/* * USB redirector usb-guest * * Copyright (c) 2011-2012 Red Hat, Inc. * * Red Hat Authors: * Hans de Goede * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "qemu-timer.h" #include "monitor.h" #include "sysemu.h" #include "iov.h" #include #include #include #include #include #include "hw/usb.h" #define MAX_ENDPOINTS 32 #define NO_INTERFACE_INFO 255 /* Valid interface_count always <= 32 */ #define EP2I(ep_address) (((ep_address & 0x80) >> 3) | (ep_address & 0x0f)) #define I2EP(i) (((i & 0x10) << 3) | (i & 0x0f)) typedef struct USBRedirDevice USBRedirDevice; /* Struct to hold buffered packets (iso or int input packets) */ struct buf_packet { uint8_t *data; int len; int status; QTAILQ_ENTRY(buf_packet)next; }; struct endp_data { uint8_t type; uint8_t interval; uint8_t interface; /* bInterfaceNumber this ep belongs to */ uint16_t max_packet_size; /* In bytes, not wMaxPacketSize format !! */ uint8_t iso_started; uint8_t iso_error; /* For reporting iso errors to the HC */ uint8_t interrupt_started; uint8_t interrupt_error; uint8_t bufpq_prefilled; uint8_t bufpq_dropping_packets; QTAILQ_HEAD(, buf_packet) bufpq; int32_t bufpq_size; int32_t bufpq_target_size; }; struct PacketIdQueueEntry { uint64_t id; QTAILQ_ENTRY(PacketIdQueueEntry)next; }; struct PacketIdQueue { USBRedirDevice *dev; const char *name; QTAILQ_HEAD(, PacketIdQueueEntry) head; int size; }; struct USBRedirDevice { USBDevice dev; /* Properties */ CharDriverState *cs; uint8_t debug; char *filter_str; int32_t bootindex; /* Data passed from chardev the fd_read cb to the usbredirparser read cb */ const uint8_t *read_buf; int read_buf_size; /* For async handling of close */ QEMUBH *chardev_close_bh; /* To delay the usb attach in case of quick chardev close + open */ QEMUTimer *attach_timer; int64_t next_attach_time; struct usbredirparser *parser; struct endp_data endpoint[MAX_ENDPOINTS]; struct PacketIdQueue cancelled; struct PacketIdQueue already_in_flight; /* Data for device filtering */ struct usb_redir_device_connect_header device_info; struct usb_redir_interface_info_header interface_info; struct usbredirfilter_rule *filter_rules; int filter_rules_count; int compatible_speedmask; }; static void usbredir_hello(void *priv, struct usb_redir_hello_header *h); static void usbredir_device_connect(void *priv, struct usb_redir_device_connect_header *device_connect); static void usbredir_device_disconnect(void *priv); static void usbredir_interface_info(void *priv, struct usb_redir_interface_info_header *interface_info); static void usbredir_ep_info(void *priv, struct usb_redir_ep_info_header *ep_info); static void usbredir_configuration_status(void *priv, uint64_t id, struct usb_redir_configuration_status_header *configuration_status); static void usbredir_alt_setting_status(void *priv, uint64_t id, struct usb_redir_alt_setting_status_header *alt_setting_status); static void usbredir_iso_stream_status(void *priv, uint64_t id, struct usb_redir_iso_stream_status_header *iso_stream_status); static void usbredir_interrupt_receiving_status(void *priv, uint64_t id, struct usb_redir_interrupt_receiving_status_header *interrupt_receiving_status); static void usbredir_bulk_streams_status(void *priv, uint64_t id, struct usb_redir_bulk_streams_status_header *bulk_streams_status); static void usbredir_control_packet(void *priv, uint64_t id, struct usb_redir_control_packet_header *control_packet, uint8_t *data, int data_len); static void usbredir_bulk_packet(void *priv, uint64_t id, struct usb_redir_bulk_packet_header *bulk_packet, uint8_t *data, int data_len); static void usbredir_iso_packet(void *priv, uint64_t id, struct usb_redir_iso_packet_header *iso_packet, uint8_t *data, int data_len); static void usbredir_interrupt_packet(void *priv, uint64_t id, struct usb_redir_interrupt_packet_header *interrupt_header, uint8_t *data, int data_len); static void usbredir_handle_status(USBRedirDevice *dev, USBPacket *p, int status); #define VERSION "qemu usb-redir guest " QEMU_VERSION /* * Logging stuff */ #define ERROR(...) \ do { \ if (dev->debug >= usbredirparser_error) { \ error_report("usb-redir error: " __VA_ARGS__); \ } \ } while (0) #define WARNING(...) \ do { \ if (dev->debug >= usbredirparser_warning) { \ error_report("usb-redir warning: " __VA_ARGS__); \ } \ } while (0) #define INFO(...) \ do { \ if (dev->debug >= usbredirparser_info) { \ error_report("usb-redir: " __VA_ARGS__); \ } \ } while (0) #define DPRINTF(...) \ do { \ if (dev->debug >= usbredirparser_debug) { \ error_report("usb-redir: " __VA_ARGS__); \ } \ } while (0) #define DPRINTF2(...) \ do { \ if (dev->debug >= usbredirparser_debug_data) { \ error_report("usb-redir: " __VA_ARGS__); \ } \ } while (0) static void usbredir_log(void *priv, int level, const char *msg) { USBRedirDevice *dev = priv; if (dev->debug < level) { return; } error_report("%s", msg); } static void usbredir_log_data(USBRedirDevice *dev, const char *desc, const uint8_t *data, int len) { int i, j, n; if (dev->debug < usbredirparser_debug_data) { return; } for (i = 0; i < len; i += j) { char buf[128]; n = sprintf(buf, "%s", desc); for (j = 0; j < 8 && i + j < len; j++) { n += sprintf(buf + n, " %02X", data[i + j]); } error_report("%s", buf); } } /* * usbredirparser io functions */ static int usbredir_read(void *priv, uint8_t *data, int count) { USBRedirDevice *dev = priv; if (dev->read_buf_size < count) { count = dev->read_buf_size; } memcpy(data, dev->read_buf, count); dev->read_buf_size -= count; if (dev->read_buf_size) { dev->read_buf += count; } else { dev->read_buf = NULL; } return count; } static int usbredir_write(void *priv, uint8_t *data, int count) { USBRedirDevice *dev = priv; if (!dev->cs->opened) { return 0; } /* Don't send new data to the chardev until our state is fully synced */ if (!runstate_check(RUN_STATE_RUNNING)) { return 0; } return qemu_chr_fe_write(dev->cs, data, count); } /* * Cancelled and buffered packets helpers */ static void packet_id_queue_init(struct PacketIdQueue *q, USBRedirDevice *dev, const char *name) { q->dev = dev; q->name = name; QTAILQ_INIT(&q->head); q->size = 0; } static void packet_id_queue_add(struct PacketIdQueue *q, uint64_t id) { USBRedirDevice *dev = q->dev; struct PacketIdQueueEntry *e; DPRINTF("adding packet id %"PRIu64" to %s queue\n", id, q->name); e = g_malloc0(sizeof(struct PacketIdQueueEntry)); e->id = id; QTAILQ_INSERT_TAIL(&q->head, e, next); q->size++; } static int packet_id_queue_remove(struct PacketIdQueue *q, uint64_t id) { USBRedirDevice *dev = q->dev; struct PacketIdQueueEntry *e; QTAILQ_FOREACH(e, &q->head, next) { if (e->id == id) { DPRINTF("removing packet id %"PRIu64" from %s queue\n", id, q->name); QTAILQ_REMOVE(&q->head, e, next); q->size--; g_free(e); return 1; } } return 0; } static void packet_id_queue_empty(struct PacketIdQueue *q) { USBRedirDevice *dev = q->dev; struct PacketIdQueueEntry *e, *next_e; DPRINTF("removing %d packet-ids from %s queue\n", q->size, q->name); QTAILQ_FOREACH_SAFE(e, &q->head, next, next_e) { QTAILQ_REMOVE(&q->head, e, next); g_free(e); } q->size = 0; } static void usbredir_cancel_packet(USBDevice *udev, USBPacket *p) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); if (p->combined) { usb_combined_packet_cancel(udev, p); return; } packet_id_queue_add(&dev->cancelled, p->id); usbredirparser_send_cancel_data_packet(dev->parser, p->id); usbredirparser_do_write(dev->parser); } static int usbredir_is_cancelled(USBRedirDevice *dev, uint64_t id) { if (!dev->dev.attached) { return 1; /* Treat everything as cancelled after a disconnect */ } return packet_id_queue_remove(&dev->cancelled, id); } static void usbredir_fill_already_in_flight_from_ep(USBRedirDevice *dev, struct USBEndpoint *ep) { static USBPacket *p; QTAILQ_FOREACH(p, &ep->queue, queue) { /* Skip combined packets, except for the first */ if (p->combined && p != p->combined->first) { continue; } if (p->state == USB_PACKET_ASYNC) { packet_id_queue_add(&dev->already_in_flight, p->id); } } } static void usbredir_fill_already_in_flight(USBRedirDevice *dev) { int ep; struct USBDevice *udev = &dev->dev; usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_ctl); for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_in[ep]); usbredir_fill_already_in_flight_from_ep(dev, &udev->ep_out[ep]); } } static int usbredir_already_in_flight(USBRedirDevice *dev, uint64_t id) { return packet_id_queue_remove(&dev->already_in_flight, id); } static USBPacket *usbredir_find_packet_by_id(USBRedirDevice *dev, uint8_t ep, uint64_t id) { USBPacket *p; if (usbredir_is_cancelled(dev, id)) { return NULL; } p = usb_ep_find_packet_by_id(&dev->dev, (ep & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT, ep & 0x0f, id); if (p == NULL) { ERROR("could not find packet with id %"PRIu64"\n", id); } return p; } static void bufp_alloc(USBRedirDevice *dev, uint8_t *data, int len, int status, uint8_t ep) { struct buf_packet *bufp; if (!dev->endpoint[EP2I(ep)].bufpq_dropping_packets && dev->endpoint[EP2I(ep)].bufpq_size > 2 * dev->endpoint[EP2I(ep)].bufpq_target_size) { DPRINTF("bufpq overflow, dropping packets ep %02X\n", ep); dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 1; } /* Since we're interupting the stream anyways, drop enough packets to get back to our target buffer size */ if (dev->endpoint[EP2I(ep)].bufpq_dropping_packets) { if (dev->endpoint[EP2I(ep)].bufpq_size > dev->endpoint[EP2I(ep)].bufpq_target_size) { free(data); return; } dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0; } bufp = g_malloc(sizeof(struct buf_packet)); bufp->data = data; bufp->len = len; bufp->status = status; QTAILQ_INSERT_TAIL(&dev->endpoint[EP2I(ep)].bufpq, bufp, next); dev->endpoint[EP2I(ep)].bufpq_size++; } static void bufp_free(USBRedirDevice *dev, struct buf_packet *bufp, uint8_t ep) { QTAILQ_REMOVE(&dev->endpoint[EP2I(ep)].bufpq, bufp, next); dev->endpoint[EP2I(ep)].bufpq_size--; free(bufp->data); g_free(bufp); } static void usbredir_free_bufpq(USBRedirDevice *dev, uint8_t ep) { struct buf_packet *buf, *buf_next; QTAILQ_FOREACH_SAFE(buf, &dev->endpoint[EP2I(ep)].bufpq, next, buf_next) { bufp_free(dev, buf, ep); } } /* * USBDevice callbacks */ static void usbredir_handle_reset(USBDevice *udev) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); DPRINTF("reset device\n"); usbredirparser_send_reset(dev->parser); usbredirparser_do_write(dev->parser); } static void usbredir_handle_iso_data(USBRedirDevice *dev, USBPacket *p, uint8_t ep) { int status, len; if (!dev->endpoint[EP2I(ep)].iso_started && !dev->endpoint[EP2I(ep)].iso_error) { struct usb_redir_start_iso_stream_header start_iso = { .endpoint = ep, }; int pkts_per_sec; if (dev->dev.speed == USB_SPEED_HIGH) { pkts_per_sec = 8000 / dev->endpoint[EP2I(ep)].interval; } else { pkts_per_sec = 1000 / dev->endpoint[EP2I(ep)].interval; } /* Testing has shown that we need circa 60 ms buffer */ dev->endpoint[EP2I(ep)].bufpq_target_size = (pkts_per_sec * 60) / 1000; /* Aim for approx 100 interrupts / second on the client to balance latency and interrupt load */ start_iso.pkts_per_urb = pkts_per_sec / 100; if (start_iso.pkts_per_urb < 1) { start_iso.pkts_per_urb = 1; } else if (start_iso.pkts_per_urb > 32) { start_iso.pkts_per_urb = 32; } start_iso.no_urbs = (dev->endpoint[EP2I(ep)].bufpq_target_size + start_iso.pkts_per_urb - 1) / start_iso.pkts_per_urb; /* Output endpoints pre-fill only 1/2 of the packets, keeping the rest as overflow buffer. Also see the usbredir protocol documentation */ if (!(ep & USB_DIR_IN)) { start_iso.no_urbs *= 2; } if (start_iso.no_urbs > 16) { start_iso.no_urbs = 16; } /* No id, we look at the ep when receiving a status back */ usbredirparser_send_start_iso_stream(dev->parser, 0, &start_iso); usbredirparser_do_write(dev->parser); DPRINTF("iso stream started pkts/sec %d pkts/urb %d urbs %d ep %02X\n", pkts_per_sec, start_iso.pkts_per_urb, start_iso.no_urbs, ep); dev->endpoint[EP2I(ep)].iso_started = 1; dev->endpoint[EP2I(ep)].bufpq_prefilled = 0; dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0; } if (ep & USB_DIR_IN) { struct buf_packet *isop; if (dev->endpoint[EP2I(ep)].iso_started && !dev->endpoint[EP2I(ep)].bufpq_prefilled) { if (dev->endpoint[EP2I(ep)].bufpq_size < dev->endpoint[EP2I(ep)].bufpq_target_size) { return; } dev->endpoint[EP2I(ep)].bufpq_prefilled = 1; } isop = QTAILQ_FIRST(&dev->endpoint[EP2I(ep)].bufpq); if (isop == NULL) { DPRINTF("iso-token-in ep %02X, no isop, iso_error: %d\n", ep, dev->endpoint[EP2I(ep)].iso_error); /* Re-fill the buffer */ dev->endpoint[EP2I(ep)].bufpq_prefilled = 0; /* Check iso_error for stream errors, otherwise its an underrun */ status = dev->endpoint[EP2I(ep)].iso_error; dev->endpoint[EP2I(ep)].iso_error = 0; p->status = status ? USB_RET_IOERROR : USB_RET_SUCCESS; return; } DPRINTF2("iso-token-in ep %02X status %d len %d queue-size: %d\n", ep, isop->status, isop->len, dev->endpoint[EP2I(ep)].bufpq_size); status = isop->status; len = isop->len; if (len > p->iov.size) { ERROR("received iso data is larger then packet ep %02X (%d > %d)\n", ep, len, (int)p->iov.size); len = p->iov.size; status = usb_redir_babble; } usb_packet_copy(p, isop->data, len); bufp_free(dev, isop, ep); usbredir_handle_status(dev, p, status); } else { /* If the stream was not started because of a pending error don't send the packet to the usb-host */ if (dev->endpoint[EP2I(ep)].iso_started) { struct usb_redir_iso_packet_header iso_packet = { .endpoint = ep, .length = p->iov.size }; uint8_t buf[p->iov.size]; /* No id, we look at the ep when receiving a status back */ usb_packet_copy(p, buf, p->iov.size); usbredirparser_send_iso_packet(dev->parser, 0, &iso_packet, buf, p->iov.size); usbredirparser_do_write(dev->parser); } status = dev->endpoint[EP2I(ep)].iso_error; dev->endpoint[EP2I(ep)].iso_error = 0; DPRINTF2("iso-token-out ep %02X status %d len %zd\n", ep, status, p->iov.size); usbredir_handle_status(dev, p, status); } } static void usbredir_stop_iso_stream(USBRedirDevice *dev, uint8_t ep) { struct usb_redir_stop_iso_stream_header stop_iso_stream = { .endpoint = ep }; if (dev->endpoint[EP2I(ep)].iso_started) { usbredirparser_send_stop_iso_stream(dev->parser, 0, &stop_iso_stream); DPRINTF("iso stream stopped ep %02X\n", ep); dev->endpoint[EP2I(ep)].iso_started = 0; } dev->endpoint[EP2I(ep)].iso_error = 0; usbredir_free_bufpq(dev, ep); } static void usbredir_handle_bulk_data(USBRedirDevice *dev, USBPacket *p, uint8_t ep) { struct usb_redir_bulk_packet_header bulk_packet; size_t size = (p->combined) ? p->combined->iov.size : p->iov.size; DPRINTF("bulk-out ep %02X len %zd id %"PRIu64"\n", ep, size, p->id); if (usbredir_already_in_flight(dev, p->id)) { p->status = USB_RET_ASYNC; return; } bulk_packet.endpoint = ep; bulk_packet.length = size; bulk_packet.stream_id = 0; bulk_packet.length_high = size >> 16; assert(bulk_packet.length_high == 0 || usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_32bits_bulk_length)); if (ep & USB_DIR_IN) { usbredirparser_send_bulk_packet(dev->parser, p->id, &bulk_packet, NULL, 0); } else { uint8_t buf[size]; if (p->combined) { iov_to_buf(p->combined->iov.iov, p->combined->iov.niov, 0, buf, size); } else { usb_packet_copy(p, buf, size); } usbredir_log_data(dev, "bulk data out:", buf, size); usbredirparser_send_bulk_packet(dev->parser, p->id, &bulk_packet, buf, size); } usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } static void usbredir_handle_interrupt_in_data(USBRedirDevice *dev, USBPacket *p, uint8_t ep) { /* Input interrupt endpoint, buffered packet input */ struct buf_packet *intp; int status, len; if (!dev->endpoint[EP2I(ep)].interrupt_started && !dev->endpoint[EP2I(ep)].interrupt_error) { struct usb_redir_start_interrupt_receiving_header start_int = { .endpoint = ep, }; /* No id, we look at the ep when receiving a status back */ usbredirparser_send_start_interrupt_receiving(dev->parser, 0, &start_int); usbredirparser_do_write(dev->parser); DPRINTF("interrupt recv started ep %02X\n", ep); dev->endpoint[EP2I(ep)].interrupt_started = 1; /* We don't really want to drop interrupt packets ever, but having some upper limit to how much we buffer is good. */ dev->endpoint[EP2I(ep)].bufpq_target_size = 1000; dev->endpoint[EP2I(ep)].bufpq_dropping_packets = 0; } intp = QTAILQ_FIRST(&dev->endpoint[EP2I(ep)].bufpq); if (intp == NULL) { DPRINTF2("interrupt-token-in ep %02X, no intp\n", ep); /* Check interrupt_error for stream errors */ status = dev->endpoint[EP2I(ep)].interrupt_error; dev->endpoint[EP2I(ep)].interrupt_error = 0; if (status) { usbredir_handle_status(dev, p, status); } else { p->status = USB_RET_NAK; } return; } DPRINTF("interrupt-token-in ep %02X status %d len %d\n", ep, intp->status, intp->len); status = intp->status; len = intp->len; if (len > p->iov.size) { ERROR("received int data is larger then packet ep %02X\n", ep); len = p->iov.size; status = usb_redir_babble; } usb_packet_copy(p, intp->data, len); bufp_free(dev, intp, ep); usbredir_handle_status(dev, p, status); } /* * Handle interrupt out data, the usbredir protocol expects us to do this * async, so that it can report back a completion status. But guests will * expect immediate completion for an interrupt endpoint, and handling this * async causes migration issues. So we report success directly, counting * on the fact that output interrupt packets normally always succeed. */ static void usbredir_handle_interrupt_out_data(USBRedirDevice *dev, USBPacket *p, uint8_t ep) { struct usb_redir_interrupt_packet_header interrupt_packet; uint8_t buf[p->iov.size]; DPRINTF("interrupt-out ep %02X len %zd id %"PRIu64"\n", ep, p->iov.size, p->id); interrupt_packet.endpoint = ep; interrupt_packet.length = p->iov.size; usb_packet_copy(p, buf, p->iov.size); usbredir_log_data(dev, "interrupt data out:", buf, p->iov.size); usbredirparser_send_interrupt_packet(dev->parser, p->id, &interrupt_packet, buf, p->iov.size); usbredirparser_do_write(dev->parser); } static void usbredir_stop_interrupt_receiving(USBRedirDevice *dev, uint8_t ep) { struct usb_redir_stop_interrupt_receiving_header stop_interrupt_recv = { .endpoint = ep }; if (dev->endpoint[EP2I(ep)].interrupt_started) { usbredirparser_send_stop_interrupt_receiving(dev->parser, 0, &stop_interrupt_recv); DPRINTF("interrupt recv stopped ep %02X\n", ep); dev->endpoint[EP2I(ep)].interrupt_started = 0; } dev->endpoint[EP2I(ep)].interrupt_error = 0; usbredir_free_bufpq(dev, ep); } static void usbredir_handle_data(USBDevice *udev, USBPacket *p) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); uint8_t ep; ep = p->ep->nr; if (p->pid == USB_TOKEN_IN) { ep |= USB_DIR_IN; } switch (dev->endpoint[EP2I(ep)].type) { case USB_ENDPOINT_XFER_CONTROL: ERROR("handle_data called for control transfer on ep %02X\n", ep); p->status = USB_RET_NAK; break; case USB_ENDPOINT_XFER_ISOC: usbredir_handle_iso_data(dev, p, ep); break; case USB_ENDPOINT_XFER_BULK: if (p->state == USB_PACKET_SETUP && p->pid == USB_TOKEN_IN && p->ep->pipeline) { p->status = USB_RET_ADD_TO_QUEUE; break; } usbredir_handle_bulk_data(dev, p, ep); break; case USB_ENDPOINT_XFER_INT: if (ep & USB_DIR_IN) { usbredir_handle_interrupt_in_data(dev, p, ep); } else { usbredir_handle_interrupt_out_data(dev, p, ep); } break; default: ERROR("handle_data ep %02X has unknown type %d\n", ep, dev->endpoint[EP2I(ep)].type); p->status = USB_RET_NAK; } } static void usbredir_flush_ep_queue(USBDevice *dev, USBEndpoint *ep) { if (ep->pid == USB_TOKEN_IN && ep->pipeline) { usb_ep_combine_input_packets(ep); } } static void usbredir_set_config(USBRedirDevice *dev, USBPacket *p, int config) { struct usb_redir_set_configuration_header set_config; int i; DPRINTF("set config %d id %"PRIu64"\n", config, p->id); for (i = 0; i < MAX_ENDPOINTS; i++) { switch (dev->endpoint[i].type) { case USB_ENDPOINT_XFER_ISOC: usbredir_stop_iso_stream(dev, I2EP(i)); break; case USB_ENDPOINT_XFER_INT: if (i & 0x10) { usbredir_stop_interrupt_receiving(dev, I2EP(i)); } break; } usbredir_free_bufpq(dev, I2EP(i)); } set_config.configuration = config; usbredirparser_send_set_configuration(dev->parser, p->id, &set_config); usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } static void usbredir_get_config(USBRedirDevice *dev, USBPacket *p) { DPRINTF("get config id %"PRIu64"\n", p->id); usbredirparser_send_get_configuration(dev->parser, p->id); usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } static void usbredir_set_interface(USBRedirDevice *dev, USBPacket *p, int interface, int alt) { struct usb_redir_set_alt_setting_header set_alt; int i; DPRINTF("set interface %d alt %d id %"PRIu64"\n", interface, alt, p->id); for (i = 0; i < MAX_ENDPOINTS; i++) { if (dev->endpoint[i].interface == interface) { switch (dev->endpoint[i].type) { case USB_ENDPOINT_XFER_ISOC: usbredir_stop_iso_stream(dev, I2EP(i)); break; case USB_ENDPOINT_XFER_INT: if (i & 0x10) { usbredir_stop_interrupt_receiving(dev, I2EP(i)); } break; } usbredir_free_bufpq(dev, I2EP(i)); } } set_alt.interface = interface; set_alt.alt = alt; usbredirparser_send_set_alt_setting(dev->parser, p->id, &set_alt); usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } static void usbredir_get_interface(USBRedirDevice *dev, USBPacket *p, int interface) { struct usb_redir_get_alt_setting_header get_alt; DPRINTF("get interface %d id %"PRIu64"\n", interface, p->id); get_alt.interface = interface; usbredirparser_send_get_alt_setting(dev->parser, p->id, &get_alt); usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } static void usbredir_handle_control(USBDevice *udev, USBPacket *p, int request, int value, int index, int length, uint8_t *data) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); struct usb_redir_control_packet_header control_packet; if (usbredir_already_in_flight(dev, p->id)) { p->status = USB_RET_ASYNC; return; } /* Special cases for certain standard device requests */ switch (request) { case DeviceOutRequest | USB_REQ_SET_ADDRESS: DPRINTF("set address %d\n", value); dev->dev.addr = value; return; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: usbredir_set_config(dev, p, value & 0xff); return; case DeviceRequest | USB_REQ_GET_CONFIGURATION: usbredir_get_config(dev, p); return; case InterfaceOutRequest | USB_REQ_SET_INTERFACE: usbredir_set_interface(dev, p, index, value); return; case InterfaceRequest | USB_REQ_GET_INTERFACE: usbredir_get_interface(dev, p, index); return; } /* Normal ctrl requests, note request is (bRequestType << 8) | bRequest */ DPRINTF( "ctrl-out type 0x%x req 0x%x val 0x%x index %d len %d id %"PRIu64"\n", request >> 8, request & 0xff, value, index, length, p->id); control_packet.request = request & 0xFF; control_packet.requesttype = request >> 8; control_packet.endpoint = control_packet.requesttype & USB_DIR_IN; control_packet.value = value; control_packet.index = index; control_packet.length = length; if (control_packet.requesttype & USB_DIR_IN) { usbredirparser_send_control_packet(dev->parser, p->id, &control_packet, NULL, 0); } else { usbredir_log_data(dev, "ctrl data out:", data, length); usbredirparser_send_control_packet(dev->parser, p->id, &control_packet, data, length); } usbredirparser_do_write(dev->parser); p->status = USB_RET_ASYNC; } /* * Close events can be triggered by usbredirparser_do_write which gets called * from within the USBDevice data / control packet callbacks and doing a * usb_detach from within these callbacks is not a good idea. * * So we use a bh handler to take care of close events. */ static void usbredir_chardev_close_bh(void *opaque) { USBRedirDevice *dev = opaque; usbredir_device_disconnect(dev); if (dev->parser) { DPRINTF("destroying usbredirparser\n"); usbredirparser_destroy(dev->parser); dev->parser = NULL; } } static void usbredir_create_parser(USBRedirDevice *dev) { uint32_t caps[USB_REDIR_CAPS_SIZE] = { 0, }; int flags = 0; DPRINTF("creating usbredirparser\n"); dev->parser = qemu_oom_check(usbredirparser_create()); dev->parser->priv = dev; dev->parser->log_func = usbredir_log; dev->parser->read_func = usbredir_read; dev->parser->write_func = usbredir_write; dev->parser->hello_func = usbredir_hello; dev->parser->device_connect_func = usbredir_device_connect; dev->parser->device_disconnect_func = usbredir_device_disconnect; dev->parser->interface_info_func = usbredir_interface_info; dev->parser->ep_info_func = usbredir_ep_info; dev->parser->configuration_status_func = usbredir_configuration_status; dev->parser->alt_setting_status_func = usbredir_alt_setting_status; dev->parser->iso_stream_status_func = usbredir_iso_stream_status; dev->parser->interrupt_receiving_status_func = usbredir_interrupt_receiving_status; dev->parser->bulk_streams_status_func = usbredir_bulk_streams_status; dev->parser->control_packet_func = usbredir_control_packet; dev->parser->bulk_packet_func = usbredir_bulk_packet; dev->parser->iso_packet_func = usbredir_iso_packet; dev->parser->interrupt_packet_func = usbredir_interrupt_packet; dev->read_buf = NULL; dev->read_buf_size = 0; usbredirparser_caps_set_cap(caps, usb_redir_cap_connect_device_version); usbredirparser_caps_set_cap(caps, usb_redir_cap_filter); usbredirparser_caps_set_cap(caps, usb_redir_cap_ep_info_max_packet_size); usbredirparser_caps_set_cap(caps, usb_redir_cap_64bits_ids); usbredirparser_caps_set_cap(caps, usb_redir_cap_32bits_bulk_length); if (runstate_check(RUN_STATE_INMIGRATE)) { flags |= usbredirparser_fl_no_hello; } usbredirparser_init(dev->parser, VERSION, caps, USB_REDIR_CAPS_SIZE, flags); usbredirparser_do_write(dev->parser); } static void usbredir_reject_device(USBRedirDevice *dev) { usbredir_device_disconnect(dev); if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_filter)) { usbredirparser_send_filter_reject(dev->parser); usbredirparser_do_write(dev->parser); } } static void usbredir_do_attach(void *opaque) { USBRedirDevice *dev = opaque; /* In order to work properly with XHCI controllers we need these caps */ if ((dev->dev.port->speedmask & USB_SPEED_MASK_SUPER) && !( usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_ep_info_max_packet_size) && usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_64bits_ids))) { ERROR("usb-redir-host lacks capabilities needed for use with XHCI\n"); usbredir_reject_device(dev); return; } if (usb_device_attach(&dev->dev) != 0) { WARNING("rejecting device due to speed mismatch\n"); usbredir_reject_device(dev); } } /* * chardev callbacks */ static int usbredir_chardev_can_read(void *opaque) { USBRedirDevice *dev = opaque; if (!dev->parser) { WARNING("chardev_can_read called on non open chardev!\n"); return 0; } /* Don't read new data from the chardev until our state is fully synced */ if (!runstate_check(RUN_STATE_RUNNING)) { return 0; } /* usbredir_parser_do_read will consume *all* data we give it */ return 1024 * 1024; } static void usbredir_chardev_read(void *opaque, const uint8_t *buf, int size) { USBRedirDevice *dev = opaque; /* No recursion allowed! */ assert(dev->read_buf == NULL); dev->read_buf = buf; dev->read_buf_size = size; usbredirparser_do_read(dev->parser); /* Send any acks, etc. which may be queued now */ usbredirparser_do_write(dev->parser); } static void usbredir_chardev_event(void *opaque, int event) { USBRedirDevice *dev = opaque; switch (event) { case CHR_EVENT_OPENED: DPRINTF("chardev open\n"); /* Make sure any pending closes are handled (no-op if none pending) */ usbredir_chardev_close_bh(dev); qemu_bh_cancel(dev->chardev_close_bh); usbredir_create_parser(dev); break; case CHR_EVENT_CLOSED: DPRINTF("chardev close\n"); qemu_bh_schedule(dev->chardev_close_bh); break; } } /* * init + destroy */ static void usbredir_vm_state_change(void *priv, int running, RunState state) { USBRedirDevice *dev = priv; if (state == RUN_STATE_RUNNING && dev->parser != NULL) { usbredirparser_do_write(dev->parser); /* Flush any pending writes */ } } static int usbredir_initfn(USBDevice *udev) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); int i; if (dev->cs == NULL) { qerror_report(QERR_MISSING_PARAMETER, "chardev"); return -1; } if (dev->filter_str) { i = usbredirfilter_string_to_rules(dev->filter_str, ":", "|", &dev->filter_rules, &dev->filter_rules_count); if (i) { qerror_report(QERR_INVALID_PARAMETER_VALUE, "filter", "a usb device filter string"); return -1; } } dev->chardev_close_bh = qemu_bh_new(usbredir_chardev_close_bh, dev); dev->attach_timer = qemu_new_timer_ms(vm_clock, usbredir_do_attach, dev); packet_id_queue_init(&dev->cancelled, dev, "cancelled"); packet_id_queue_init(&dev->already_in_flight, dev, "already-in-flight"); for (i = 0; i < MAX_ENDPOINTS; i++) { QTAILQ_INIT(&dev->endpoint[i].bufpq); } /* We'll do the attach once we receive the speed from the usb-host */ udev->auto_attach = 0; /* Will be cleared during setup when we find conflicts */ dev->compatible_speedmask = USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH; /* Let the backend know we are ready */ qemu_chr_fe_open(dev->cs); qemu_chr_add_handlers(dev->cs, usbredir_chardev_can_read, usbredir_chardev_read, usbredir_chardev_event, dev); qemu_add_vm_change_state_handler(usbredir_vm_state_change, dev); add_boot_device_path(dev->bootindex, &udev->qdev, NULL); return 0; } static void usbredir_cleanup_device_queues(USBRedirDevice *dev) { int i; packet_id_queue_empty(&dev->cancelled); packet_id_queue_empty(&dev->already_in_flight); for (i = 0; i < MAX_ENDPOINTS; i++) { usbredir_free_bufpq(dev, I2EP(i)); } } static void usbredir_handle_destroy(USBDevice *udev) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); qemu_chr_fe_close(dev->cs); qemu_chr_delete(dev->cs); /* Note must be done after qemu_chr_close, as that causes a close event */ qemu_bh_delete(dev->chardev_close_bh); qemu_del_timer(dev->attach_timer); qemu_free_timer(dev->attach_timer); usbredir_cleanup_device_queues(dev); if (dev->parser) { usbredirparser_destroy(dev->parser); } free(dev->filter_rules); } static int usbredir_check_filter(USBRedirDevice *dev) { if (dev->interface_info.interface_count == NO_INTERFACE_INFO) { ERROR("No interface info for device\n"); goto error; } if (dev->filter_rules) { if (!usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_connect_device_version)) { ERROR("Device filter specified and peer does not have the " "connect_device_version capability\n"); goto error; } if (usbredirfilter_check( dev->filter_rules, dev->filter_rules_count, dev->device_info.device_class, dev->device_info.device_subclass, dev->device_info.device_protocol, dev->interface_info.interface_class, dev->interface_info.interface_subclass, dev->interface_info.interface_protocol, dev->interface_info.interface_count, dev->device_info.vendor_id, dev->device_info.product_id, dev->device_info.device_version_bcd, 0) != 0) { goto error; } } return 0; error: usbredir_reject_device(dev); return -1; } /* * usbredirparser packet complete callbacks */ static void usbredir_handle_status(USBRedirDevice *dev, USBPacket *p, int status) { switch (status) { case usb_redir_success: p->status = USB_RET_SUCCESS; /* Clear previous ASYNC status */ break; case usb_redir_stall: p->status = USB_RET_STALL; break; case usb_redir_cancelled: /* * When the usbredir-host unredirects a device, it will report a status * of cancelled for all pending packets, followed by a disconnect msg. */ p->status = USB_RET_IOERROR; break; case usb_redir_inval: WARNING("got invalid param error from usb-host?\n"); p->status = USB_RET_IOERROR; break; case usb_redir_babble: p->status = USB_RET_BABBLE; break; case usb_redir_ioerror: case usb_redir_timeout: default: p->status = USB_RET_IOERROR; } } static void usbredir_hello(void *priv, struct usb_redir_hello_header *h) { USBRedirDevice *dev = priv; /* Try to send the filter info now that we've the usb-host's caps */ if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_filter) && dev->filter_rules) { usbredirparser_send_filter_filter(dev->parser, dev->filter_rules, dev->filter_rules_count); usbredirparser_do_write(dev->parser); } } static void usbredir_device_connect(void *priv, struct usb_redir_device_connect_header *device_connect) { USBRedirDevice *dev = priv; const char *speed; if (qemu_timer_pending(dev->attach_timer) || dev->dev.attached) { ERROR("Received device connect while already connected\n"); return; } switch (device_connect->speed) { case usb_redir_speed_low: speed = "low speed"; dev->dev.speed = USB_SPEED_LOW; dev->compatible_speedmask &= ~USB_SPEED_MASK_FULL; dev->compatible_speedmask &= ~USB_SPEED_MASK_HIGH; break; case usb_redir_speed_full: speed = "full speed"; dev->dev.speed = USB_SPEED_FULL; dev->compatible_speedmask &= ~USB_SPEED_MASK_HIGH; break; case usb_redir_speed_high: speed = "high speed"; dev->dev.speed = USB_SPEED_HIGH; break; case usb_redir_speed_super: speed = "super speed"; dev->dev.speed = USB_SPEED_SUPER; break; default: speed = "unknown speed"; dev->dev.speed = USB_SPEED_FULL; } if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_connect_device_version)) { INFO("attaching %s device %04x:%04x version %d.%d class %02x\n", speed, device_connect->vendor_id, device_connect->product_id, ((device_connect->device_version_bcd & 0xf000) >> 12) * 10 + ((device_connect->device_version_bcd & 0x0f00) >> 8), ((device_connect->device_version_bcd & 0x00f0) >> 4) * 10 + ((device_connect->device_version_bcd & 0x000f) >> 0), device_connect->device_class); } else { INFO("attaching %s device %04x:%04x class %02x\n", speed, device_connect->vendor_id, device_connect->product_id, device_connect->device_class); } dev->dev.speedmask = (1 << dev->dev.speed) | dev->compatible_speedmask; dev->device_info = *device_connect; if (usbredir_check_filter(dev)) { WARNING("Device %04x:%04x rejected by device filter, not attaching\n", device_connect->vendor_id, device_connect->product_id); return; } qemu_mod_timer(dev->attach_timer, dev->next_attach_time); } static void usbredir_device_disconnect(void *priv) { USBRedirDevice *dev = priv; int i; /* Stop any pending attaches */ qemu_del_timer(dev->attach_timer); if (dev->dev.attached) { DPRINTF("detaching device\n"); usb_device_detach(&dev->dev); /* * Delay next usb device attach to give the guest a chance to see * see the detach / attach in case of quick close / open succession */ dev->next_attach_time = qemu_get_clock_ms(vm_clock) + 200; } /* Reset state so that the next dev connected starts with a clean slate */ usbredir_cleanup_device_queues(dev); memset(dev->endpoint, 0, sizeof(dev->endpoint)); for (i = 0; i < MAX_ENDPOINTS; i++) { QTAILQ_INIT(&dev->endpoint[i].bufpq); } usb_ep_init(&dev->dev); dev->interface_info.interface_count = NO_INTERFACE_INFO; dev->dev.addr = 0; dev->dev.speed = 0; dev->compatible_speedmask = USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH; } static void usbredir_interface_info(void *priv, struct usb_redir_interface_info_header *interface_info) { USBRedirDevice *dev = priv; dev->interface_info = *interface_info; /* * If we receive interface info after the device has already been * connected (ie on a set_config), re-check the filter. */ if (qemu_timer_pending(dev->attach_timer) || dev->dev.attached) { if (usbredir_check_filter(dev)) { ERROR("Device no longer matches filter after interface info " "change, disconnecting!\n"); } } } static void usbredir_mark_speed_incompatible(USBRedirDevice *dev, int speed) { dev->compatible_speedmask &= ~(1 << speed); dev->dev.speedmask = (1 << dev->dev.speed) | dev->compatible_speedmask; } static void usbredir_set_pipeline(USBRedirDevice *dev, struct USBEndpoint *uep) { if (uep->type != USB_ENDPOINT_XFER_BULK) { return; } if (uep->pid == USB_TOKEN_OUT) { uep->pipeline = true; } if (uep->pid == USB_TOKEN_IN && uep->max_packet_size != 0 && usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_32bits_bulk_length)) { uep->pipeline = true; } } static void usbredir_setup_usb_eps(USBRedirDevice *dev) { struct USBEndpoint *usb_ep; int i, pid; for (i = 0; i < MAX_ENDPOINTS; i++) { pid = (i & 0x10) ? USB_TOKEN_IN : USB_TOKEN_OUT; usb_ep = usb_ep_get(&dev->dev, pid, i & 0x0f); usb_ep->type = dev->endpoint[i].type; usb_ep->ifnum = dev->endpoint[i].interface; usb_ep->max_packet_size = dev->endpoint[i].max_packet_size; usbredir_set_pipeline(dev, usb_ep); } } static void usbredir_ep_info(void *priv, struct usb_redir_ep_info_header *ep_info) { USBRedirDevice *dev = priv; int i; for (i = 0; i < MAX_ENDPOINTS; i++) { dev->endpoint[i].type = ep_info->type[i]; dev->endpoint[i].interval = ep_info->interval[i]; dev->endpoint[i].interface = ep_info->interface[i]; if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_ep_info_max_packet_size)) { dev->endpoint[i].max_packet_size = ep_info->max_packet_size[i]; } switch (dev->endpoint[i].type) { case usb_redir_type_invalid: break; case usb_redir_type_iso: usbredir_mark_speed_incompatible(dev, USB_SPEED_FULL); usbredir_mark_speed_incompatible(dev, USB_SPEED_HIGH); /* Fall through */ case usb_redir_type_interrupt: if (!usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_ep_info_max_packet_size) || ep_info->max_packet_size[i] > 64) { usbredir_mark_speed_incompatible(dev, USB_SPEED_FULL); } if (!usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_ep_info_max_packet_size) || ep_info->max_packet_size[i] > 1024) { usbredir_mark_speed_incompatible(dev, USB_SPEED_HIGH); } if (dev->endpoint[i].interval == 0) { ERROR("Received 0 interval for isoc or irq endpoint\n"); usbredir_reject_device(dev); return; } /* Fall through */ case usb_redir_type_control: case usb_redir_type_bulk: DPRINTF("ep: %02X type: %d interface: %d\n", I2EP(i), dev->endpoint[i].type, dev->endpoint[i].interface); break; default: ERROR("Received invalid endpoint type\n"); usbredir_reject_device(dev); return; } } /* The new ep info may have caused a speed incompatibility, recheck */ if (dev->dev.attached && !(dev->dev.port->speedmask & dev->dev.speedmask)) { ERROR("Device no longer matches speed after endpoint info change, " "disconnecting!\n"); usbredir_reject_device(dev); return; } usbredir_setup_usb_eps(dev); } static void usbredir_configuration_status(void *priv, uint64_t id, struct usb_redir_configuration_status_header *config_status) { USBRedirDevice *dev = priv; USBPacket *p; DPRINTF("set config status %d config %d id %"PRIu64"\n", config_status->status, config_status->configuration, id); p = usbredir_find_packet_by_id(dev, 0, id); if (p) { if (dev->dev.setup_buf[0] & USB_DIR_IN) { dev->dev.data_buf[0] = config_status->configuration; p->actual_length = 1; } usbredir_handle_status(dev, p, config_status->status); usb_generic_async_ctrl_complete(&dev->dev, p); } } static void usbredir_alt_setting_status(void *priv, uint64_t id, struct usb_redir_alt_setting_status_header *alt_setting_status) { USBRedirDevice *dev = priv; USBPacket *p; DPRINTF("alt status %d intf %d alt %d id: %"PRIu64"\n", alt_setting_status->status, alt_setting_status->interface, alt_setting_status->alt, id); p = usbredir_find_packet_by_id(dev, 0, id); if (p) { if (dev->dev.setup_buf[0] & USB_DIR_IN) { dev->dev.data_buf[0] = alt_setting_status->alt; p->actual_length = 1; } usbredir_handle_status(dev, p, alt_setting_status->status); usb_generic_async_ctrl_complete(&dev->dev, p); } } static void usbredir_iso_stream_status(void *priv, uint64_t id, struct usb_redir_iso_stream_status_header *iso_stream_status) { USBRedirDevice *dev = priv; uint8_t ep = iso_stream_status->endpoint; DPRINTF("iso status %d ep %02X id %"PRIu64"\n", iso_stream_status->status, ep, id); if (!dev->dev.attached || !dev->endpoint[EP2I(ep)].iso_started) { return; } dev->endpoint[EP2I(ep)].iso_error = iso_stream_status->status; if (iso_stream_status->status == usb_redir_stall) { DPRINTF("iso stream stopped by peer ep %02X\n", ep); dev->endpoint[EP2I(ep)].iso_started = 0; } } static void usbredir_interrupt_receiving_status(void *priv, uint64_t id, struct usb_redir_interrupt_receiving_status_header *interrupt_receiving_status) { USBRedirDevice *dev = priv; uint8_t ep = interrupt_receiving_status->endpoint; DPRINTF("interrupt recv status %d ep %02X id %"PRIu64"\n", interrupt_receiving_status->status, ep, id); if (!dev->dev.attached || !dev->endpoint[EP2I(ep)].interrupt_started) { return; } dev->endpoint[EP2I(ep)].interrupt_error = interrupt_receiving_status->status; if (interrupt_receiving_status->status == usb_redir_stall) { DPRINTF("interrupt receiving stopped by peer ep %02X\n", ep); dev->endpoint[EP2I(ep)].interrupt_started = 0; } } static void usbredir_bulk_streams_status(void *priv, uint64_t id, struct usb_redir_bulk_streams_status_header *bulk_streams_status) { } static void usbredir_control_packet(void *priv, uint64_t id, struct usb_redir_control_packet_header *control_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; USBPacket *p; int len = control_packet->length; DPRINTF("ctrl-in status %d len %d id %"PRIu64"\n", control_packet->status, len, id); /* Fix up USB-3 ep0 maxpacket size to allow superspeed connected devices * to work redirected to a not superspeed capable hcd */ if (dev->dev.speed == USB_SPEED_SUPER && !((dev->dev.port->speedmask & USB_SPEED_MASK_SUPER)) && control_packet->requesttype == 0x80 && control_packet->request == 6 && control_packet->value == 0x100 && control_packet->index == 0 && data_len >= 18 && data[7] == 9) { data[7] = 64; } p = usbredir_find_packet_by_id(dev, 0, id); if (p) { usbredir_handle_status(dev, p, control_packet->status); if (data_len > 0) { usbredir_log_data(dev, "ctrl data in:", data, data_len); if (data_len > sizeof(dev->dev.data_buf)) { ERROR("ctrl buffer too small (%d > %zu)\n", data_len, sizeof(dev->dev.data_buf)); p->status = USB_RET_STALL; data_len = len = sizeof(dev->dev.data_buf); } memcpy(dev->dev.data_buf, data, data_len); } p->actual_length = len; usb_generic_async_ctrl_complete(&dev->dev, p); } free(data); } static void usbredir_bulk_packet(void *priv, uint64_t id, struct usb_redir_bulk_packet_header *bulk_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; uint8_t ep = bulk_packet->endpoint; int len = (bulk_packet->length_high << 16) | bulk_packet->length; USBPacket *p; DPRINTF("bulk-in status %d ep %02X len %d id %"PRIu64"\n", bulk_packet->status, ep, len, id); p = usbredir_find_packet_by_id(dev, ep, id); if (p) { size_t size = (p->combined) ? p->combined->iov.size : p->iov.size; usbredir_handle_status(dev, p, bulk_packet->status); if (data_len > 0) { usbredir_log_data(dev, "bulk data in:", data, data_len); if (data_len > size) { ERROR("bulk got more data then requested (%d > %zd)\n", data_len, p->iov.size); p->status = USB_RET_BABBLE; data_len = len = size; } if (p->combined) { iov_from_buf(p->combined->iov.iov, p->combined->iov.niov, 0, data, data_len); } else { usb_packet_copy(p, data, data_len); } } p->actual_length = len; if (p->pid == USB_TOKEN_IN && p->ep->pipeline) { usb_combined_input_packet_complete(&dev->dev, p); } else { usb_packet_complete(&dev->dev, p); } } free(data); } static void usbredir_iso_packet(void *priv, uint64_t id, struct usb_redir_iso_packet_header *iso_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; uint8_t ep = iso_packet->endpoint; DPRINTF2("iso-in status %d ep %02X len %d id %"PRIu64"\n", iso_packet->status, ep, data_len, id); if (dev->endpoint[EP2I(ep)].type != USB_ENDPOINT_XFER_ISOC) { ERROR("received iso packet for non iso endpoint %02X\n", ep); free(data); return; } if (dev->endpoint[EP2I(ep)].iso_started == 0) { DPRINTF("received iso packet for non started stream ep %02X\n", ep); free(data); return; } /* bufp_alloc also adds the packet to the ep queue */ bufp_alloc(dev, data, data_len, iso_packet->status, ep); } static void usbredir_interrupt_packet(void *priv, uint64_t id, struct usb_redir_interrupt_packet_header *interrupt_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; uint8_t ep = interrupt_packet->endpoint; DPRINTF("interrupt-in status %d ep %02X len %d id %"PRIu64"\n", interrupt_packet->status, ep, data_len, id); if (dev->endpoint[EP2I(ep)].type != USB_ENDPOINT_XFER_INT) { ERROR("received int packet for non interrupt endpoint %02X\n", ep); free(data); return; } if (ep & USB_DIR_IN) { if (dev->endpoint[EP2I(ep)].interrupt_started == 0) { DPRINTF("received int packet while not started ep %02X\n", ep); free(data); return; } /* bufp_alloc also adds the packet to the ep queue */ bufp_alloc(dev, data, data_len, interrupt_packet->status, ep); } else { /* * We report output interrupt packets as completed directly upon * submission, so all we can do here if one failed is warn. */ if (interrupt_packet->status) { WARNING("interrupt output failed status %d ep %02X id %"PRIu64"\n", interrupt_packet->status, ep, id); } } } /* * Migration code */ static void usbredir_pre_save(void *priv) { USBRedirDevice *dev = priv; usbredir_fill_already_in_flight(dev); } static int usbredir_post_load(void *priv, int version_id) { USBRedirDevice *dev = priv; switch (dev->device_info.speed) { case usb_redir_speed_low: dev->dev.speed = USB_SPEED_LOW; break; case usb_redir_speed_full: dev->dev.speed = USB_SPEED_FULL; break; case usb_redir_speed_high: dev->dev.speed = USB_SPEED_HIGH; break; case usb_redir_speed_super: dev->dev.speed = USB_SPEED_SUPER; break; default: dev->dev.speed = USB_SPEED_FULL; } dev->dev.speedmask = (1 << dev->dev.speed); usbredir_setup_usb_eps(dev); return 0; } /* For usbredirparser migration */ static void usbredir_put_parser(QEMUFile *f, void *priv, size_t unused) { USBRedirDevice *dev = priv; uint8_t *data; int len; if (dev->parser == NULL) { qemu_put_be32(f, 0); return; } usbredirparser_serialize(dev->parser, &data, &len); qemu_oom_check(data); qemu_put_be32(f, len); qemu_put_buffer(f, data, len); free(data); } static int usbredir_get_parser(QEMUFile *f, void *priv, size_t unused) { USBRedirDevice *dev = priv; uint8_t *data; int len, ret; len = qemu_get_be32(f); if (len == 0) { return 0; } /* * If our chardev is not open already at this point the usbredir connection * has been broken (non seamless migration, or restore from disk). * * In this case create a temporary parser to receive the migration data, * and schedule the close_bh to report the device as disconnected to the * guest and to destroy the parser again. */ if (dev->parser == NULL) { WARNING("usb-redir connection broken during migration\n"); usbredir_create_parser(dev); qemu_bh_schedule(dev->chardev_close_bh); } data = g_malloc(len); qemu_get_buffer(f, data, len); ret = usbredirparser_unserialize(dev->parser, data, len); g_free(data); return ret; } static const VMStateInfo usbredir_parser_vmstate_info = { .name = "usb-redir-parser", .put = usbredir_put_parser, .get = usbredir_get_parser, }; /* For buffered packets (iso/irq) queue migration */ static void usbredir_put_bufpq(QEMUFile *f, void *priv, size_t unused) { struct endp_data *endp = priv; struct buf_packet *bufp; int remain = endp->bufpq_size; qemu_put_be32(f, endp->bufpq_size); QTAILQ_FOREACH(bufp, &endp->bufpq, next) { qemu_put_be32(f, bufp->len); qemu_put_be32(f, bufp->status); qemu_put_buffer(f, bufp->data, bufp->len); remain--; } assert(remain == 0); } static int usbredir_get_bufpq(QEMUFile *f, void *priv, size_t unused) { struct endp_data *endp = priv; struct buf_packet *bufp; int i; endp->bufpq_size = qemu_get_be32(f); for (i = 0; i < endp->bufpq_size; i++) { bufp = g_malloc(sizeof(struct buf_packet)); bufp->len = qemu_get_be32(f); bufp->status = qemu_get_be32(f); bufp->data = qemu_oom_check(malloc(bufp->len)); /* regular malloc! */ qemu_get_buffer(f, bufp->data, bufp->len); QTAILQ_INSERT_TAIL(&endp->bufpq, bufp, next); } return 0; } static const VMStateInfo usbredir_ep_bufpq_vmstate_info = { .name = "usb-redir-bufpq", .put = usbredir_put_bufpq, .get = usbredir_get_bufpq, }; /* For endp_data migration */ static const VMStateDescription usbredir_ep_vmstate = { .name = "usb-redir-ep", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(type, struct endp_data), VMSTATE_UINT8(interval, struct endp_data), VMSTATE_UINT8(interface, struct endp_data), VMSTATE_UINT16(max_packet_size, struct endp_data), VMSTATE_UINT8(iso_started, struct endp_data), VMSTATE_UINT8(iso_error, struct endp_data), VMSTATE_UINT8(interrupt_started, struct endp_data), VMSTATE_UINT8(interrupt_error, struct endp_data), VMSTATE_UINT8(bufpq_prefilled, struct endp_data), VMSTATE_UINT8(bufpq_dropping_packets, struct endp_data), { .name = "bufpq", .version_id = 0, .field_exists = NULL, .size = 0, .info = &usbredir_ep_bufpq_vmstate_info, .flags = VMS_SINGLE, .offset = 0, }, VMSTATE_INT32(bufpq_target_size, struct endp_data), VMSTATE_END_OF_LIST() } }; /* For PacketIdQueue migration */ static void usbredir_put_packet_id_q(QEMUFile *f, void *priv, size_t unused) { struct PacketIdQueue *q = priv; USBRedirDevice *dev = q->dev; struct PacketIdQueueEntry *e; int remain = q->size; DPRINTF("put_packet_id_q %s size %d\n", q->name, q->size); qemu_put_be32(f, q->size); QTAILQ_FOREACH(e, &q->head, next) { qemu_put_be64(f, e->id); remain--; } assert(remain == 0); } static int usbredir_get_packet_id_q(QEMUFile *f, void *priv, size_t unused) { struct PacketIdQueue *q = priv; USBRedirDevice *dev = q->dev; int i, size; uint64_t id; size = qemu_get_be32(f); DPRINTF("get_packet_id_q %s size %d\n", q->name, size); for (i = 0; i < size; i++) { id = qemu_get_be64(f); packet_id_queue_add(q, id); } assert(q->size == size); return 0; } static const VMStateInfo usbredir_ep_packet_id_q_vmstate_info = { .name = "usb-redir-packet-id-q", .put = usbredir_put_packet_id_q, .get = usbredir_get_packet_id_q, }; static const VMStateDescription usbredir_ep_packet_id_queue_vmstate = { .name = "usb-redir-packet-id-queue", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { { .name = "queue", .version_id = 0, .field_exists = NULL, .size = 0, .info = &usbredir_ep_packet_id_q_vmstate_info, .flags = VMS_SINGLE, .offset = 0, }, VMSTATE_END_OF_LIST() } }; /* For usb_redir_device_connect_header migration */ static const VMStateDescription usbredir_device_info_vmstate = { .name = "usb-redir-device-info", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(speed, struct usb_redir_device_connect_header), VMSTATE_UINT8(device_class, struct usb_redir_device_connect_header), VMSTATE_UINT8(device_subclass, struct usb_redir_device_connect_header), VMSTATE_UINT8(device_protocol, struct usb_redir_device_connect_header), VMSTATE_UINT16(vendor_id, struct usb_redir_device_connect_header), VMSTATE_UINT16(product_id, struct usb_redir_device_connect_header), VMSTATE_UINT16(device_version_bcd, struct usb_redir_device_connect_header), VMSTATE_END_OF_LIST() } }; /* For usb_redir_interface_info_header migration */ static const VMStateDescription usbredir_interface_info_vmstate = { .name = "usb-redir-interface-info", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(interface_count, struct usb_redir_interface_info_header), VMSTATE_UINT8_ARRAY(interface, struct usb_redir_interface_info_header, 32), VMSTATE_UINT8_ARRAY(interface_class, struct usb_redir_interface_info_header, 32), VMSTATE_UINT8_ARRAY(interface_subclass, struct usb_redir_interface_info_header, 32), VMSTATE_UINT8_ARRAY(interface_protocol, struct usb_redir_interface_info_header, 32), VMSTATE_END_OF_LIST() } }; /* And finally the USBRedirDevice vmstate itself */ static const VMStateDescription usbredir_vmstate = { .name = "usb-redir", .version_id = 1, .minimum_version_id = 1, .pre_save = usbredir_pre_save, .post_load = usbredir_post_load, .fields = (VMStateField[]) { VMSTATE_USB_DEVICE(dev, USBRedirDevice), VMSTATE_TIMER(attach_timer, USBRedirDevice), { .name = "parser", .version_id = 0, .field_exists = NULL, .size = 0, .info = &usbredir_parser_vmstate_info, .flags = VMS_SINGLE, .offset = 0, }, VMSTATE_STRUCT_ARRAY(endpoint, USBRedirDevice, MAX_ENDPOINTS, 1, usbredir_ep_vmstate, struct endp_data), VMSTATE_STRUCT(cancelled, USBRedirDevice, 1, usbredir_ep_packet_id_queue_vmstate, struct PacketIdQueue), VMSTATE_STRUCT(already_in_flight, USBRedirDevice, 1, usbredir_ep_packet_id_queue_vmstate, struct PacketIdQueue), VMSTATE_STRUCT(device_info, USBRedirDevice, 1, usbredir_device_info_vmstate, struct usb_redir_device_connect_header), VMSTATE_STRUCT(interface_info, USBRedirDevice, 1, usbredir_interface_info_vmstate, struct usb_redir_interface_info_header), VMSTATE_END_OF_LIST() } }; static Property usbredir_properties[] = { DEFINE_PROP_CHR("chardev", USBRedirDevice, cs), DEFINE_PROP_UINT8("debug", USBRedirDevice, debug, usbredirparser_warning), DEFINE_PROP_STRING("filter", USBRedirDevice, filter_str), DEFINE_PROP_INT32("bootindex", USBRedirDevice, bootindex, -1), DEFINE_PROP_END_OF_LIST(), }; static void usbredir_class_initfn(ObjectClass *klass, void *data) { USBDeviceClass *uc = USB_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); uc->init = usbredir_initfn; uc->product_desc = "USB Redirection Device"; uc->handle_destroy = usbredir_handle_destroy; uc->cancel_packet = usbredir_cancel_packet; uc->handle_reset = usbredir_handle_reset; uc->handle_data = usbredir_handle_data; uc->handle_control = usbredir_handle_control; uc->flush_ep_queue = usbredir_flush_ep_queue; dc->vmsd = &usbredir_vmstate; dc->props = usbredir_properties; } static TypeInfo usbredir_dev_info = { .name = "usb-redir", .parent = TYPE_USB_DEVICE, .instance_size = sizeof(USBRedirDevice), .class_init = usbredir_class_initfn, }; static void usbredir_register_types(void) { type_register_static(&usbredir_dev_info); } type_init(usbredir_register_types)