/* * QEMU S390x KVM implementation * * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include #include #include "qemu-common.h" #include "qemu-timer.h" #include "sysemu.h" #include "kvm.h" #include "cpu.h" #include "device_tree.h" /* #define DEBUG_KVM */ #ifdef DEBUG_KVM #define dprintf(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define dprintf(fmt, ...) \ do { } while (0) #endif #define IPA0_DIAG 0x8300 #define IPA0_SIGP 0xae00 #define IPA0_PRIV 0xb200 #define PRIV_SCLP_CALL 0x20 #define DIAG_KVM_HYPERCALL 0x500 #define DIAG_KVM_BREAKPOINT 0x501 #define SCP_LENGTH 0x00 #define SCP_FUNCTION_CODE 0x02 #define SCP_CONTROL_MASK 0x03 #define SCP_RESPONSE_CODE 0x06 #define SCP_MEM_CODE 0x08 #define SCP_INCREMENT 0x0a #define ICPT_INSTRUCTION 0x04 #define ICPT_WAITPSW 0x1c #define ICPT_SOFT_INTERCEPT 0x24 #define ICPT_CPU_STOP 0x28 #define ICPT_IO 0x40 #define SIGP_RESTART 0x06 #define SIGP_INITIAL_CPU_RESET 0x0b #define SIGP_STORE_STATUS_ADDR 0x0e #define SIGP_SET_ARCH 0x12 #define SCLP_CMDW_READ_SCP_INFO 0x00020001 #define SCLP_CMDW_READ_SCP_INFO_FORCED 0x00120001 int kvm_arch_init(KVMState *s) { return 0; } int kvm_arch_init_vcpu(CPUState *env) { int ret = 0; if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) { perror("cannot init reset vcpu"); } return ret; } void kvm_arch_reset_vcpu(CPUState *env) { /* FIXME: add code to reset vcpu. */ } int kvm_arch_put_registers(CPUState *env, int level) { struct kvm_regs regs; int ret; int i; ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } for (i = 0; i < 16; i++) { regs.gprs[i] = env->regs[i]; } ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); if (ret < 0) { return ret; } env->kvm_run->psw_addr = env->psw.addr; env->kvm_run->psw_mask = env->psw.mask; return ret; } int kvm_arch_get_registers(CPUState *env) { int ret; struct kvm_regs regs; int i; ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } for (i = 0; i < 16; i++) { env->regs[i] = regs.gprs[i]; } env->psw.addr = env->kvm_run->psw_addr; env->psw.mask = env->kvm_run->psw_mask; return 0; } int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) { static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || cpu_memory_rw_debug(env, bp->pc, (uint8_t *)diag_501, 4, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) { uint8_t t[4]; static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; if (cpu_memory_rw_debug(env, bp->pc, t, 4, 0)) { return -EINVAL; } else if (memcmp(t, diag_501, 4)) { return -EINVAL; } else if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { return -EINVAL; } return 0; } int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) { return 0; } int kvm_arch_post_run(CPUState *env, struct kvm_run *run) { return 0; } int kvm_arch_process_irqchip_events(CPUState *env) { return 0; } static void kvm_s390_interrupt_internal(CPUState *env, int type, uint32_t parm, uint64_t parm64, int vm) { struct kvm_s390_interrupt kvmint; int r; if (!env->kvm_state) { return; } env->halted = 0; env->exception_index = -1; kvmint.type = type; kvmint.parm = parm; kvmint.parm64 = parm64; if (vm) { r = kvm_vm_ioctl(env->kvm_state, KVM_S390_INTERRUPT, &kvmint); } else { r = kvm_vcpu_ioctl(env, KVM_S390_INTERRUPT, &kvmint); } if (r < 0) { fprintf(stderr, "KVM failed to inject interrupt\n"); exit(1); } } void kvm_s390_virtio_irq(CPUState *env, int config_change, uint64_t token) { kvm_s390_interrupt_internal(env, KVM_S390_INT_VIRTIO, config_change, token, 1); } static void kvm_s390_interrupt(CPUState *env, int type, uint32_t code) { kvm_s390_interrupt_internal(env, type, code, 0, 0); } static void enter_pgmcheck(CPUState *env, uint16_t code) { kvm_s390_interrupt(env, KVM_S390_PROGRAM_INT, code); } static void setcc(CPUState *env, uint64_t cc) { env->kvm_run->psw_mask &= ~(3ul << 44); env->kvm_run->psw_mask |= (cc & 3) << 44; env->psw.mask &= ~(3ul << 44); env->psw.mask |= (cc & 3) << 44; } static int sclp_service_call(CPUState *env, struct kvm_run *run, uint16_t ipbh0) { uint32_t sccb; uint64_t code; int r = 0; cpu_synchronize_state(env); sccb = env->regs[ipbh0 & 0xf]; code = env->regs[(ipbh0 & 0xf0) >> 4]; dprintf("sclp(0x%x, 0x%lx)\n", sccb, code); if (sccb & ~0x7ffffff8ul) { fprintf(stderr, "KVM: invalid sccb address 0x%x\n", sccb); r = -1; goto out; } switch(code) { case SCLP_CMDW_READ_SCP_INFO: case SCLP_CMDW_READ_SCP_INFO_FORCED: stw_phys(sccb + SCP_MEM_CODE, ram_size >> 20); stb_phys(sccb + SCP_INCREMENT, 1); stw_phys(sccb + SCP_RESPONSE_CODE, 0x10); setcc(env, 0); kvm_s390_interrupt_internal(env, KVM_S390_INT_SERVICE, sccb & ~3, 0, 1); break; default: dprintf("KVM: invalid sclp call 0x%x / 0x%lx\n", sccb, code); r = -1; break; } out: if (r < 0) { setcc(env, 3); } return 0; } static int handle_priv(CPUState *env, struct kvm_run *run, uint8_t ipa1) { int r = 0; uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; dprintf("KVM: PRIV: %d\n", ipa1); switch (ipa1) { case PRIV_SCLP_CALL: r = sclp_service_call(env, run, ipbh0); break; default: dprintf("KVM: unknown PRIV: 0x%x\n", ipa1); r = -1; break; } return r; } static int handle_hypercall(CPUState *env, struct kvm_run *run) { int r; cpu_synchronize_state(env); r = s390_virtio_hypercall(env); return r; } static int handle_diag(CPUState *env, struct kvm_run *run, int ipb_code) { int r = 0; switch (ipb_code) { case DIAG_KVM_HYPERCALL: r = handle_hypercall(env, run); break; case DIAG_KVM_BREAKPOINT: sleep(10); break; default: dprintf("KVM: unknown DIAG: 0x%x\n", ipb_code); r = -1; break; } return r; } static int s390_cpu_restart(CPUState *env) { kvm_s390_interrupt(env, KVM_S390_RESTART, 0); env->halted = 0; env->exception_index = -1; qemu_cpu_kick(env); dprintf("DONE: SIGP cpu restart: %p\n", env); return 0; } static int s390_store_status(CPUState *env, uint32_t parameter) { /* XXX */ fprintf(stderr, "XXX SIGP store status\n"); return -1; } static int s390_cpu_initial_reset(CPUState *env) { int i; if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) { perror("cannot init reset vcpu"); } /* Manually zero out all registers */ cpu_synchronize_state(env); for (i = 0; i < 16; i++) { env->regs[i] = 0; } dprintf("DONE: SIGP initial reset: %p\n", env); return 0; } static int handle_sigp(CPUState *env, struct kvm_run *run, uint8_t ipa1) { uint8_t order_code; uint32_t parameter; uint16_t cpu_addr; uint8_t t; int r = -1; CPUState *target_env; cpu_synchronize_state(env); /* get order code */ order_code = run->s390_sieic.ipb >> 28; if (order_code > 0) { order_code = env->regs[order_code]; } order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16; /* get parameters */ t = (ipa1 & 0xf0) >> 4; if (!(t % 2)) { t++; } parameter = env->regs[t] & 0x7ffffe00; cpu_addr = env->regs[ipa1 & 0x0f]; target_env = s390_cpu_addr2state(cpu_addr); if (!target_env) { goto out; } switch (order_code) { case SIGP_RESTART: r = s390_cpu_restart(target_env); break; case SIGP_STORE_STATUS_ADDR: r = s390_store_status(target_env, parameter); break; case SIGP_SET_ARCH: /* make the caller panic */ return -1; case SIGP_INITIAL_CPU_RESET: r = s390_cpu_initial_reset(target_env); break; default: fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", ipa1); break; } out: setcc(env, r ? 3 : 0); return 0; } static int handle_instruction(CPUState *env, struct kvm_run *run) { unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16; int r = -1; dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb); switch (ipa0) { case IPA0_PRIV: r = handle_priv(env, run, ipa1); break; case IPA0_DIAG: r = handle_diag(env, run, ipb_code); break; case IPA0_SIGP: r = handle_sigp(env, run, ipa1); break; } if (r < 0) { enter_pgmcheck(env, 0x0001); } return r; } static int handle_intercept(CPUState *env) { struct kvm_run *run = env->kvm_run; int icpt_code = run->s390_sieic.icptcode; int r = 0; dprintf("intercept: 0x%x (at 0x%lx)\n", icpt_code, env->kvm_run->psw_addr); switch (icpt_code) { case ICPT_INSTRUCTION: r = handle_instruction(env, run); break; case ICPT_WAITPSW: /* XXX What to do on system shutdown? */ env->halted = 1; env->exception_index = EXCP_HLT; break; case ICPT_SOFT_INTERCEPT: fprintf(stderr, "KVM unimplemented icpt SOFT\n"); exit(1); break; case ICPT_CPU_STOP: qemu_system_shutdown_request(); break; case ICPT_IO: fprintf(stderr, "KVM unimplemented icpt IO\n"); exit(1); break; default: fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); exit(1); break; } return r; } int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) { int ret = 0; switch (run->exit_reason) { case KVM_EXIT_S390_SIEIC: ret = handle_intercept(env); break; case KVM_EXIT_S390_RESET: fprintf(stderr, "RESET not implemented\n"); exit(1); break; default: fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); break; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *env) { return true; }