/* * QEMU PowerPC sPAPR IRQ interface * * Copyright (c) 2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/irq.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/ppc/spapr_xive.h" #include "hw/ppc/xics.h" #include "hw/ppc/xics_spapr.h" #include "hw/qdev-properties.h" #include "cpu-models.h" #include "sysemu/kvm.h" #include "trace.h" static const TypeInfo spapr_intc_info = { .name = TYPE_SPAPR_INTC, .parent = TYPE_INTERFACE, .class_size = sizeof(SpaprInterruptControllerClass), }; static void spapr_irq_msi_init(SpaprMachineState *spapr) { if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { /* Legacy mode doesn't use this allocator */ return; } spapr->irq_map_nr = spapr_irq_nr_msis(spapr); spapr->irq_map = bitmap_new(spapr->irq_map_nr); } int spapr_irq_msi_alloc(SpaprMachineState *spapr, uint32_t num, bool align, Error **errp) { int irq; /* * The 'align_mask' parameter of bitmap_find_next_zero_area() * should be one less than a power of 2; 0 means no * alignment. Adapt the 'align' value of the former allocator * to fit the requirements of bitmap_find_next_zero_area() */ align -= 1; irq = bitmap_find_next_zero_area(spapr->irq_map, spapr->irq_map_nr, 0, num, align); if (irq == spapr->irq_map_nr) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } bitmap_set(spapr->irq_map, irq, num); return irq + SPAPR_IRQ_MSI; } void spapr_irq_msi_free(SpaprMachineState *spapr, int irq, uint32_t num) { bitmap_clear(spapr->irq_map, irq - SPAPR_IRQ_MSI, num); } int spapr_irq_init_kvm(int (*fn)(SpaprInterruptController *, Error **), SpaprInterruptController *intc, Error **errp) { MachineState *machine = MACHINE(qdev_get_machine()); Error *local_err = NULL; if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) { if (fn(intc, &local_err) < 0) { if (machine_kernel_irqchip_required(machine)) { error_prepend(&local_err, "kernel_irqchip requested but unavailable: "); error_propagate(errp, local_err); return -1; } /* * We failed to initialize the KVM device, fallback to * emulated mode */ error_prepend(&local_err, "kernel_irqchip allowed but unavailable: "); error_append_hint(&local_err, "Falling back to kernel-irqchip=off\n"); warn_report_err(local_err); } } return 0; } /* * XICS IRQ backend. */ SpaprIrq spapr_irq_xics = { .xics = true, .xive = false, }; /* * XIVE IRQ backend. */ SpaprIrq spapr_irq_xive = { .xics = false, .xive = true, }; /* * Dual XIVE and XICS IRQ backend. * * Both interrupt mode, XIVE and XICS, objects are created but the * machine starts in legacy interrupt mode (XICS). It can be changed * by the CAS negotiation process and, in that case, the new mode is * activated after an extra machine reset. */ /* * Define values in sync with the XIVE and XICS backend */ SpaprIrq spapr_irq_dual = { .xics = true, .xive = true, }; static int spapr_irq_check(SpaprMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); /* * Sanity checks on non-P9 machines. On these, XIVE is not * advertised, see spapr_dt_ov5_platform_support() */ if (!ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, spapr->max_compat_pvr)) { /* * If the 'dual' interrupt mode is selected, force XICS as CAS * negotiation is useless. */ if (spapr->irq == &spapr_irq_dual) { spapr->irq = &spapr_irq_xics; return 0; } /* * Non-P9 machines using only XIVE is a bogus setup. We have two * scenarios to take into account because of the compat mode: * * 1. POWER7/8 machines should fail to init later on when creating * the XIVE interrupt presenters because a POWER9 exception * model is required. * 2. POWER9 machines using the POWER8 compat mode won't fail and * will let the OS boot with a partial XIVE setup : DT * properties but no hcalls. * * To cover both and not confuse the OS, add an early failure in * QEMU. */ if (spapr->irq == &spapr_irq_xive) { error_setg(errp, "XIVE-only machines require a POWER9 CPU"); return -1; } } /* * On a POWER9 host, some older KVM XICS devices cannot be destroyed and * re-created. Detect that early to avoid QEMU to exit later when the * guest reboots. */ if (kvm_enabled() && spapr->irq == &spapr_irq_dual && machine_kernel_irqchip_required(machine) && xics_kvm_has_broken_disconnect(spapr)) { error_setg(errp, "KVM is too old to support ic-mode=dual,kernel-irqchip=on"); return -1; } return 0; } /* * sPAPR IRQ frontend routines for devices */ #define ALL_INTCS(spapr_) \ { SPAPR_INTC((spapr_)->ics), SPAPR_INTC((spapr_)->xive), } int spapr_irq_cpu_intc_create(SpaprMachineState *spapr, PowerPCCPU *cpu, Error **errp) { SpaprInterruptController *intcs[] = ALL_INTCS(spapr); int i; int rc; for (i = 0; i < ARRAY_SIZE(intcs); i++) { SpaprInterruptController *intc = intcs[i]; if (intc) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc); rc = sicc->cpu_intc_create(intc, cpu, errp); if (rc < 0) { return rc; } } } return 0; } void spapr_irq_cpu_intc_reset(SpaprMachineState *spapr, PowerPCCPU *cpu) { SpaprInterruptController *intcs[] = ALL_INTCS(spapr); int i; for (i = 0; i < ARRAY_SIZE(intcs); i++) { SpaprInterruptController *intc = intcs[i]; if (intc) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc); sicc->cpu_intc_reset(intc, cpu); } } } void spapr_irq_cpu_intc_destroy(SpaprMachineState *spapr, PowerPCCPU *cpu) { SpaprInterruptController *intcs[] = ALL_INTCS(spapr); int i; for (i = 0; i < ARRAY_SIZE(intcs); i++) { SpaprInterruptController *intc = intcs[i]; if (intc) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc); sicc->cpu_intc_destroy(intc, cpu); } } } static void spapr_set_irq(void *opaque, int irq, int level) { SpaprMachineState *spapr = SPAPR_MACHINE(opaque); SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc); sicc->set_irq(spapr->active_intc, irq, level); } void spapr_irq_print_info(SpaprMachineState *spapr, Monitor *mon) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc); sicc->print_info(spapr->active_intc, mon); } void spapr_irq_dt(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt, uint32_t phandle) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc); sicc->dt(spapr->active_intc, nr_servers, fdt, phandle); } uint32_t spapr_irq_nr_msis(SpaprMachineState *spapr) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); if (smc->legacy_irq_allocation) { return smc->nr_xirqs; } else { return SPAPR_XIRQ_BASE + smc->nr_xirqs - SPAPR_IRQ_MSI; } } void spapr_irq_init(SpaprMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); if (machine_kernel_irqchip_split(machine)) { error_setg(errp, "kernel_irqchip split mode not supported on pseries"); return; } if (!kvm_enabled() && machine_kernel_irqchip_required(machine)) { error_setg(errp, "kernel_irqchip requested but only available with KVM"); return; } if (spapr_irq_check(spapr, errp) < 0) { return; } /* Initialize the MSI IRQ allocator. */ spapr_irq_msi_init(spapr); if (spapr->irq->xics) { Error *local_err = NULL; Object *obj; obj = object_new(TYPE_ICS_SPAPR); object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); object_property_set_link(obj, OBJECT(spapr), ICS_PROP_XICS, &error_abort); object_property_set_int(obj, smc->nr_xirqs, "nr-irqs", &error_abort); object_property_set_bool(obj, true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr->ics = ICS_SPAPR(obj); } if (spapr->irq->xive) { uint32_t nr_servers = spapr_max_server_number(spapr); DeviceState *dev; int i; dev = qdev_create(NULL, TYPE_SPAPR_XIVE); qdev_prop_set_uint32(dev, "nr-irqs", smc->nr_xirqs + SPAPR_XIRQ_BASE); /* * 8 XIVE END structures per CPU. One for each available * priority */ qdev_prop_set_uint32(dev, "nr-ends", nr_servers << 3); qdev_init_nofail(dev); spapr->xive = SPAPR_XIVE(dev); /* Enable the CPU IPIs */ for (i = 0; i < nr_servers; ++i) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(spapr->xive); if (sicc->claim_irq(SPAPR_INTC(spapr->xive), SPAPR_IRQ_IPI + i, false, errp) < 0) { return; } } spapr_xive_hcall_init(spapr); } spapr->qirqs = qemu_allocate_irqs(spapr_set_irq, spapr, smc->nr_xirqs + SPAPR_XIRQ_BASE); /* * Mostly we don't actually need this until reset, except that not * having this set up can cause VFIO devices to issue a * false-positive warning during realize(), because they don't yet * have an in-kernel irq chip. */ spapr_irq_update_active_intc(spapr); } int spapr_irq_claim(SpaprMachineState *spapr, int irq, bool lsi, Error **errp) { SpaprInterruptController *intcs[] = ALL_INTCS(spapr); int i; SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); int rc; assert(irq >= SPAPR_XIRQ_BASE); assert(irq < (smc->nr_xirqs + SPAPR_XIRQ_BASE)); for (i = 0; i < ARRAY_SIZE(intcs); i++) { SpaprInterruptController *intc = intcs[i]; if (intc) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc); rc = sicc->claim_irq(intc, irq, lsi, errp); if (rc < 0) { return rc; } } } return 0; } void spapr_irq_free(SpaprMachineState *spapr, int irq, int num) { SpaprInterruptController *intcs[] = ALL_INTCS(spapr); int i, j; SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); assert(irq >= SPAPR_XIRQ_BASE); assert((irq + num) <= (smc->nr_xirqs + SPAPR_XIRQ_BASE)); for (i = irq; i < (irq + num); i++) { for (j = 0; j < ARRAY_SIZE(intcs); j++) { SpaprInterruptController *intc = intcs[j]; if (intc) { SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc); sicc->free_irq(intc, i); } } } } qemu_irq spapr_qirq(SpaprMachineState *spapr, int irq) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); /* * This interface is basically for VIO and PHB devices to find the * right qemu_irq to manipulate, so we only allow access to the * external irqs for now. Currently anything which needs to * access the IPIs most naturally gets there via the guest side * interfaces, we can change this if we need to in future. */ assert(irq >= SPAPR_XIRQ_BASE); assert(irq < (smc->nr_xirqs + SPAPR_XIRQ_BASE)); if (spapr->ics) { assert(ics_valid_irq(spapr->ics, irq)); } if (spapr->xive) { assert(irq < spapr->xive->nr_irqs); assert(xive_eas_is_valid(&spapr->xive->eat[irq])); } return spapr->qirqs[irq]; } int spapr_irq_post_load(SpaprMachineState *spapr, int version_id) { SpaprInterruptControllerClass *sicc; spapr_irq_update_active_intc(spapr); sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc); return sicc->post_load(spapr->active_intc, version_id); } void spapr_irq_reset(SpaprMachineState *spapr, Error **errp) { assert(!spapr->irq_map || bitmap_empty(spapr->irq_map, spapr->irq_map_nr)); spapr_irq_update_active_intc(spapr); } int spapr_irq_get_phandle(SpaprMachineState *spapr, void *fdt, Error **errp) { const char *nodename = "interrupt-controller"; int offset, phandle; offset = fdt_subnode_offset(fdt, 0, nodename); if (offset < 0) { error_setg(errp, "Can't find node \"%s\": %s", nodename, fdt_strerror(offset)); return -1; } phandle = fdt_get_phandle(fdt, offset); if (!phandle) { error_setg(errp, "Can't get phandle of node \"%s\"", nodename); return -1; } return phandle; } static void set_active_intc(SpaprMachineState *spapr, SpaprInterruptController *new_intc) { SpaprInterruptControllerClass *sicc; assert(new_intc); if (new_intc == spapr->active_intc) { /* Nothing to do */ return; } if (spapr->active_intc) { sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc); if (sicc->deactivate) { sicc->deactivate(spapr->active_intc); } } sicc = SPAPR_INTC_GET_CLASS(new_intc); if (sicc->activate) { sicc->activate(new_intc, &error_fatal); } spapr->active_intc = new_intc; /* * We've changed the kernel irqchip, let VFIO devices know they * need to readjust. */ kvm_irqchip_change_notify(); } void spapr_irq_update_active_intc(SpaprMachineState *spapr) { SpaprInterruptController *new_intc; if (!spapr->ics) { /* * XXX before we run CAS, ov5_cas is initialized empty, which * indicates XICS, even if we have ic-mode=xive. TODO: clean * up the CAS path so that we have a clearer way of handling * this. */ new_intc = SPAPR_INTC(spapr->xive); } else if (spapr->ov5_cas && spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { new_intc = SPAPR_INTC(spapr->xive); } else { new_intc = SPAPR_INTC(spapr->ics); } set_active_intc(spapr, new_intc); } /* * XICS legacy routines - to deprecate one day */ static int ics_find_free_block(ICSState *ics, int num, int alignnum) { int first, i; for (first = 0; first < ics->nr_irqs; first += alignnum) { if (num > (ics->nr_irqs - first)) { return -1; } for (i = first; i < first + num; ++i) { if (!ics_irq_free(ics, i)) { break; } } if (i == (first + num)) { return first; } } return -1; } int spapr_irq_find(SpaprMachineState *spapr, int num, bool align, Error **errp) { ICSState *ics = spapr->ics; int first = -1; assert(ics); /* * MSIMesage::data is used for storing VIRQ so * it has to be aligned to num to support multiple * MSI vectors. MSI-X is not affected by this. * The hint is used for the first IRQ, the rest should * be allocated continuously. */ if (align) { assert((num == 1) || (num == 2) || (num == 4) || (num == 8) || (num == 16) || (num == 32)); first = ics_find_free_block(ics, num, num); } else { first = ics_find_free_block(ics, num, 1); } if (first < 0) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } return first + ics->offset; } SpaprIrq spapr_irq_xics_legacy = { .xics = true, .xive = false, }; static void spapr_irq_register_types(void) { type_register_static(&spapr_intc_info); } type_init(spapr_irq_register_types)