/* * Generic intermediate code generation. * * Copyright (C) 2016-2017 LluĂ­s Vilanova * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "exec/exec-all.h" #include "exec/translator.h" #include "exec/cpu_ldst.h" #include "exec/plugin-gen.h" #include "exec/cpu_ldst.h" #include "tcg/tcg-op-common.h" #include "internal-target.h" #include "disas/disas.h" static void set_can_do_io(DisasContextBase *db, bool val) { QEMU_BUILD_BUG_ON(sizeof_field(CPUState, neg.can_do_io) != 1); tcg_gen_st8_i32(tcg_constant_i32(val), tcg_env, offsetof(ArchCPU, parent_obj.neg.can_do_io) - offsetof(ArchCPU, env)); } bool translator_io_start(DisasContextBase *db) { /* * Ensure that this instruction will be the last in the TB. * The target may override this to something more forceful. */ if (db->is_jmp == DISAS_NEXT) { db->is_jmp = DISAS_TOO_MANY; } return true; } static TCGOp *gen_tb_start(DisasContextBase *db, uint32_t cflags) { TCGv_i32 count = NULL; TCGOp *icount_start_insn = NULL; if ((cflags & CF_USE_ICOUNT) || !(cflags & CF_NOIRQ)) { count = tcg_temp_new_i32(); tcg_gen_ld_i32(count, tcg_env, offsetof(ArchCPU, parent_obj.neg.icount_decr.u32) - offsetof(ArchCPU, env)); } if (cflags & CF_USE_ICOUNT) { /* * We emit a sub with a dummy immediate argument. Keep the insn index * of the sub so that we later (when we know the actual insn count) * can update the argument with the actual insn count. */ tcg_gen_sub_i32(count, count, tcg_constant_i32(0)); icount_start_insn = tcg_last_op(); } /* * Emit the check against icount_decr.u32 to see if we should exit * unless we suppress the check with CF_NOIRQ. If we are using * icount and have suppressed interruption the higher level code * should have ensured we don't run more instructions than the * budget. */ if (cflags & CF_NOIRQ) { tcg_ctx->exitreq_label = NULL; } else { tcg_ctx->exitreq_label = gen_new_label(); tcg_gen_brcondi_i32(TCG_COND_LT, count, 0, tcg_ctx->exitreq_label); } if (cflags & CF_USE_ICOUNT) { tcg_gen_st16_i32(count, tcg_env, offsetof(ArchCPU, parent_obj.neg.icount_decr.u16.low) - offsetof(ArchCPU, env)); } return icount_start_insn; } static void gen_tb_end(const TranslationBlock *tb, uint32_t cflags, TCGOp *icount_start_insn, int num_insns) { if (cflags & CF_USE_ICOUNT) { /* * Update the num_insn immediate parameter now that we know * the actual insn count. */ tcg_set_insn_param(icount_start_insn, 2, tcgv_i32_arg(tcg_constant_i32(num_insns))); } if (tcg_ctx->exitreq_label) { gen_set_label(tcg_ctx->exitreq_label); tcg_gen_exit_tb(tb, TB_EXIT_REQUESTED); } } bool translator_use_goto_tb(DisasContextBase *db, vaddr dest) { /* Suppress goto_tb if requested. */ if (tb_cflags(db->tb) & CF_NO_GOTO_TB) { return false; } /* Check for the dest on the same page as the start of the TB. */ return ((db->pc_first ^ dest) & TARGET_PAGE_MASK) == 0; } void translator_loop(CPUState *cpu, TranslationBlock *tb, int *max_insns, vaddr pc, void *host_pc, const TranslatorOps *ops, DisasContextBase *db) { uint32_t cflags = tb_cflags(tb); TCGOp *icount_start_insn; TCGOp *first_insn_start = NULL; bool plugin_enabled; /* Initialize DisasContext */ db->tb = tb; db->pc_first = pc; db->pc_next = pc; db->is_jmp = DISAS_NEXT; db->num_insns = 0; db->max_insns = *max_insns; db->singlestep_enabled = cflags & CF_SINGLE_STEP; db->insn_start = NULL; db->fake_insn = false; db->host_addr[0] = host_pc; db->host_addr[1] = NULL; db->record_start = 0; db->record_len = 0; ops->init_disas_context(db, cpu); tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ /* Start translating. */ icount_start_insn = gen_tb_start(db, cflags); ops->tb_start(db, cpu); tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ plugin_enabled = plugin_gen_tb_start(cpu, db); db->plugin_enabled = plugin_enabled; while (true) { *max_insns = ++db->num_insns; ops->insn_start(db, cpu); db->insn_start = tcg_last_op(); if (first_insn_start == NULL) { first_insn_start = db->insn_start; } tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ if (plugin_enabled) { plugin_gen_insn_start(cpu, db); } /* * Disassemble one instruction. The translate_insn hook should * update db->pc_next and db->is_jmp to indicate what should be * done next -- either exiting this loop or locate the start of * the next instruction. */ ops->translate_insn(db, cpu); /* * We can't instrument after instructions that change control * flow although this only really affects post-load operations. * * Calling plugin_gen_insn_end() before we possibly stop translation * is important. Even if this ends up as dead code, plugin generation * needs to see a matching plugin_gen_insn_{start,end}() pair in order * to accurately track instrumented helpers that might access memory. */ if (plugin_enabled) { plugin_gen_insn_end(); } /* Stop translation if translate_insn so indicated. */ if (db->is_jmp != DISAS_NEXT) { break; } /* Stop translation if the output buffer is full, or we have executed all of the allowed instructions. */ if (tcg_op_buf_full() || db->num_insns >= db->max_insns) { db->is_jmp = DISAS_TOO_MANY; break; } } /* Emit code to exit the TB, as indicated by db->is_jmp. */ ops->tb_stop(db, cpu); gen_tb_end(tb, cflags, icount_start_insn, db->num_insns); /* * Manage can_do_io for the translation block: set to false before * the first insn and set to true before the last insn. */ if (db->num_insns == 1) { tcg_debug_assert(first_insn_start == db->insn_start); } else { tcg_debug_assert(first_insn_start != db->insn_start); tcg_ctx->emit_before_op = first_insn_start; set_can_do_io(db, false); } tcg_ctx->emit_before_op = db->insn_start; set_can_do_io(db, true); tcg_ctx->emit_before_op = NULL; if (plugin_enabled) { plugin_gen_tb_end(cpu, db->num_insns); } /* The disas_log hook may use these values rather than recompute. */ tb->size = db->pc_next - db->pc_first; tb->icount = db->num_insns; if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) && qemu_log_in_addr_range(db->pc_first)) { FILE *logfile = qemu_log_trylock(); if (logfile) { fprintf(logfile, "----------------\n"); if (!ops->disas_log || !ops->disas_log(db, cpu, logfile)) { fprintf(logfile, "IN: %s\n", lookup_symbol(db->pc_first)); target_disas(logfile, cpu, db); } fprintf(logfile, "\n"); qemu_log_unlock(logfile); } } } static bool translator_ld(CPUArchState *env, DisasContextBase *db, void *dest, vaddr pc, size_t len) { TranslationBlock *tb = db->tb; vaddr last = pc + len - 1; void *host; vaddr base; /* Use slow path if first page is MMIO. */ if (unlikely(tb_page_addr0(tb) == -1)) { /* We capped translation with first page MMIO in tb_gen_code. */ tcg_debug_assert(db->max_insns == 1); return false; } host = db->host_addr[0]; base = db->pc_first; if (likely(((base ^ last) & TARGET_PAGE_MASK) == 0)) { /* Entire read is from the first page. */ memcpy(dest, host + (pc - base), len); return true; } if (unlikely(((base ^ pc) & TARGET_PAGE_MASK) == 0)) { /* Read begins on the first page and extends to the second. */ size_t len0 = -(pc | TARGET_PAGE_MASK); memcpy(dest, host + (pc - base), len0); pc += len0; dest += len0; len -= len0; } /* * The read must conclude on the second page and not extend to a third. * * TODO: We could allow the two pages to be virtually discontiguous, * since we already allow the two pages to be physically discontiguous. * The only reasonable use case would be executing an insn at the end * of the address space wrapping around to the beginning. For that, * we would need to know the current width of the address space. * In the meantime, assert. */ base = (base & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; assert(((base ^ pc) & TARGET_PAGE_MASK) == 0); assert(((base ^ last) & TARGET_PAGE_MASK) == 0); host = db->host_addr[1]; if (host == NULL) { tb_page_addr_t page0, old_page1, new_page1; new_page1 = get_page_addr_code_hostp(env, base, &db->host_addr[1]); /* * If the second page is MMIO, treat as if the first page * was MMIO as well, so that we do not cache the TB. */ if (unlikely(new_page1 == -1)) { tb_unlock_pages(tb); tb_set_page_addr0(tb, -1); /* Require that this be the final insn. */ db->max_insns = db->num_insns; return false; } /* * If this is not the first time around, and page1 matches, * then we already have the page locked. Alternately, we're * not doing anything to prevent the PTE from changing, so * we might wind up with a different page, requiring us to * re-do the locking. */ old_page1 = tb_page_addr1(tb); if (likely(new_page1 != old_page1)) { page0 = tb_page_addr0(tb); if (unlikely(old_page1 != -1)) { tb_unlock_page1(page0, old_page1); } tb_set_page_addr1(tb, new_page1); tb_lock_page1(page0, new_page1); } host = db->host_addr[1]; } memcpy(dest, host + (pc - base), len); return true; } static void record_save(DisasContextBase *db, vaddr pc, const void *from, int size) { int offset; /* Do not record probes before the start of TB. */ if (pc < db->pc_first) { return; } /* * In translator_access, we verified that pc is within 2 pages * of pc_first, thus this will never overflow. */ offset = pc - db->pc_first; /* * Either the first or second page may be I/O. If it is the second, * then the first byte we need to record will be at a non-zero offset. * In either case, we should not need to record but a single insn. */ if (db->record_len == 0) { db->record_start = offset; db->record_len = size; } else { assert(offset == db->record_start + db->record_len); assert(db->record_len + size <= sizeof(db->record)); db->record_len += size; } memcpy(db->record + (offset - db->record_start), from, size); } size_t translator_st_len(const DisasContextBase *db) { return db->fake_insn ? db->record_len : db->tb->size; } bool translator_st(const DisasContextBase *db, void *dest, vaddr addr, size_t len) { size_t offset, offset_end; if (addr < db->pc_first) { return false; } offset = addr - db->pc_first; offset_end = offset + len; if (offset_end > translator_st_len(db)) { return false; } if (!db->fake_insn) { size_t offset_page1 = -(db->pc_first | TARGET_PAGE_MASK); /* Get all the bytes from the first page. */ if (db->host_addr[0]) { if (offset_end <= offset_page1) { memcpy(dest, db->host_addr[0] + offset, len); return true; } if (offset < offset_page1) { size_t len0 = offset_page1 - offset; memcpy(dest, db->host_addr[0] + offset, len0); offset += len0; dest += len0; } } /* Get any bytes from the second page. */ if (db->host_addr[1] && offset >= offset_page1) { memcpy(dest, db->host_addr[1] + (offset - offset_page1), offset_end - offset); return true; } } /* Else get recorded bytes. */ if (db->record_len != 0 && offset >= db->record_start && offset_end <= db->record_start + db->record_len) { memcpy(dest, db->record + (offset - db->record_start), offset_end - offset); return true; } return false; } uint8_t translator_ldub(CPUArchState *env, DisasContextBase *db, vaddr pc) { uint8_t raw; if (!translator_ld(env, db, &raw, pc, sizeof(raw))) { raw = cpu_ldub_code(env, pc); record_save(db, pc, &raw, sizeof(raw)); } return raw; } uint16_t translator_lduw(CPUArchState *env, DisasContextBase *db, vaddr pc) { uint16_t raw, tgt; if (translator_ld(env, db, &raw, pc, sizeof(raw))) { tgt = tswap16(raw); } else { tgt = cpu_lduw_code(env, pc); raw = tswap16(tgt); record_save(db, pc, &raw, sizeof(raw)); } return tgt; } uint32_t translator_ldl(CPUArchState *env, DisasContextBase *db, vaddr pc) { uint32_t raw, tgt; if (translator_ld(env, db, &raw, pc, sizeof(raw))) { tgt = tswap32(raw); } else { tgt = cpu_ldl_code(env, pc); raw = tswap32(tgt); record_save(db, pc, &raw, sizeof(raw)); } return tgt; } uint64_t translator_ldq(CPUArchState *env, DisasContextBase *db, vaddr pc) { uint64_t raw, tgt; if (translator_ld(env, db, &raw, pc, sizeof(raw))) { tgt = tswap64(raw); } else { tgt = cpu_ldq_code(env, pc); raw = tswap64(tgt); record_save(db, pc, &raw, sizeof(raw)); } return tgt; } void translator_fake_ld(DisasContextBase *db, const void *data, size_t len) { db->fake_insn = true; record_save(db, db->pc_first, data, len); }