_RANDOMREAD2) { s->addrlen = 0; } } if (s->ale) { unsigned int shift = s->addrlen * 8; uint64_t mask = ~(0xffull << shift); uint64_t v = (uint64_t)value << shift; s->addr = (s->addr & mask) | v; s->addrlen ++; switch (s->addrlen) { case 1: if (s->cmd == NAND_CMD_READID) { nand_command(s); } break; case 2: /* fix cache address as a byte address */ s->addr <<= (s->buswidth - 1); break; case 3: if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && (s->cmd == NAND_CMD_READ0 || s->cmd == NAND_CMD_PAGEPROGRAM1)) { nand_command(s); } break; case 4: if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */ (s->cmd == NAND_CMD_READ0 || s->cmd == NAND_CMD_PAGEPROGRAM1)) { nand_command(s); } break; case 5: if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */ (s->cmd == NAND_CMD_READ0 || s->cmd == NAND_CMD_PAGEPROGRAM1)) { nand_command(s); } break; default: break; } } if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) { if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) { for (i = s->buswidth; i--; value >>= 8) { s->io[s->iolen ++] = (uint8_t) (value & 0xff); } } } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) { if ((s->addr & ((1 << s->addr_shift) - 1)) < (1 << s->page_shift) + (1 << s->oob_shift)) { for (i = s->buswidth; i--; s->addr++, value >>= 8) { s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = (uint8_t) (value & 0xff); } } } } uint32_t nand_getio(DeviceState *dev) { int offset; uint32_t x = 0; NANDFlashState *s = NAND(dev); /* Allow sequential reading */ if (!s->iolen && s->cmd == NAND_CMD_READ0) { offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset; s->offset = 0; s->blk_load(s, s->addr, offset); if (s->gnd) s->iolen = (1 << s->page_shift) - offset; else s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; } if (s->ce || s->iolen <= 0) { return 0; } for (offset = s->buswidth; offset--;) { x |= s->ioaddr[offset] << (offset << 3); } /* after receiving READ STATUS command all subsequent reads will * return the status register value until another command is issued */ if (s->cmd != NAND_CMD_READSTATUS) { s->addr += s->buswidth; s->ioaddr += s->buswidth; s->iolen -= s->buswidth; } return x; } uint32_t nand_getbuswidth(DeviceState *dev) { NANDFlashState *s = (NANDFlashState *) dev; return s->buswidth << 3; } DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id) { DeviceState *dev; if (nand_flash_ids[chip_id].size == 0) { hw_error("%s: Unsupported NAND chip ID.\n", __func__); } dev = DEVICE(object_new(TYPE_NAND)); qdev_prop_set_uint8(dev, "manufacturer_id", manf_id); qdev_prop_set_uint8(dev, "chip_id", chip_id); if (blk) { qdev_prop_set_drive(dev, "drive", blk, &error_fatal); } qdev_init_nofail(dev); return dev; } type_init(nand_register_types) #else /* Program a single page */ static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s) { uint64_t off, page, sector, soff; uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200]; if (PAGE(s->addr) >= s->pages) return; if (!s->blk) { mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset, s->io, s->iolen); } else if (s->mem_oob) { sector = SECTOR(s->addr); off = (s->addr & PAGE_MASK) + s->offset; soff = SECTOR_OFFSET(s->addr); if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf, PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); return; } mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off)); if (off + s->iolen > PAGE_SIZE) { page = PAGE(s->addr); mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off, MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE)); } if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf, PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); } } else { off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset; sector = off >> 9; soff = off & 0x1ff; if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf, (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); return; } mem_and(iobuf + soff, s->io, s->iolen); if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf, (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); } } s->offset = 0; } /* Erase a single block */ static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s) { uint64_t i, page, addr; uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, }; addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1); if (PAGE(addr) >= s->pages) { return; } if (!s->blk) { memset(s->storage + PAGE_START(addr), 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift); } else if (s->mem_oob) { memset(s->storage + (PAGE(addr) << OOB_SHIFT), 0xff, OOB_SIZE << s->erase_shift); i = SECTOR(addr); page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift))); for (; i < page; i ++) if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf, BDRV_SECTOR_SIZE, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, i); } } else { addr = PAGE_START(addr); page = addr >> 9; if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf, BDRV_SECTOR_SIZE) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, page); } memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1); if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf, BDRV_SECTOR_SIZE, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, page); } memset(iobuf, 0xff, 0x200); i = (addr & ~0x1ff) + 0x200; for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200; i < addr; i += 0x200) { if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, i >> 9); } } page = i >> 9; if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf, BDRV_SECTOR_SIZE) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, page); } memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1); if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf, BDRV_SECTOR_SIZE, 0) < 0) { printf("%s: write error in sector %" PRIu64 "\n", __func__, page); } } } static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s, uint64_t addr, int offset) { if (PAGE(addr) >= s->pages) { return; } if (s->blk) { if (s->mem_oob) { if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io, PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, SECTOR(addr)); } memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE, s->storage + (PAGE(s->addr) << OOB_SHIFT), OOB_SIZE); s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset; } else { if (blk_pread(s->blk, PAGE_START(addr), s->io, (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) { printf("%s: read error in sector %" PRIu64 "\n", __func__, PAGE_START(addr) >> 9); } s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset; } } else { memcpy(s->io, s->storage + PAGE_START(s->addr) + offset, PAGE_SIZE + OOB_SIZE - offset); s->ioaddr = s->io; } } static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s) { s->oob_shift = PAGE_SHIFT - 5; s->pages = s->size >> PAGE_SHIFT; s->addr_shift = ADDR_SHIFT; s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE); s->blk_write = glue(nand_blk_write_, PAGE_SIZE); s->blk_load = glue(nand_blk_load_, PAGE_SIZE); } # undef PAGE_SIZE # undef PAGE_SHIFT # undef PAGE_SECTORS # undef ADDR_SHIFT #endif /* NAND_IO */