/* * QEMU model of the Smartfusion2 Ethernet MAC. * * Copyright (c) 2020 Subbaraya Sundeep . * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * Refer to section Ethernet MAC in the document: * UG0331: SmartFusion2 Microcontroller Subsystem User Guide * Datasheet URL: * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/ * 56758-soc?lang=en&limit=20&limitstart=220 */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "hw/registerfields.h" #include "hw/net/msf2-emac.h" #include "hw/net/mii.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" REG32(CFG1, 0x0) FIELD(CFG1, RESET, 31, 1) FIELD(CFG1, RX_EN, 2, 1) FIELD(CFG1, TX_EN, 0, 1) FIELD(CFG1, LB_EN, 8, 1) REG32(CFG2, 0x4) REG32(IFG, 0x8) REG32(HALF_DUPLEX, 0xc) REG32(MAX_FRAME_LENGTH, 0x10) REG32(MII_CMD, 0x24) FIELD(MII_CMD, READ, 0, 1) REG32(MII_ADDR, 0x28) FIELD(MII_ADDR, REGADDR, 0, 5) FIELD(MII_ADDR, PHYADDR, 8, 5) REG32(MII_CTL, 0x2c) REG32(MII_STS, 0x30) REG32(STA1, 0x40) REG32(STA2, 0x44) REG32(FIFO_CFG0, 0x48) REG32(FIFO_CFG4, 0x58) FIELD(FIFO_CFG4, BCAST, 9, 1) FIELD(FIFO_CFG4, MCAST, 8, 1) REG32(FIFO_CFG5, 0x5C) FIELD(FIFO_CFG5, BCAST, 9, 1) FIELD(FIFO_CFG5, MCAST, 8, 1) REG32(DMA_TX_CTL, 0x180) FIELD(DMA_TX_CTL, EN, 0, 1) REG32(DMA_TX_DESC, 0x184) REG32(DMA_TX_STATUS, 0x188) FIELD(DMA_TX_STATUS, PKTCNT, 16, 8) FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1) FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1) REG32(DMA_RX_CTL, 0x18c) FIELD(DMA_RX_CTL, EN, 0, 1) REG32(DMA_RX_DESC, 0x190) REG32(DMA_RX_STATUS, 0x194) FIELD(DMA_RX_STATUS, PKTCNT, 16, 8) FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1) FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1) REG32(DMA_IRQ_MASK, 0x198) REG32(DMA_IRQ, 0x19c) #define EMPTY_MASK (1 << 31) #define PKT_SIZE 0x7FF #define PHYADDR 0x1 #define MAX_PKT_SIZE 2048 typedef struct { uint32_t pktaddr; uint32_t pktsize; uint32_t next; } EmacDesc; static uint32_t emac_get_isr(MSF2EmacState *s) { uint32_t ier = s->regs[R_DMA_IRQ_MASK]; uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF; uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF; uint32_t isr = (rx << 4) | tx; s->regs[R_DMA_IRQ] = ier & isr; return s->regs[R_DMA_IRQ]; } static void emac_update_irq(MSF2EmacState *s) { bool intr = emac_get_isr(s); qemu_set_irq(s->irq, intr); } static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc) { address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); /* Convert from LE into host endianness. */ d->pktaddr = le32_to_cpu(d->pktaddr); d->pktsize = le32_to_cpu(d->pktsize); d->next = le32_to_cpu(d->next); } static void emac_store_desc(MSF2EmacState *s, const EmacDesc *d, hwaddr desc) { EmacDesc outd; /* * Convert from host endianness into LE. We use a local struct because * calling code may still want to look at the fields afterwards. */ outd.pktaddr = cpu_to_le32(d->pktaddr); outd.pktsize = cpu_to_le32(d->pktsize); outd.next = cpu_to_le32(d->next); address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, &outd, sizeof outd); } static void msf2_dma_tx(MSF2EmacState *s) { NetClientState *nc = qemu_get_queue(s->nic); hwaddr desc = s->regs[R_DMA_TX_DESC]; uint8_t buf[MAX_PKT_SIZE]; EmacDesc d; int size; uint8_t pktcnt; uint32_t status; if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) { return; } while (1) { emac_load_desc(s, &d, desc); if (d.pktsize & EMPTY_MASK) { break; } size = d.pktsize & PKT_SIZE; address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, buf, size); /* * This is very basic way to send packets. Ideally there should be * a FIFO and packets should be sent out from FIFO only when * R_CFG1 bit 0 is set. */ if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) { qemu_receive_packet(nc, buf, size); } else { qemu_send_packet(nc, buf, size); } d.pktsize |= EMPTY_MASK; emac_store_desc(s, &d, desc); /* update sent packets count */ status = s->regs[R_DMA_TX_STATUS]; pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT); pktcnt++; s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS, PKTCNT, pktcnt); s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK; desc = d.next; } s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK; s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK; } static void msf2_phy_update_link(MSF2EmacState *s) { /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP | MII_BMSR_LINK_ST); } else { s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP | MII_BMSR_LINK_ST); } } static void msf2_phy_reset(MSF2EmacState *s) { memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); s->phy_regs[MII_BMCR] = 0x1140; s->phy_regs[MII_BMSR] = 0x7968; s->phy_regs[MII_PHYID1] = 0x0022; s->phy_regs[MII_PHYID2] = 0x1550; s->phy_regs[MII_ANAR] = 0x01E1; s->phy_regs[MII_ANLPAR] = 0xCDE1; msf2_phy_update_link(s); } static void write_to_phy(MSF2EmacState *s) { uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & R_MII_ADDR_REGADDR_MASK; uint16_t data = s->regs[R_MII_CTL] & 0xFFFF; if (phy_addr != PHYADDR) { return; } switch (reg_addr) { case MII_BMCR: if (data & MII_BMCR_RESET) { /* Phy reset */ msf2_phy_reset(s); data &= ~MII_BMCR_RESET; } if (data & MII_BMCR_AUTOEN) { /* Complete autonegotiation immediately */ data &= ~MII_BMCR_AUTOEN; s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP; } break; } s->phy_regs[reg_addr] = data; } static uint16_t read_from_phy(MSF2EmacState *s) { uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & R_MII_ADDR_REGADDR_MASK; if (phy_addr == PHYADDR) { return s->phy_regs[reg_addr]; } else { return 0xFFFF; } } static void msf2_emac_do_reset(MSF2EmacState *s) { memset(&s->regs[0], 0, sizeof(s->regs)); s->regs[R_CFG1] = 0x80000000; s->regs[R_CFG2] = 0x00007000; s->regs[R_IFG] = 0x40605060; s->regs[R_HALF_DUPLEX] = 0x00A1F037; s->regs[R_MAX_FRAME_LENGTH] = 0x00000600; s->regs[R_FIFO_CFG5] = 0X3FFFF; msf2_phy_reset(s); } static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size) { MSF2EmacState *s = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_DMA_IRQ: r = emac_get_isr(s); break; default: if (addr >= ARRAY_SIZE(s->regs)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr * 4); return r; } r = s->regs[addr]; break; } return r; } static void emac_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { MSF2EmacState *s = opaque; uint32_t value = val64; uint32_t enreqbits; uint8_t pktcnt; addr >>= 2; switch (addr) { case R_DMA_TX_CTL: s->regs[addr] = value; if (value & R_DMA_TX_CTL_EN_MASK) { msf2_dma_tx(s); } break; case R_DMA_RX_CTL: s->regs[addr] = value; if (value & R_DMA_RX_CTL_EN_MASK) { s->rx_desc = s->regs[R_DMA_RX_DESC]; qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case R_CFG1: s->regs[addr] = value; if (value & R_CFG1_RESET_MASK) { msf2_emac_do_reset(s); } break; case R_FIFO_CFG0: /* * For our implementation, turning on modules is instantaneous, * so the states requested via the *ENREQ bits appear in the * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC * module are not emulated here since it deals with start of frames, * inter-packet gap and control frames. */ enreqbits = extract32(value, 8, 5); s->regs[addr] = deposit32(value, 16, 5, enreqbits); break; case R_DMA_TX_DESC: if (value & 0x3) { qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be" " 32 bit aligned\n"); } /* Ignore [1:0] bits */ s->regs[addr] = value & ~3; break; case R_DMA_RX_DESC: if (value & 0x3) { qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be" " 32 bit aligned\n"); } /* Ignore [1:0] bits */ s->regs[addr] = value & ~3; break; case R_DMA_TX_STATUS: if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) { s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK; } if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) { pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT); pktcnt--; s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS, PKTCNT, pktcnt); if (pktcnt == 0) { s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK; } } break; case R_DMA_RX_STATUS: if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) { s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK; } if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) { pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT); pktcnt--; s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS, PKTCNT, pktcnt); if (pktcnt == 0) { s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK; } } break; case R_DMA_IRQ: break; case R_MII_CMD: if (value & R_MII_CMD_READ_MASK) { s->regs[R_MII_STS] = read_from_phy(s); } break; case R_MII_CTL: s->regs[addr] = value; write_to_phy(s); break; case R_STA1: s->regs[addr] = value; /* * R_STA1 [31:24] : octet 1 of mac address * R_STA1 [23:16] : octet 2 of mac address * R_STA1 [15:8] : octet 3 of mac address * R_STA1 [7:0] : octet 4 of mac address */ stl_be_p(s->mac_addr, value); break; case R_STA2: s->regs[addr] = value; /* * R_STA2 [31:24] : octet 5 of mac address * R_STA2 [23:16] : octet 6 of mac address */ stw_be_p(s->mac_addr + 4, value >> 16); break; default: if (addr >= ARRAY_SIZE(s->regs)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr * 4); return; } s->regs[addr] = value; break; } emac_update_irq(s); } static const MemoryRegionOps emac_ops = { .read = emac_read, .write = emac_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4 } }; static bool emac_can_rx(NetClientState *nc) { MSF2EmacState *s = qemu_get_nic_opaque(nc); return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) && (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK); } static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf) { /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */ const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; bool bcast_en = true; bool mcast_en = true; if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) { bcast_en = true; /* Broadcast dont care for drop circuitry */ } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) { bcast_en = false; } if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) { mcast_en = true; /* Multicast dont care for drop circuitry */ } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) { mcast_en = false; } if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) { return bcast_en; } if (buf[0] & 1) { return mcast_en; } return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr)); } static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size) { MSF2EmacState *s = qemu_get_nic_opaque(nc); EmacDesc d; uint8_t pktcnt; uint32_t status; if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) { return size; } if (!addr_filter_ok(s, buf)) { return size; } emac_load_desc(s, &d, s->rx_desc); if (d.pktsize & EMPTY_MASK) { address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, buf, size & PKT_SIZE); d.pktsize = size & PKT_SIZE; emac_store_desc(s, &d, s->rx_desc); /* update received packets count */ status = s->regs[R_DMA_RX_STATUS]; pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT); pktcnt++; s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS, PKTCNT, pktcnt); s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK; s->rx_desc = d.next; } else { s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK; s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK; } emac_update_irq(s); return size; } static void msf2_emac_reset(DeviceState *dev) { MSF2EmacState *s = MSS_EMAC(dev); msf2_emac_do_reset(s); } static void emac_set_link(NetClientState *nc) { MSF2EmacState *s = qemu_get_nic_opaque(nc); msf2_phy_update_link(s); } static NetClientInfo net_msf2_emac_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = emac_can_rx, .receive = emac_rx, .link_status_changed = emac_set_link, }; static void msf2_emac_realize(DeviceState *dev, Error **errp) { MSF2EmacState *s = MSS_EMAC(dev); if (!s->dma_mr) { error_setg(errp, "MSS_EMAC 'ahb-bus' link not set"); return; } address_space_init(&s->dma_as, s->dma_mr, "emac-ahb"); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static void msf2_emac_init(Object *obj) { MSF2EmacState *s = MSS_EMAC(obj); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); memory_region_init_io(&s->mmio, obj, &emac_ops, s, "msf2-emac", R_MAX * 4); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); } static Property msf2_emac_properties[] = { DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_NIC_PROPERTIES(MSF2EmacState, conf), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_msf2_emac = { .name = TYPE_MSS_EMAC, .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN), VMSTATE_UINT32(rx_desc, MSF2EmacState), VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS), VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX), VMSTATE_END_OF_LIST() } }; static void msf2_emac_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = msf2_emac_realize; device_class_set_legacy_reset(dc, msf2_emac_reset); dc->vmsd = &vmstate_msf2_emac; device_class_set_props(dc, msf2_emac_properties); } static const TypeInfo msf2_emac_info = { .name = TYPE_MSS_EMAC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(MSF2EmacState), .instance_init = msf2_emac_init, .class_init = msf2_emac_class_init, }; static void msf2_emac_register_types(void) { type_register_static(&msf2_emac_info); } type_init(msf2_emac_register_types)