/* * RISC-V CPU helpers for qemu. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "trace.h" #include "semihosting/common-semi.h" int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) { #ifdef CONFIG_USER_ONLY return 0; #else return env->priv; #endif } #ifndef CONFIG_USER_ONLY static int riscv_cpu_local_irq_pending(CPURISCVState *env) { target_ulong irqs; target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); target_ulong pending = env->mip & env->mie & ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); target_ulong vspending = (env->mip & env->mie & (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie); target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie); target_ulong hs_sie = env->priv < PRV_S || (env->priv == PRV_S && hs_mstatus_sie); if (riscv_cpu_virt_enabled(env)) { target_ulong pending_hs_irq = pending & -hs_sie; if (pending_hs_irq) { riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); return ctz64(pending_hs_irq); } pending = vspending; } irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); if (irqs) { return ctz64(irqs); /* since non-zero */ } else { return RISCV_EXCP_NONE; /* indicates no pending interrupt */ } } bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { if (interrupt_request & CPU_INTERRUPT_HARD) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; int interruptno = riscv_cpu_local_irq_pending(env); if (interruptno >= 0) { cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; riscv_cpu_do_interrupt(cs); return true; } } return false; } /* Return true is floating point support is currently enabled */ bool riscv_cpu_fp_enabled(CPURISCVState *env) { if (env->mstatus & MSTATUS_FS) { if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { return false; } return true; } return false; } void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) { uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | MSTATUS64_UXL; bool current_virt = riscv_cpu_virt_enabled(env); g_assert(riscv_has_ext(env, RVH)); if (current_virt) { /* Current V=1 and we are about to change to V=0 */ env->vsstatus = env->mstatus & mstatus_mask; env->mstatus &= ~mstatus_mask; env->mstatus |= env->mstatus_hs; env->vstvec = env->stvec; env->stvec = env->stvec_hs; env->vsscratch = env->sscratch; env->sscratch = env->sscratch_hs; env->vsepc = env->sepc; env->sepc = env->sepc_hs; env->vscause = env->scause; env->scause = env->scause_hs; env->vstval = env->stval; env->stval = env->stval_hs; env->vsatp = env->satp; env->satp = env->satp_hs; } else { /* Current V=0 and we are about to change to V=1 */ env->mstatus_hs = env->mstatus & mstatus_mask; env->mstatus &= ~mstatus_mask; env->mstatus |= env->vsstatus; env->stvec_hs = env->stvec; env->stvec = env->vstvec; env->sscratch_hs = env->sscratch; env->sscratch = env->vsscratch; env->sepc_hs = env->sepc; env->sepc = env->vsepc; env->scause_hs = env->scause; env->scause = env->vscause; env->stval_hs = env->stval; env->stval = env->vstval; env->satp_hs = env->satp; env->satp = env->vsatp; } } bool riscv_cpu_virt_enabled(CPURISCVState *env) { if (!riscv_has_ext(env, RVH)) { return false; } return get_field(env->virt, VIRT_ONOFF); } void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) { if (!riscv_has_ext(env, RVH)) { return; } /* Flush the TLB on all virt mode changes. */ if (get_field(env->virt, VIRT_ONOFF) != enable) { tlb_flush(env_cpu(env)); } env->virt = set_field(env->virt, VIRT_ONOFF, enable); } bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) { if (!riscv_has_ext(env, RVH)) { return false; } return get_field(env->virt, FORCE_HS_EXCEP); } void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) { if (!riscv_has_ext(env, RVH)) { return; } env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); } bool riscv_cpu_two_stage_lookup(int mmu_idx) { return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; } int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) { CPURISCVState *env = &cpu->env; if (env->miclaim & interrupts) { return -1; } else { env->miclaim |= interrupts; return 0; } } uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) { CPURISCVState *env = &cpu->env; CPUState *cs = CPU(cpu); uint32_t old = env->mip; bool locked = false; if (!qemu_mutex_iothread_locked()) { locked = true; qemu_mutex_lock_iothread(); } env->mip = (env->mip & ~mask) | (value & mask); if (env->mip) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } if (locked) { qemu_mutex_unlock_iothread(); } return old; } void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), uint32_t arg) { env->rdtime_fn = fn; env->rdtime_fn_arg = arg; } void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) { if (newpriv > PRV_M) { g_assert_not_reached(); } if (newpriv == PRV_H) { newpriv = PRV_U; } /* tlb_flush is unnecessary as mode is contained in mmu_idx */ env->priv = newpriv; /* * Clear the load reservation - otherwise a reservation placed in one * context/process can be used by another, resulting in an SC succeeding * incorrectly. Version 2.2 of the ISA specification explicitly requires * this behaviour, while later revisions say that the kernel "should" use * an SC instruction to force the yielding of a load reservation on a * preemptive context switch. As a result, do both. */ env->load_res = -1; } /* * get_physical_address_pmp - check PMP permission for this physical address * * Match the PMP region and check permission for this physical address and it's * TLB page. Returns 0 if the permission checking was successful * * @env: CPURISCVState * @prot: The returned protection attributes * @tlb_size: TLB page size containing addr. It could be modified after PMP * permission checking. NULL if not set TLB page for addr. * @addr: The physical address to be checked permission * @access_type: The type of MMU access * @mode: Indicates current privilege level. */ static int get_physical_address_pmp(CPURISCVState *env, int *prot, target_ulong *tlb_size, hwaddr addr, int size, MMUAccessType access_type, int mode) { pmp_priv_t pmp_priv; target_ulong tlb_size_pmp = 0; if (!riscv_feature(env, RISCV_FEATURE_PMP)) { *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TRANSLATE_SUCCESS; } if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, mode)) { *prot = 0; return TRANSLATE_PMP_FAIL; } *prot = pmp_priv_to_page_prot(pmp_priv); if (tlb_size != NULL) { if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { *tlb_size = tlb_size_pmp; } } return TRANSLATE_SUCCESS; } /* get_physical_address - get the physical address for this virtual address * * Do a page table walk to obtain the physical address corresponding to a * virtual address. Returns 0 if the translation was successful * * Adapted from Spike's mmu_t::translate and mmu_t::walk * * @env: CPURISCVState * @physical: This will be set to the calculated physical address * @prot: The returned protection attributes * @addr: The virtual address to be translated * @fault_pte_addr: If not NULL, this will be set to fault pte address * when a error occurs on pte address translation. * This will already be shifted to match htval. * @access_type: The type of MMU access * @mmu_idx: Indicates current privilege level * @first_stage: Are we in first stage translation? * Second stage is used for hypervisor guest translation * @two_stage: Are we going to perform two stage translation * @is_debug: Is this access from a debugger or the monitor? */ static int get_physical_address(CPURISCVState *env, hwaddr *physical, int *prot, target_ulong addr, target_ulong *fault_pte_addr, int access_type, int mmu_idx, bool first_stage, bool two_stage, bool is_debug) { /* NOTE: the env->pc value visible here will not be * correct, but the value visible to the exception handler * (riscv_cpu_do_interrupt) is correct */ MemTxResult res; MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; bool use_background = false; /* * Check if we should use the background registers for the two * stage translation. We don't need to check if we actually need * two stage translation as that happened before this function * was called. Background registers will be used if the guest has * forced a two stage translation to be on (in HS or M mode). */ if (!riscv_cpu_virt_enabled(env) && two_stage) { use_background = true; } /* MPRV does not affect the virtual-machine load/store instructions, HLV, HLVX, and HSV. */ if (riscv_cpu_two_stage_lookup(mmu_idx)) { mode = get_field(env->hstatus, HSTATUS_SPVP); } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { if (get_field(env->mstatus, MSTATUS_MPRV)) { mode = get_field(env->mstatus, MSTATUS_MPP); } } if (first_stage == false) { /* We are in stage 2 translation, this is similar to stage 1. */ /* Stage 2 is always taken as U-mode */ mode = PRV_U; } if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { *physical = addr; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TRANSLATE_SUCCESS; } *prot = 0; hwaddr base; int levels, ptidxbits, ptesize, vm, sum, mxr, widened; if (first_stage == true) { mxr = get_field(env->mstatus, MSTATUS_MXR); } else { mxr = get_field(env->vsstatus, MSTATUS_MXR); } if (first_stage == true) { if (use_background) { if (riscv_cpu_is_32bit(env)) { base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; vm = get_field(env->vsatp, SATP32_MODE); } else { base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; vm = get_field(env->vsatp, SATP64_MODE); } } else { if (riscv_cpu_is_32bit(env)) { base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; vm = get_field(env->satp, SATP32_MODE); } else { base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; vm = get_field(env->satp, SATP64_MODE); } } widened = 0; } else { if (riscv_cpu_is_32bit(env)) { base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; vm = get_field(env->hgatp, SATP32_MODE); } else { base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; vm = get_field(env->hgatp, SATP64_MODE); } widened = 2; } /* status.SUM will be ignored if execute on background */ sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; switch (vm) { case VM_1_10_SV32: levels = 2; ptidxbits = 10; ptesize = 4; break; case VM_1_10_SV39: levels = 3; ptidxbits = 9; ptesize = 8; break; case VM_1_10_SV48: levels = 4; ptidxbits = 9; ptesize = 8; break; case VM_1_10_SV57: levels = 5; ptidxbits = 9; ptesize = 8; break; case VM_1_10_MBARE: *physical = addr; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return TRANSLATE_SUCCESS; default: g_assert_not_reached(); } CPUState *cs = env_cpu(env); int va_bits = PGSHIFT + levels * ptidxbits + widened; target_ulong mask, masked_msbs; if (TARGET_LONG_BITS > (va_bits - 1)) { mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; } else { mask = 0; } masked_msbs = (addr >> (va_bits - 1)) & mask; if (masked_msbs != 0 && masked_msbs != mask) { return TRANSLATE_FAIL; } int ptshift = (levels - 1) * ptidxbits; int i; #if !TCG_OVERSIZED_GUEST restart: #endif for (i = 0; i < levels; i++, ptshift -= ptidxbits) { target_ulong idx; if (i == 0) { idx = (addr >> (PGSHIFT + ptshift)) & ((1 << (ptidxbits + widened)) - 1); } else { idx = (addr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1); } /* check that physical address of PTE is legal */ hwaddr pte_addr; if (two_stage && first_stage) { int vbase_prot; hwaddr vbase; /* Do the second stage translation on the base PTE address. */ int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, base, NULL, MMU_DATA_LOAD, mmu_idx, false, true, is_debug); if (vbase_ret != TRANSLATE_SUCCESS) { if (fault_pte_addr) { *fault_pte_addr = (base + idx * ptesize) >> 2; } return TRANSLATE_G_STAGE_FAIL; } pte_addr = vbase + idx * ptesize; } else { pte_addr = base + idx * ptesize; } int pmp_prot; int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, sizeof(target_ulong), MMU_DATA_LOAD, PRV_S); if (pmp_ret != TRANSLATE_SUCCESS) { return TRANSLATE_PMP_FAIL; } target_ulong pte; if (riscv_cpu_is_32bit(env)) { pte = address_space_ldl(cs->as, pte_addr, attrs, &res); } else { pte = address_space_ldq(cs->as, pte_addr, attrs, &res); } if (res != MEMTX_OK) { return TRANSLATE_FAIL; } hwaddr ppn = pte >> PTE_PPN_SHIFT; if (!(pte & PTE_V)) { /* Invalid PTE */ return TRANSLATE_FAIL; } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { /* Inner PTE, continue walking */ base = ppn << PGSHIFT; } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { /* Reserved leaf PTE flags: PTE_W */ return TRANSLATE_FAIL; } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { /* Reserved leaf PTE flags: PTE_W + PTE_X */ return TRANSLATE_FAIL; } else if ((pte & PTE_U) && ((mode != PRV_U) && (!sum || access_type == MMU_INST_FETCH))) { /* User PTE flags when not U mode and mstatus.SUM is not set, or the access type is an instruction fetch */ return TRANSLATE_FAIL; } else if (!(pte & PTE_U) && (mode != PRV_S)) { /* Supervisor PTE flags when not S mode */ return TRANSLATE_FAIL; } else if (ppn & ((1ULL << ptshift) - 1)) { /* Misaligned PPN */ return TRANSLATE_FAIL; } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || ((pte & PTE_X) && mxr))) { /* Read access check failed */ return TRANSLATE_FAIL; } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { /* Write access check failed */ return TRANSLATE_FAIL; } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { /* Fetch access check failed */ return TRANSLATE_FAIL; } else { /* if necessary, set accessed and dirty bits. */ target_ulong updated_pte = pte | PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0); /* Page table updates need to be atomic with MTTCG enabled */ if (updated_pte != pte) { /* * - if accessed or dirty bits need updating, and the PTE is * in RAM, then we do so atomically with a compare and swap. * - if the PTE is in IO space or ROM, then it can't be updated * and we return TRANSLATE_FAIL. * - if the PTE changed by the time we went to update it, then * it is no longer valid and we must re-walk the page table. */ MemoryRegion *mr; hwaddr l = sizeof(target_ulong), addr1; mr = address_space_translate(cs->as, pte_addr, &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); if (memory_region_is_ram(mr)) { target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); #if TCG_OVERSIZED_GUEST /* MTTCG is not enabled on oversized TCG guests so * page table updates do not need to be atomic */ *pte_pa = pte = updated_pte; #else target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); if (old_pte != pte) { goto restart; } else { pte = updated_pte; } #endif } else { /* misconfigured PTE in ROM (AD bits are not preset) or * PTE is in IO space and can't be updated atomically */ return TRANSLATE_FAIL; } } /* for superpage mappings, make a fake leaf PTE for the TLB's benefit. */ target_ulong vpn = addr >> PGSHIFT; *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); /* set permissions on the TLB entry */ if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { *prot |= PAGE_READ; } if ((pte & PTE_X)) { *prot |= PAGE_EXEC; } /* add write permission on stores or if the page is already dirty, so that we TLB miss on later writes to update the dirty bit */ if ((pte & PTE_W) && (access_type == MMU_DATA_STORE || (pte & PTE_D))) { *prot |= PAGE_WRITE; } return TRANSLATE_SUCCESS; } } return TRANSLATE_FAIL; } static void raise_mmu_exception(CPURISCVState *env, target_ulong address, MMUAccessType access_type, bool pmp_violation, bool first_stage, bool two_stage) { CPUState *cs = env_cpu(env); int page_fault_exceptions, vm; uint64_t stap_mode; if (riscv_cpu_is_32bit(env)) { stap_mode = SATP32_MODE; } else { stap_mode = SATP64_MODE; } if (first_stage) { vm = get_field(env->satp, stap_mode); } else { vm = get_field(env->hgatp, stap_mode); } page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; switch (access_type) { case MMU_INST_FETCH: if (riscv_cpu_virt_enabled(env) && !first_stage) { cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; } else { cs->exception_index = page_fault_exceptions ? RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; } break; case MMU_DATA_LOAD: if (two_stage && !first_stage) { cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; } else { cs->exception_index = page_fault_exceptions ? RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; } break; case MMU_DATA_STORE: if (two_stage && !first_stage) { cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; } else { cs->exception_index = page_fault_exceptions ? RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; } break; default: g_assert_not_reached(); } env->badaddr = address; env->two_stage_lookup = two_stage; } hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; hwaddr phys_addr; int prot; int mmu_idx = cpu_mmu_index(&cpu->env, false); if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, true, riscv_cpu_virt_enabled(env), true)) { return -1; } if (riscv_cpu_virt_enabled(env)) { if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 0, mmu_idx, false, true, true)) { return -1; } } return phys_addr & TARGET_PAGE_MASK; } void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (access_type == MMU_DATA_STORE) { cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; } else if (access_type == MMU_DATA_LOAD) { cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; } else { cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; } env->badaddr = addr; env->two_stage_lookup = riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(mmu_idx); riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); } void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; switch (access_type) { case MMU_INST_FETCH: cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; break; case MMU_DATA_LOAD: cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; break; case MMU_DATA_STORE: cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; break; default: g_assert_not_reached(); } env->badaddr = addr; env->two_stage_lookup = riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(mmu_idx); riscv_raise_exception(env, cs->exception_index, retaddr); } #endif /* !CONFIG_USER_ONLY */ bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; #ifndef CONFIG_USER_ONLY vaddr im_address; hwaddr pa = 0; int prot, prot2, prot_pmp; bool pmp_violation = false; bool first_stage_error = true; bool two_stage_lookup = false; int ret = TRANSLATE_FAIL; int mode = mmu_idx; /* default TLB page size */ target_ulong tlb_size = TARGET_PAGE_SIZE; env->guest_phys_fault_addr = 0; qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", __func__, address, access_type, mmu_idx); /* MPRV does not affect the virtual-machine load/store instructions, HLV, HLVX, and HSV. */ if (riscv_cpu_two_stage_lookup(mmu_idx)) { mode = get_field(env->hstatus, HSTATUS_SPVP); } else if (mode == PRV_M && access_type != MMU_INST_FETCH && get_field(env->mstatus, MSTATUS_MPRV)) { mode = get_field(env->mstatus, MSTATUS_MPP); if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { two_stage_lookup = true; } } if (riscv_cpu_virt_enabled(env) || ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && access_type != MMU_INST_FETCH)) { /* Two stage lookup */ ret = get_physical_address(env, &pa, &prot, address, &env->guest_phys_fault_addr, access_type, mmu_idx, true, true, false); /* * A G-stage exception may be triggered during two state lookup. * And the env->guest_phys_fault_addr has already been set in * get_physical_address(). */ if (ret == TRANSLATE_G_STAGE_FAIL) { first_stage_error = false; access_type = MMU_DATA_LOAD; } qemu_log_mask(CPU_LOG_MMU, "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx " prot %d\n", __func__, address, ret, pa, prot); if (ret == TRANSLATE_SUCCESS) { /* Second stage lookup */ im_address = pa; ret = get_physical_address(env, &pa, &prot2, im_address, NULL, access_type, mmu_idx, false, true, false); qemu_log_mask(CPU_LOG_MMU, "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx " prot %d\n", __func__, im_address, ret, pa, prot2); prot &= prot2; if (ret == TRANSLATE_SUCCESS) { ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, size, access_type, mode); qemu_log_mask(CPU_LOG_MMU, "%s PMP address=" TARGET_FMT_plx " ret %d prot" " %d tlb_size " TARGET_FMT_lu "\n", __func__, pa, ret, prot_pmp, tlb_size); prot &= prot_pmp; } if (ret != TRANSLATE_SUCCESS) { /* * Guest physical address translation failed, this is a HS * level exception */ first_stage_error = false; env->guest_phys_fault_addr = (im_address | (address & (TARGET_PAGE_SIZE - 1))) >> 2; } } } else { /* Single stage lookup */ ret = get_physical_address(env, &pa, &prot, address, NULL, access_type, mmu_idx, true, false, false); qemu_log_mask(CPU_LOG_MMU, "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx " prot %d\n", __func__, address, ret, pa, prot); if (ret == TRANSLATE_SUCCESS) { ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, size, access_type, mode); qemu_log_mask(CPU_LOG_MMU, "%s PMP address=" TARGET_FMT_plx " ret %d prot" " %d tlb_size " TARGET_FMT_lu "\n", __func__, pa, ret, prot_pmp, tlb_size); prot &= prot_pmp; } } if (ret == TRANSLATE_PMP_FAIL) { pmp_violation = true; } if (ret == TRANSLATE_SUCCESS) { tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), prot, mmu_idx, tlb_size); return true; } else if (probe) { return false; } else { raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error, riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(mmu_idx)); riscv_raise_exception(env, cs->exception_index, retaddr); } return true; #else switch (access_type) { case MMU_INST_FETCH: cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; break; case MMU_DATA_LOAD: cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; break; case MMU_DATA_STORE: cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; break; default: g_assert_not_reached(); } env->badaddr = address; cpu_loop_exit_restore(cs, retaddr); #endif } /* * Handle Traps * * Adapted from Spike's processor_t::take_trap. * */ void riscv_cpu_do_interrupt(CPUState *cs) { #if !defined(CONFIG_USER_ONLY) RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); uint64_t s; /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide * so we mask off the MSB and separate into trap type and cause. */ bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; target_ulong deleg = async ? env->mideleg : env->medeleg; bool write_tval = false; target_ulong tval = 0; target_ulong htval = 0; target_ulong mtval2 = 0; if (cause == RISCV_EXCP_SEMIHOST) { if (env->priv >= PRV_S) { env->gpr[xA0] = do_common_semihosting(cs); env->pc += 4; return; } cause = RISCV_EXCP_BREAKPOINT; } if (!async) { /* set tval to badaddr for traps with address information */ switch (cause) { case RISCV_EXCP_INST_GUEST_PAGE_FAULT: case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: force_hs_execp = true; /* fallthrough */ case RISCV_EXCP_INST_ADDR_MIS: case RISCV_EXCP_INST_ACCESS_FAULT: case RISCV_EXCP_LOAD_ADDR_MIS: case RISCV_EXCP_STORE_AMO_ADDR_MIS: case RISCV_EXCP_LOAD_ACCESS_FAULT: case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: case RISCV_EXCP_INST_PAGE_FAULT: case RISCV_EXCP_LOAD_PAGE_FAULT: case RISCV_EXCP_STORE_PAGE_FAULT: write_tval = true; tval = env->badaddr; break; default: break; } /* ecall is dispatched as one cause so translate based on mode */ if (cause == RISCV_EXCP_U_ECALL) { assert(env->priv <= 3); if (env->priv == PRV_M) { cause = RISCV_EXCP_M_ECALL; } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { cause = RISCV_EXCP_VS_ECALL; } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { cause = RISCV_EXCP_S_ECALL; } else if (env->priv == PRV_U) { cause = RISCV_EXCP_U_ECALL; } } } trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, riscv_cpu_get_trap_name(cause, async)); qemu_log_mask(CPU_LOG_INT, "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", __func__, env->mhartid, async, cause, env->pc, tval, riscv_cpu_get_trap_name(cause, async)); if (env->priv <= PRV_S && cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { /* handle the trap in S-mode */ if (riscv_has_ext(env, RVH)) { target_ulong hdeleg = async ? env->hideleg : env->hedeleg; if (env->two_stage_lookup && write_tval) { /* * If we are writing a guest virtual address to stval, set * this to 1. If we are trapping to VS we will set this to 0 * later. */ env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); } else { /* For other HS-mode traps, we set this to 0. */ env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); } if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && !force_hs_execp) { /* Trap to VS mode */ /* * See if we need to adjust cause. Yes if its VS mode interrupt * no if hypervisor has delegated one of hs mode's interrupt */ if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || cause == IRQ_VS_EXT) { cause = cause - 1; } env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); } else if (riscv_cpu_virt_enabled(env)) { /* Trap into HS mode, from virt */ riscv_cpu_swap_hypervisor_regs(env); env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, env->priv); env->hstatus = set_field(env->hstatus, HSTATUS_SPV, riscv_cpu_virt_enabled(env)); htval = env->guest_phys_fault_addr; riscv_cpu_set_virt_enabled(env, 0); riscv_cpu_set_force_hs_excep(env, 0); } else { /* Trap into HS mode */ env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); htval = env->guest_phys_fault_addr; } } s = env->mstatus; s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); s = set_field(s, MSTATUS_SPP, env->priv); s = set_field(s, MSTATUS_SIE, 0); env->mstatus = s; env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); env->sepc = env->pc; env->stval = tval; env->htval = htval; env->pc = (env->stvec >> 2 << 2) + ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); riscv_cpu_set_mode(env, PRV_S); } else { /* handle the trap in M-mode */ if (riscv_has_ext(env, RVH)) { if (riscv_cpu_virt_enabled(env)) { riscv_cpu_swap_hypervisor_regs(env); } env->mstatus = set_field(env->mstatus, MSTATUS_MPV, riscv_cpu_virt_enabled(env)); if (riscv_cpu_virt_enabled(env) && tval) { env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); } mtval2 = env->guest_phys_fault_addr; /* Trapping to M mode, virt is disabled */ riscv_cpu_set_virt_enabled(env, 0); riscv_cpu_set_force_hs_excep(env, 0); } s = env->mstatus; s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); s = set_field(s, MSTATUS_MPP, env->priv); s = set_field(s, MSTATUS_MIE, 0); env->mstatus = s; env->mcause = cause | ~(((target_ulong)-1) >> async); env->mepc = env->pc; env->mtval = tval; env->mtval2 = mtval2; env->pc = (env->mtvec >> 2 << 2) + ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); riscv_cpu_set_mode(env, PRV_M); } /* NOTE: it is not necessary to yield load reservations here. It is only * necessary for an SC from "another hart" to cause a load reservation * to be yielded. Refer to the memory consistency model section of the * RISC-V ISA Specification. */ env->two_stage_lookup = false; #endif cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ }