/* * Generic intermediate code generation. * * Copyright (C) 2016-2017 LluĂ­s Vilanova * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "exec/exec-all.h" #include "exec/translator.h" #include "exec/plugin-gen.h" #include "tcg/tcg-op-common.h" #include "internal-target.h" static void set_can_do_io(DisasContextBase *db, bool val) { if (db->saved_can_do_io != val) { db->saved_can_do_io = val; QEMU_BUILD_BUG_ON(sizeof_field(CPUState, neg.can_do_io) != 1); tcg_gen_st8_i32(tcg_constant_i32(val), tcg_env, offsetof(ArchCPU, parent_obj.neg.can_do_io) - offsetof(ArchCPU, env)); } } bool translator_io_start(DisasContextBase *db) { set_can_do_io(db, true); /* * Ensure that this instruction will be the last in the TB. * The target may override this to something more forceful. */ if (db->is_jmp == DISAS_NEXT) { db->is_jmp = DISAS_TOO_MANY; } return true; } static TCGOp *gen_tb_start(DisasContextBase *db, uint32_t cflags) { TCGv_i32 count = NULL; TCGOp *icount_start_insn = NULL; if ((cflags & CF_USE_ICOUNT) || !(cflags & CF_NOIRQ)) { count = tcg_temp_new_i32(); tcg_gen_ld_i32(count, tcg_env, offsetof(ArchCPU, parent_obj.neg.icount_decr.u32) - offsetof(ArchCPU, env)); } if (cflags & CF_USE_ICOUNT) { /* * We emit a sub with a dummy immediate argument. Keep the insn index * of the sub so that we later (when we know the actual insn count) * can update the argument with the actual insn count. */ tcg_gen_sub_i32(count, count, tcg_constant_i32(0)); icount_start_insn = tcg_last_op(); } /* * Emit the check against icount_decr.u32 to see if we should exit * unless we suppress the check with CF_NOIRQ. If we are using * icount and have suppressed interruption the higher level code * should have ensured we don't run more instructions than the * budget. */ if (cflags & CF_NOIRQ) { tcg_ctx->exitreq_label = NULL; } else { tcg_ctx->exitreq_label = gen_new_label(); tcg_gen_brcondi_i32(TCG_COND_LT, count, 0, tcg_ctx->exitreq_label); } if (cflags & CF_USE_ICOUNT) { tcg_gen_st16_i32(count, tcg_env, offsetof(ArchCPU, parent_obj.neg.icount_decr.u16.low) - offsetof(ArchCPU, env)); } /* * cpu->neg.can_do_io is set automatically here at the beginning of * each translation block. The cost is minimal, plus it would be * very easy to forget doing it in the translator. */ set_can_do_io(db, db->max_insns == 1 && (cflags & CF_LAST_IO)); return icount_start_insn; } static void gen_tb_end(const TranslationBlock *tb, uint32_t cflags, TCGOp *icount_start_insn, int num_insns) { if (cflags & CF_USE_ICOUNT) { /* * Update the num_insn immediate parameter now that we know * the actual insn count. */ tcg_set_insn_param(icount_start_insn, 2, tcgv_i32_arg(tcg_constant_i32(num_insns))); } if (tcg_ctx->exitreq_label) { gen_set_label(tcg_ctx->exitreq_label); tcg_gen_exit_tb(tb, TB_EXIT_REQUESTED); } } bool translator_use_goto_tb(DisasContextBase *db, vaddr dest) { /* Suppress goto_tb if requested. */ if (tb_cflags(db->tb) & CF_NO_GOTO_TB) { return false; } /* Check for the dest on the same page as the start of the TB. */ return ((db->pc_first ^ dest) & TARGET_PAGE_MASK) == 0; } void translator_loop(CPUState *cpu, TranslationBlock *tb, int *max_insns, vaddr pc, void *host_pc, const TranslatorOps *ops, DisasContextBase *db) { uint32_t cflags = tb_cflags(tb); TCGOp *icount_start_insn; bool plugin_enabled; /* Initialize DisasContext */ db->tb = tb; db->pc_first = pc; db->pc_next = pc; db->is_jmp = DISAS_NEXT; db->num_insns = 0; db->max_insns = *max_insns; db->singlestep_enabled = cflags & CF_SINGLE_STEP; db->saved_can_do_io = -1; db->host_addr[0] = host_pc; db->host_addr[1] = NULL; ops->init_disas_context(db, cpu); tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ /* Start translating. */ icount_start_insn = gen_tb_start(db, cflags); ops->tb_start(db, cpu); tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ if (cflags & CF_MEMI_ONLY) { /* We should only see CF_MEMI_ONLY for io_recompile. */ assert(cflags & CF_LAST_IO); plugin_enabled = plugin_gen_tb_start(cpu, db, true); } else { plugin_enabled = plugin_gen_tb_start(cpu, db, false); } db->plugin_enabled = plugin_enabled; while (true) { *max_insns = ++db->num_insns; ops->insn_start(db, cpu); tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */ if (plugin_enabled) { plugin_gen_insn_start(cpu, db); } /* Disassemble one instruction. The translate_insn hook should update db->pc_next and db->is_jmp to indicate what should be done next -- either exiting this loop or locate the start of the next instruction. */ if (db->num_insns == db->max_insns && (cflags & CF_LAST_IO)) { /* Accept I/O on the last instruction. */ set_can_do_io(db, true); } ops->translate_insn(db, cpu); /* * We can't instrument after instructions that change control * flow although this only really affects post-load operations. * * Calling plugin_gen_insn_end() before we possibly stop translation * is important. Even if this ends up as dead code, plugin generation * needs to see a matching plugin_gen_insn_{start,end}() pair in order * to accurately track instrumented helpers that might access memory. */ if (plugin_enabled) { plugin_gen_insn_end(); } /* Stop translation if translate_insn so indicated. */ if (db->is_jmp != DISAS_NEXT) { break; } /* Stop translation if the output buffer is full, or we have executed all of the allowed instructions. */ if (tcg_op_buf_full() || db->num_insns >= db->max_insns) { db->is_jmp = DISAS_TOO_MANY; break; } } /* Emit code to exit the TB, as indicated by db->is_jmp. */ ops->tb_stop(db, cpu); gen_tb_end(tb, cflags, icount_start_insn, db->num_insns); if (plugin_enabled) { plugin_gen_tb_end(cpu, db->num_insns); } /* The disas_log hook may use these values rather than recompute. */ tb->size = db->pc_next - db->pc_first; tb->icount = db->num_insns; if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) && qemu_log_in_addr_range(db->pc_first)) { FILE *logfile = qemu_log_trylock(); if (logfile) { fprintf(logfile, "----------------\n"); ops->disas_log(db, cpu, logfile); fprintf(logfile, "\n"); qemu_log_unlock(logfile); } } } static void *translator_access(CPUArchState *env, DisasContextBase *db, vaddr pc, size_t len) { void *host; vaddr base, end; TranslationBlock *tb; tb = db->tb; /* Use slow path if first page is MMIO. */ if (unlikely(tb_page_addr0(tb) == -1)) { return NULL; } end = pc + len - 1; if (likely(is_same_page(db, end))) { host = db->host_addr[0]; base = db->pc_first; } else { host = db->host_addr[1]; base = TARGET_PAGE_ALIGN(db->pc_first); if (host == NULL) { tb_page_addr_t page0, old_page1, new_page1; new_page1 = get_page_addr_code_hostp(env, base, &db->host_addr[1]); /* * If the second page is MMIO, treat as if the first page * was MMIO as well, so that we do not cache the TB. */ if (unlikely(new_page1 == -1)) { tb_unlock_pages(tb); tb_set_page_addr0(tb, -1); return NULL; } /* * If this is not the first time around, and page1 matches, * then we already have the page locked. Alternately, we're * not doing anything to prevent the PTE from changing, so * we might wind up with a different page, requiring us to * re-do the locking. */ old_page1 = tb_page_addr1(tb); if (likely(new_page1 != old_page1)) { page0 = tb_page_addr0(tb); if (unlikely(old_page1 != -1)) { tb_unlock_page1(page0, old_page1); } tb_set_page_addr1(tb, new_page1); tb_lock_page1(page0, new_page1); } host = db->host_addr[1]; } /* Use slow path when crossing pages. */ if (is_same_page(db, pc)) { return NULL; } } tcg_debug_assert(pc >= base); return host + (pc - base); } static void plugin_insn_append(abi_ptr pc, const void *from, size_t size) { #ifdef CONFIG_PLUGIN struct qemu_plugin_insn *insn = tcg_ctx->plugin_insn; abi_ptr off; if (insn == NULL) { return; } off = pc - insn->vaddr; if (off < insn->data->len) { g_byte_array_set_size(insn->data, off); } else if (off > insn->data->len) { /* we have an unexpected gap */ g_assert_not_reached(); } insn->data = g_byte_array_append(insn->data, from, size); #endif } uint8_t translator_ldub(CPUArchState *env, DisasContextBase *db, abi_ptr pc) { uint8_t ret; void *p = translator_access(env, db, pc, sizeof(ret)); if (p) { plugin_insn_append(pc, p, sizeof(ret)); return ldub_p(p); } ret = cpu_ldub_code(env, pc); plugin_insn_append(pc, &ret, sizeof(ret)); return ret; } uint16_t translator_lduw(CPUArchState *env, DisasContextBase *db, abi_ptr pc) { uint16_t ret, plug; void *p = translator_access(env, db, pc, sizeof(ret)); if (p) { plugin_insn_append(pc, p, sizeof(ret)); return lduw_p(p); } ret = cpu_lduw_code(env, pc); plug = tswap16(ret); plugin_insn_append(pc, &plug, sizeof(ret)); return ret; } uint32_t translator_ldl(CPUArchState *env, DisasContextBase *db, abi_ptr pc) { uint32_t ret, plug; void *p = translator_access(env, db, pc, sizeof(ret)); if (p) { plugin_insn_append(pc, p, sizeof(ret)); return ldl_p(p); } ret = cpu_ldl_code(env, pc); plug = tswap32(ret); plugin_insn_append(pc, &plug, sizeof(ret)); return ret; } uint64_t translator_ldq(CPUArchState *env, DisasContextBase *db, abi_ptr pc) { uint64_t ret, plug; void *p = translator_access(env, db, pc, sizeof(ret)); if (p) { plugin_insn_append(pc, p, sizeof(ret)); return ldq_p(p); } ret = cpu_ldq_code(env, pc); plug = tswap64(ret); plugin_insn_append(pc, &plug, sizeof(ret)); return ret; } void translator_fake_ldb(uint8_t insn8, abi_ptr pc) { plugin_insn_append(pc, &insn8, sizeof(insn8)); }