/* * QEMU PowerPC PowerNV (POWER9) PHB4 model * * Copyright (c) 2018-2020, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/visitor.h" #include "qapi/error.h" #include "qapi/type-helpers.h" #include "monitor/monitor.h" #include "target/ppc/cpu.h" #include "hw/pci-host/pnv_phb4_regs.h" #include "hw/pci-host/pnv_phb4.h" #include "hw/pci/pcie_host.h" #include "hw/pci/pcie_port.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_xscom.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "qom/object.h" #include "trace.h" #define phb_error(phb, fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \ (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) #define phb_pec_error(pec, fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \ (pec)->chip_id, (pec)->index, ## __VA_ARGS__) static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb) { PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; uint8_t bus, devfn; if (!(addr >> 63)) { return NULL; } bus = (addr >> 52) & 0xff; devfn = (addr >> 44) & 0xff; /* We don't access the root complex this way */ if (bus == 0 && devfn == 0) { return NULL; } return pci_find_device(pci->bus, bus, devfn); } /* * The CONFIG_DATA register expects little endian accesses, but as the * region is big endian, we have to swap the value. */ static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off, unsigned size, uint64_t val) { uint32_t cfg_addr, limit; PCIDevice *pdev; pdev = pnv_phb4_find_cfg_dev(phb); if (!pdev) { return; } cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; cfg_addr |= off; limit = pci_config_size(pdev); if (limit <= cfg_addr) { /* * conventional pci device can be behind pcie-to-pci bridge. * 256 <= addr < 4K has no effects. */ return; } switch (size) { case 1: break; case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; default: g_assert_not_reached(); } pci_host_config_write_common(pdev, cfg_addr, limit, val, size); } static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off, unsigned size) { uint32_t cfg_addr, limit; PCIDevice *pdev; uint64_t val; pdev = pnv_phb4_find_cfg_dev(phb); if (!pdev) { return ~0ull; } cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; cfg_addr |= off; limit = pci_config_size(pdev); if (limit <= cfg_addr) { /* * conventional pci device can be behind pcie-to-pci bridge. * 256 <= addr < 4K has no effects. */ return ~0ull; } val = pci_host_config_read_common(pdev, cfg_addr, limit, size); switch (size) { case 1: return val; case 2: return bswap16(val); case 4: return bswap32(val); default: g_assert_not_reached(); } } /* * Root complex register accesses are memory mapped. */ static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off, unsigned size, uint64_t val) { PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); PCIDevice *pdev; if (size != 4) { phb_error(phb, "rc_config_write invalid size %d", size); return; } pdev = pci_find_device(pci->bus, 0, 0); if (!pdev) { phb_error(phb, "rc_config_write device not found"); return; } pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE, bswap32(val), 4); } static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off, unsigned size) { PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); PCIDevice *pdev; uint64_t val; if (size != 4) { phb_error(phb, "rc_config_read invalid size %d", size); return ~0ull; } pdev = pci_find_device(pci->bus, 0, 0); if (!pdev) { phb_error(phb, "rc_config_read device not found"); return ~0ull; } val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4); return bswap32(val); } static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index) { uint64_t base, start, size, mbe0, mbe1; MemoryRegion *parent; char name[64]; /* Unmap first */ if (memory_region_is_mapped(&phb->mr_mmio[index])) { /* Should we destroy it in RCU friendly way... ? */ memory_region_del_subregion(phb->mr_mmio[index].container, &phb->mr_mmio[index]); } /* Get table entry */ mbe0 = phb->ioda_MBT[(index << 1)]; mbe1 = phb->ioda_MBT[(index << 1) + 1]; if (!(mbe0 & IODA3_MBT0_ENABLE)) { return; } /* Grab geometry from registers */ base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12; size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12; size |= 0xff00000000000000ull; size = ~size + 1; /* Calculate PCI side start address based on M32/M64 window type */ if (mbe0 & IODA3_MBT0_TYPE_M32) { start = phb->regs[PHB_M32_START_ADDR >> 3]; if ((start + size) > 0x100000000ull) { phb_error(phb, "M32 set beyond 4GB boundary !"); size = 0x100000000 - start; } } else { start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); } /* TODO: Figure out how to implement/decode AOMASK */ /* Check if it matches an enabled MMIO region in the PEC stack */ if (memory_region_is_mapped(&phb->mmbar0) && base >= phb->mmio0_base && (base + size) <= (phb->mmio0_base + phb->mmio0_size)) { parent = &phb->mmbar0; base -= phb->mmio0_base; } else if (memory_region_is_mapped(&phb->mmbar1) && base >= phb->mmio1_base && (base + size) <= (phb->mmio1_base + phb->mmio1_size)) { parent = &phb->mmbar1; base -= phb->mmio1_base; } else { phb_error(phb, "PHB MBAR %d out of parent bounds", index); return; } /* Create alias (better name ?) */ snprintf(name, sizeof(name), "phb4-mbar%d", index); memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name, &phb->pci_mmio, start, size); memory_region_add_subregion(parent, base, &phb->mr_mmio[index]); } static void pnv_phb4_check_all_mbt(PnvPHB4 *phb) { uint64_t i; uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS : PNV_PHB4_MIN_MMIO_WINDOWS; for (i = 0; i < num_windows; i++) { pnv_phb4_check_mbt(phb, i); } } static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb, unsigned *out_table, unsigned *out_idx) { uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); unsigned int mask; uint64_t *tptr = NULL; switch (table) { case IODA3_TBL_LIST: tptr = phb->ioda_LIST; mask = 7; break; case IODA3_TBL_MIST: tptr = phb->ioda_MIST; mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1); mask -= 1; break; case IODA3_TBL_RCAM: mask = phb->big_phb ? 127 : 63; break; case IODA3_TBL_MRT: mask = phb->big_phb ? 15 : 7; break; case IODA3_TBL_PESTA: case IODA3_TBL_PESTB: mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); mask -= 1; break; case IODA3_TBL_TVT: tptr = phb->ioda_TVT; mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1); mask -= 1; break; case IODA3_TBL_TCR: case IODA3_TBL_TDR: mask = phb->big_phb ? 1023 : 511; break; case IODA3_TBL_MBT: tptr = phb->ioda_MBT; mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1); mask -= 1; break; case IODA3_TBL_MDT: tptr = phb->ioda_MDT; mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); mask -= 1; break; case IODA3_TBL_PEEV: tptr = phb->ioda_PEEV; mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1); mask -= 1; break; default: phb_error(phb, "invalid IODA table %d", table); return NULL; } index &= mask; if (out_idx) { *out_idx = index; } if (out_table) { *out_table = table; } if (tptr) { tptr += index; } if (adreg & PHB_IODA_AD_AUTOINC) { index = (index + 1) & mask; adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); } phb->regs[PHB_IODA_ADDR >> 3] = adreg; return tptr; } static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb) { unsigned table, idx; uint64_t *tptr; tptr = pnv_phb4_ioda_access(phb, &table, &idx); if (!tptr) { /* Special PESTA case */ if (table == IODA3_TBL_PESTA) { return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63; } else if (table == IODA3_TBL_PESTB) { return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62; } /* Return 0 on unsupported tables, not ff's */ return 0; } return *tptr; } static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val) { unsigned table, idx; uint64_t *tptr; tptr = pnv_phb4_ioda_access(phb, &table, &idx); if (!tptr) { /* Special PESTA case */ if (table == IODA3_TBL_PESTA) { phb->ioda_PEST_AB[idx] &= ~1; phb->ioda_PEST_AB[idx] |= (val >> 63) & 1; } else if (table == IODA3_TBL_PESTB) { phb->ioda_PEST_AB[idx] &= ~2; phb->ioda_PEST_AB[idx] |= (val >> 62) & 2; } return; } /* Handle side effects */ switch (table) { case IODA3_TBL_LIST: break; case IODA3_TBL_MIST: { /* Special mask for MIST partial write */ uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg); uint64_t v = *tptr; if (mmask == 0) { mmask = 0xf; } if (mmask & 8) { v &= 0x0000ffffffffffffull; v |= 0xcfff000000000000ull & val; } if (mmask & 4) { v &= 0xffff0000ffffffffull; v |= 0x0000cfff00000000ull & val; } if (mmask & 2) { v &= 0xffffffff0000ffffull; v |= 0x00000000cfff0000ull & val; } if (mmask & 1) { v &= 0xffffffffffff0000ull; v |= 0x000000000000cfffull & val; } *tptr = v; break; } case IODA3_TBL_MBT: *tptr = val; /* Copy across the valid bit to the other half */ phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull; phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val; /* Update mappings */ pnv_phb4_check_mbt(phb, idx >> 1); break; default: *tptr = val; } } static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val) { PnvPhb4DMASpace *ds; /* Always invalidate all for now ... */ QLIST_FOREACH(ds, &phb->dma_spaces, list) { ds->pe_num = PHB_INVALID_PE; } } static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds) { uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; if (cfg & PHB_PHB4C_32BIT_MSI_EN) { if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 0xffff0000, &ds->msi32_mr); } } else { if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), &ds->msi32_mr); } } if (cfg & PHB_PHB4C_64BIT_MSI_EN) { if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), (1ull << 60), &ds->msi64_mr); } } else { if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), &ds->msi64_mr); } } } static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb) { PnvPhb4DMASpace *ds; QLIST_FOREACH(ds, &phb->dma_spaces, list) { pnv_phb4_update_msi_regions(ds); } } static void pnv_phb4_update_xsrc(PnvPHB4 *phb) { int shift, flags, i, lsi_base; XiveSource *xsrc = &phb->xsrc; /* The XIVE source characteristics can be set at run time */ if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) { shift = XIVE_ESB_64K; } else { shift = XIVE_ESB_4K; } if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) { flags = XIVE_SRC_STORE_EOI; } else { flags = 0; } /* * When the PQ disable configuration bit is set, the check on the * PQ state bits is disabled on the PHB side (for MSI only) and it * is performed on the IC side instead. */ if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) { flags |= XIVE_SRC_PQ_DISABLE; } phb->xsrc.esb_shift = shift; phb->xsrc.esb_flags = flags; lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); lsi_base <<= 3; /* TODO: handle reset values of PHB_LSI_SRC_ID */ if (!lsi_base) { return; } /* TODO: need a xive_source_irq_reset_lsi() */ bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs); for (i = 0; i < xsrc->nr_irqs; i++) { bool msi = (i < lsi_base || i >= (lsi_base + 8)); if (!msi) { xive_source_irq_set_lsi(xsrc, i); } } } static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); bool changed; /* Special case outbound configuration data */ if ((off & 0xfffc) == PHB_CONFIG_DATA) { pnv_phb4_config_write(phb, off & 0x3, size, val); return; } /* Special case RC configuration space */ if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val); return; } /* Other registers are 64-bit only */ if (size != 8 || off & 0x7) { phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", off, size); return; } /* Handle masking */ switch (off) { case PHB_LSI_SOURCE_ID: val &= PHB_LSI_SRC_ID; break; case PHB_M64_UPPER_BITS: val &= 0xff00000000000000ull; break; /* TCE Kill */ case PHB_TCE_KILL: /* Clear top 3 bits which HW does to indicate successful queuing */ val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE); break; case PHB_Q_DMA_R: /* * This is enough logic to make SW happy but we aren't * actually quiescing the DMAs */ if (val & PHB_Q_DMA_R_AUTORESET) { val = 0; } else { val &= PHB_Q_DMA_R_QUIESCE_DMA; } break; /* LEM stuff */ case PHB_LEM_FIR_AND_MASK: phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; return; case PHB_LEM_FIR_OR_MASK: phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; return; case PHB_LEM_ERROR_AND_MASK: phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; return; case PHB_LEM_ERROR_OR_MASK: phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; return; case PHB_LEM_WOF: val = 0; break; /* TODO: More regs ..., maybe create a table with masks... */ /* Read only registers */ case PHB_CPU_LOADSTORE_STATUS: case PHB_ETU_ERR_SUMMARY: case PHB_PHB4_GEN_CAP: case PHB_PHB4_TCE_CAP: case PHB_PHB4_IRQ_CAP: case PHB_PHB4_EEH_CAP: return; } /* Record whether it changed */ changed = phb->regs[off >> 3] != val; /* Store in register cache first */ phb->regs[off >> 3] = val; /* Handle side effects */ switch (off) { case PHB_PHB4_CONFIG: if (changed) { pnv_phb4_update_all_msi_regions(phb); } break; case PHB_M32_START_ADDR: case PHB_M64_UPPER_BITS: if (changed) { pnv_phb4_check_all_mbt(phb); } break; /* IODA table accesses */ case PHB_IODA_DATA0: pnv_phb4_ioda_write(phb, val); break; /* RTC invalidation */ case PHB_RTC_INVALIDATE: pnv_phb4_rtc_invalidate(phb, val); break; /* PHB Control (Affects XIVE source) */ case PHB_CTRLR: case PHB_LSI_SOURCE_ID: pnv_phb4_update_xsrc(phb); break; /* Silent simple writes */ case PHB_ASN_CMPM: case PHB_CONFIG_ADDRESS: case PHB_IODA_ADDR: case PHB_TCE_KILL: case PHB_TCE_SPEC_CTL: case PHB_PEST_BAR: case PHB_PELTV_BAR: case PHB_RTT_BAR: case PHB_LEM_FIR_ACCUM: case PHB_LEM_ERROR_MASK: case PHB_LEM_ACTION0: case PHB_LEM_ACTION1: case PHB_TCE_TAG_ENABLE: case PHB_INT_NOTIFY_ADDR: case PHB_INT_NOTIFY_INDEX: case PHB_DMARD_SYNC: break; /* Noise on anything else */ default: qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n", off, val); } } static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint64_t val; if ((off & 0xfffc) == PHB_CONFIG_DATA) { return pnv_phb4_config_read(phb, off & 0x3, size); } /* Special case RC configuration space */ if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { return pnv_phb4_rc_config_read(phb, off & 0x7ff, size); } /* Other registers are 64-bit only */ if (size != 8 || off & 0x7) { phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", off, size); return ~0ull; } /* Default read from cache */ val = phb->regs[off >> 3]; switch (off) { case PHB_VERSION: return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version; /* Read-only */ case PHB_PHB4_GEN_CAP: return 0xe4b8000000000000ull; case PHB_PHB4_TCE_CAP: return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull; case PHB_PHB4_IRQ_CAP: return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull; case PHB_PHB4_EEH_CAP: return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull; /* IODA table accesses */ case PHB_IODA_DATA0: return pnv_phb4_ioda_read(phb); /* Link training always appears trained */ case PHB_PCIE_DLP_TRAIN_CTL: /* TODO: Do something sensible with speed ? */ return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT; /* DMA read sync: make it look like it's complete */ case PHB_DMARD_SYNC: return PHB_DMARD_SYNC_COMPLETE; /* Silent simple reads */ case PHB_LSI_SOURCE_ID: case PHB_CPU_LOADSTORE_STATUS: case PHB_ASN_CMPM: case PHB_PHB4_CONFIG: case PHB_M32_START_ADDR: case PHB_CONFIG_ADDRESS: case PHB_IODA_ADDR: case PHB_RTC_INVALIDATE: case PHB_TCE_KILL: case PHB_TCE_SPEC_CTL: case PHB_PEST_BAR: case PHB_PELTV_BAR: case PHB_RTT_BAR: case PHB_M64_UPPER_BITS: case PHB_CTRLR: case PHB_LEM_FIR_ACCUM: case PHB_LEM_ERROR_MASK: case PHB_LEM_ACTION0: case PHB_LEM_ACTION1: case PHB_TCE_TAG_ENABLE: case PHB_INT_NOTIFY_ADDR: case PHB_INT_NOTIFY_INDEX: case PHB_Q_DMA_R: case PHB_ETU_ERR_SUMMARY: break; /* Noise on anything else */ default: qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n", off, val); } return val; } static const MemoryRegionOps pnv_phb4_reg_ops = { .read = pnv_phb4_reg_read, .write = pnv_phb4_reg_write, .valid.min_access_size = 1, .valid.max_access_size = 8, .impl.min_access_size = 1, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t reg = addr >> 3; uint64_t val; hwaddr offset; switch (reg) { case PHB_SCOM_HV_IND_ADDR: return phb->scom_hv_ind_addr_reg; case PHB_SCOM_HV_IND_DATA: if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { phb_error(phb, "Invalid indirect address"); return ~0ull; } size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); val = pnv_phb4_reg_read(phb, offset, size); if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { offset += size; offset &= 0x3fff; phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg, offset); } return val; case PHB_SCOM_ETU_LEM_FIR: case PHB_SCOM_ETU_LEM_FIR_AND: case PHB_SCOM_ETU_LEM_FIR_OR: case PHB_SCOM_ETU_LEM_FIR_MSK: case PHB_SCOM_ETU_LEM_ERR_MSK_AND: case PHB_SCOM_ETU_LEM_ERR_MSK_OR: case PHB_SCOM_ETU_LEM_ACT0: case PHB_SCOM_ETU_LEM_ACT1: case PHB_SCOM_ETU_LEM_WOF: offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; return pnv_phb4_reg_read(phb, offset, size); case PHB_SCOM_ETU_PMON_CONFIG: case PHB_SCOM_ETU_PMON_CTR0: case PHB_SCOM_ETU_PMON_CTR1: case PHB_SCOM_ETU_PMON_CTR2: case PHB_SCOM_ETU_PMON_CTR3: offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; return pnv_phb4_reg_read(phb, offset, size); default: qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr); return ~0ull; } } static void pnv_phb4_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t reg = addr >> 3; hwaddr offset; switch (reg) { case PHB_SCOM_HV_IND_ADDR: phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff; break; case PHB_SCOM_HV_IND_DATA: if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { phb_error(phb, "Invalid indirect address"); break; } size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); pnv_phb4_reg_write(phb, offset, val, size); if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { offset += size; offset &= 0x3fff; phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg, offset); } break; case PHB_SCOM_ETU_LEM_FIR: case PHB_SCOM_ETU_LEM_FIR_AND: case PHB_SCOM_ETU_LEM_FIR_OR: case PHB_SCOM_ETU_LEM_FIR_MSK: case PHB_SCOM_ETU_LEM_ERR_MSK_AND: case PHB_SCOM_ETU_LEM_ERR_MSK_OR: case PHB_SCOM_ETU_LEM_ACT0: case PHB_SCOM_ETU_LEM_ACT1: case PHB_SCOM_ETU_LEM_WOF: offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; pnv_phb4_reg_write(phb, offset, val, size); break; case PHB_SCOM_ETU_PMON_CONFIG: case PHB_SCOM_ETU_PMON_CTR0: case PHB_SCOM_ETU_PMON_CTR1: case PHB_SCOM_ETU_PMON_CTR2: case PHB_SCOM_ETU_PMON_CTR3: offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; pnv_phb4_reg_write(phb, offset, val, size); break; default: qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx "=%"PRIx64"\n", addr, val); } } const MemoryRegionOps pnv_phb4_xscom_ops = { .read = pnv_phb4_xscom_read, .write = pnv_phb4_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t reg = addr >> 3; /* All registers are read-able */ return phb->nest_regs[reg]; } /* * Return the 'stack_no' of a PHB4. 'stack_no' is the order * the PHB4 occupies in the PEC. This is the reverse of what * pnv_phb4_pec_get_phb_id() does. * * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will * be the second phb (stack_no = 1) of the PEC. */ static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb) { PnvPhb4PecState *pec = phb->pec; PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); int index = pec->index; int stack_no = phb->phb_id; while (index--) { stack_no -= pecc->num_phbs[index]; } return stack_no; } static void pnv_phb4_update_regions(PnvPHB4 *phb) { /* Unmap first always */ if (memory_region_is_mapped(&phb->mr_regs)) { memory_region_del_subregion(&phb->phbbar, &phb->mr_regs); } if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) { memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio); } /* Map registers if enabled */ if (memory_region_is_mapped(&phb->phbbar)) { memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs); } /* Map ESB if enabled */ if (memory_region_is_mapped(&phb->intbar)) { memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio); } /* Check/update m32 */ pnv_phb4_check_all_mbt(phb); } static void pnv_pec_phb_update_map(PnvPHB4 *phb) { PnvPhb4PecState *pec = phb->pec; MemoryRegion *sysmem = get_system_memory(); uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN]; int stack_no = pnv_phb4_get_phb_stack_no(phb); uint64_t bar, mask, size; char name[64]; /* * NOTE: This will really not work well if those are remapped * after the PHB has created its sub regions. We could do better * if we had a way to resize regions but we don't really care * that much in practice as the stuff below really only happens * once early during boot */ /* Handle unmaps */ if (memory_region_is_mapped(&phb->mmbar0) && !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { memory_region_del_subregion(sysmem, &phb->mmbar0); } if (memory_region_is_mapped(&phb->mmbar1) && !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { memory_region_del_subregion(sysmem, &phb->mmbar1); } if (memory_region_is_mapped(&phb->phbbar) && !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) { memory_region_del_subregion(sysmem, &phb->phbbar); } if (memory_region_is_mapped(&phb->intbar) && !(bar_en & PEC_NEST_STK_BAR_EN_INT)) { memory_region_del_subregion(sysmem, &phb->intbar); } /* Update PHB */ pnv_phb4_update_regions(phb); /* Handle maps */ if (!memory_region_is_mapped(&phb->mmbar0) && (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8; mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK]; size = ((~mask) >> 8) + 1; snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0", pec->chip_id, pec->index, stack_no); memory_region_init(&phb->mmbar0, OBJECT(phb), name, size); memory_region_add_subregion(sysmem, bar, &phb->mmbar0); phb->mmio0_base = bar; phb->mmio0_size = size; } if (!memory_region_is_mapped(&phb->mmbar1) && (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8; mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK]; size = ((~mask) >> 8) + 1; snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1", pec->chip_id, pec->index, stack_no); memory_region_init(&phb->mmbar1, OBJECT(phb), name, size); memory_region_add_subregion(sysmem, bar, &phb->mmbar1); phb->mmio1_base = bar; phb->mmio1_size = size; } if (!memory_region_is_mapped(&phb->phbbar) && (bar_en & PEC_NEST_STK_BAR_EN_PHB)) { bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8; size = PNV_PHB4_NUM_REGS << 3; snprintf(name, sizeof(name), "pec-%d.%d-phb-%d", pec->chip_id, pec->index, stack_no); memory_region_init(&phb->phbbar, OBJECT(phb), name, size); memory_region_add_subregion(sysmem, bar, &phb->phbbar); } if (!memory_region_is_mapped(&phb->intbar) && (bar_en & PEC_NEST_STK_BAR_EN_INT)) { bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8; size = PNV_PHB4_MAX_INTs << 16; snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int", phb->pec->chip_id, phb->pec->index, stack_no); memory_region_init(&phb->intbar, OBJECT(phb), name, size); memory_region_add_subregion(sysmem, bar, &phb->intbar); } /* Update PHB */ pnv_phb4_update_regions(phb); } static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); PnvPhb4PecState *pec = phb->pec; uint32_t reg = addr >> 3; switch (reg) { case PEC_NEST_STK_PCI_NEST_FIR: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val & PPC_BITMASK(0, 27); break; case PEC_NEST_STK_PCI_NEST_FIR_CLR: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val; break; case PEC_NEST_STK_PCI_NEST_FIR_SET: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val; break; case PEC_NEST_STK_PCI_NEST_FIR_MSK: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val & PPC_BITMASK(0, 27); break; case PEC_NEST_STK_PCI_NEST_FIR_MSKC: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val; break; case PEC_NEST_STK_PCI_NEST_FIR_MSKS: phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val; break; case PEC_NEST_STK_PCI_NEST_FIR_ACT0: case PEC_NEST_STK_PCI_NEST_FIR_ACT1: phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); break; case PEC_NEST_STK_PCI_NEST_FIR_WOF: phb->nest_regs[reg] = 0; break; case PEC_NEST_STK_ERR_REPORT_0: case PEC_NEST_STK_ERR_REPORT_1: case PEC_NEST_STK_PBCQ_GNRL_STATUS: /* Flag error ? */ break; case PEC_NEST_STK_PBCQ_MODE: phb->nest_regs[reg] = val & PPC_BITMASK(0, 7); break; case PEC_NEST_STK_MMIO_BAR0: case PEC_NEST_STK_MMIO_BAR0_MASK: case PEC_NEST_STK_MMIO_BAR1: case PEC_NEST_STK_MMIO_BAR1_MASK: if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & (PEC_NEST_STK_BAR_EN_MMIO0 | PEC_NEST_STK_BAR_EN_MMIO1)) { phb_pec_error(pec, "Changing enabled BAR unsupported"); } phb->nest_regs[reg] = val & PPC_BITMASK(0, 39); break; case PEC_NEST_STK_PHB_REGS_BAR: if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) { phb_pec_error(pec, "Changing enabled BAR unsupported"); } phb->nest_regs[reg] = val & PPC_BITMASK(0, 41); break; case PEC_NEST_STK_INT_BAR: if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) { phb_pec_error(pec, "Changing enabled BAR unsupported"); } phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); break; case PEC_NEST_STK_BAR_EN: phb->nest_regs[reg] = val & PPC_BITMASK(0, 3); pnv_pec_phb_update_map(phb); break; case PEC_NEST_STK_DATA_FRZ_TYPE: /* Not used for now */ phb->nest_regs[reg] = val & PPC_BITMASK(0, 27); break; case PEC_NEST_STK_PBCQ_SPARSE_PAGE: phb->nest_regs[reg] = val & PPC_BITMASK(3, 5); break; case PEC_NEST_STK_PBCQ_CACHE_INJ: phb->nest_regs[reg] = val & PPC_BITMASK(0, 7); break; default: qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx "=%"PRIx64"\n", addr, val); } } static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = { .read = pnv_pec_stk_nest_xscom_read, .write = pnv_pec_stk_nest_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t reg = addr >> 3; /* All registers are read-able */ return phb->pci_regs[reg]; } static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t reg = addr >> 3; switch (reg) { case PEC_PCI_STK_PCI_FIR: phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); break; case PEC_PCI_STK_PCI_FIR_CLR: phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val; break; case PEC_PCI_STK_PCI_FIR_SET: phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val; break; case PEC_PCI_STK_PCI_FIR_MSK: phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); break; case PEC_PCI_STK_PCI_FIR_MSKC: phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val; break; case PEC_PCI_STK_PCI_FIR_MSKS: phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val; break; case PEC_PCI_STK_PCI_FIR_ACT0: case PEC_PCI_STK_PCI_FIR_ACT1: phb->pci_regs[reg] = val & PPC_BITMASK(0, 5); break; case PEC_PCI_STK_PCI_FIR_WOF: phb->pci_regs[reg] = 0; break; case PEC_PCI_STK_ETU_RESET: phb->pci_regs[reg] = val & PPC_BIT(0); /* TODO: Implement reset */ break; case PEC_PCI_STK_PBAIB_ERR_REPORT: break; case PEC_PCI_STK_PBAIB_TX_CMD_CRED: phb->pci_regs[reg] = val & ((PPC_BITMASK(0, 2) | PPC_BITMASK(10, 18) | PPC_BITMASK(26, 34) | PPC_BITMASK(41, 50) | PPC_BITMASK(58, 63))); break; case PEC_PCI_STK_PBAIB_TX_DAT_CRED: phb->pci_regs[reg] = val & (PPC_BITMASK(33, 34) | PPC_BITMASK(44, 47)); break; default: qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx "=%"PRIx64"\n", addr, val); } } static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = { .read = pnv_pec_stk_pci_xscom_read, .write = pnv_pec_stk_pci_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num) { /* Check that out properly ... */ return irq_num & 3; } static void pnv_phb4_set_irq(void *opaque, int irq_num, int level) { PnvPHB4 *phb = PNV_PHB4(opaque); uint32_t lsi_base; /* LSI only ... */ if (irq_num > 3) { phb_error(phb, "IRQ %x is not an LSI", irq_num); } lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); lsi_base <<= 3; qemu_set_irq(phb->qirqs[lsi_base + irq_num], level); } static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds) { uint64_t rtt, addr; uint16_t rte; int bus_num; int num_PEs; /* Already resolved ? */ if (ds->pe_num != PHB_INVALID_PE) { return true; } /* We need to lookup the RTT */ rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; if (!(rtt & PHB_RTT_BAR_ENABLE)) { phb_error(ds->phb, "DMA with RTT BAR disabled !"); /* Set error bits ? fence ? ... */ return false; } /* Read RTE */ bus_num = pci_bus_num(ds->bus); addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn); if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte), MEMTXATTRS_UNSPECIFIED)) { phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); /* Set error bits ? fence ? ... */ return false; } rte = be16_to_cpu(rte); /* Fail upon reading of invalid PE# */ num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); if (rte >= num_PEs) { phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); rte &= num_PEs - 1; } ds->pe_num = rte; return true; } static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr, bool is_write, uint64_t tve, IOMMUTLBEntry *tlb) { uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve); int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve); uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve); uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve); /* Invalid levels */ if (lev > 4) { phb_error(ds->phb, "Invalid #levels in TVE %d", lev); return; } /* Invalid entry */ if (tts == 0) { phb_error(ds->phb, "Access to invalid TVE"); return; } /* IO Page Size of 0 means untranslated, else use TCEs */ if (tps == 0) { /* TODO: Handle boundaries */ /* Use 4k pages like q35 ... for now */ tlb->iova = addr & 0xfffffffffffff000ull; tlb->translated_addr = addr & 0x0003fffffffff000ull; tlb->addr_mask = 0xfffull; tlb->perm = IOMMU_RW; } else { uint32_t tce_shift, tbl_shift, sh; uint64_t base, taddr, tce, tce_mask; /* Address bits per bottom level TCE entry */ tce_shift = tps + 11; /* Address bits per table level */ tbl_shift = tts + 8; /* Top level table base address */ base = tta << 12; /* Total shift to first level */ sh = tbl_shift * lev + tce_shift; /* TODO: Limit to support IO page sizes */ /* TODO: Multi-level untested */ do { lev--; /* Grab the TCE address */ taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); if (dma_memory_read(&address_space_memory, taddr, &tce, sizeof(tce), MEMTXATTRS_UNSPECIFIED)) { phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr); return; } tce = be64_to_cpu(tce); /* Check permission for indirect TCE */ if ((lev >= 0) && !(tce & 3)) { phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, is_write ? 'W' : 'R', tve); phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", tta, lev, tts, tps); return; } sh -= tbl_shift; base = tce & ~0xfffull; } while (lev >= 0); /* We exit the loop with TCE being the final TCE */ if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr); phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, is_write ? 'W' : 'R', tve); phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", tta, lev, tts, tps); return; } tce_mask = ~((1ull << tce_shift) - 1); tlb->iova = addr & tce_mask; tlb->translated_addr = tce & tce_mask; tlb->addr_mask = ~tce_mask; tlb->perm = tce & 3; } } static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu, hwaddr addr, IOMMUAccessFlags flag, int iommu_idx) { PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr); int tve_sel; uint64_t tve, cfg; IOMMUTLBEntry ret = { .target_as = &address_space_memory, .iova = addr, .translated_addr = 0, .addr_mask = ~(hwaddr)0, .perm = IOMMU_NONE, }; /* Resolve PE# */ if (!pnv_phb4_resolve_pe(ds)) { phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", ds->bus, pci_bus_num(ds->bus), ds->devfn); return ret; } /* Check top bits */ switch (addr >> 60) { case 00: /* DMA or 32-bit MSI ? */ cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; if ((cfg & PHB_PHB4C_32BIT_MSI_EN) && ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { phb_error(ds->phb, "xlate on 32-bit MSI region"); return ret; } /* Choose TVE XXX Use PHB4 Control Register */ tve_sel = (addr >> 59) & 1; tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); break; case 01: phb_error(ds->phb, "xlate on 64-bit MSI region"); break; default: phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr); } return ret; } #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region" DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION, TYPE_PNV_PHB4_IOMMU_MEMORY_REGION) static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass, void *data) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); imrc->translate = pnv_phb4_translate_iommu; } static const TypeInfo pnv_phb4_iommu_memory_region_info = { .parent = TYPE_IOMMU_MEMORY_REGION, .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, .class_init = pnv_phb4_iommu_memory_region_class_init, }; /* * Return the index/phb-id of a PHB4 that belongs to a * pec->stacks[stack_index] stack. */ int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index) { PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); int index = pec->index; int offset = 0; while (index--) { offset += pecc->num_phbs[index]; } return offset + stack_index; } /* * MSI/MSIX memory region implementation. * The handler handles both MSI and MSIX. */ static void pnv_phb4_msi_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { PnvPhb4DMASpace *ds = opaque; PnvPHB4 *phb = ds->phb; uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f); /* Resolve PE# */ if (!pnv_phb4_resolve_pe(ds)) { phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", ds->bus, pci_bus_num(ds->bus), ds->devfn); return; } /* TODO: Check it doesn't collide with LSIs */ if (src >= phb->xsrc.nr_irqs) { phb_error(phb, "MSI %d out of bounds", src); return; } /* TODO: check PE/MSI assignment */ qemu_irq_pulse(phb->qirqs[src]); } /* There is no .read as the read result is undefined by PCI spec */ static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size) { PnvPhb4DMASpace *ds = opaque; phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr); return -1; } static const MemoryRegionOps pnv_phb4_msi_ops = { .read = pnv_phb4_msi_read, .write = pnv_phb4_msi_write, .endianness = DEVICE_LITTLE_ENDIAN }; static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn) { PnvPhb4DMASpace *ds; QLIST_FOREACH(ds, &phb->dma_spaces, list) { if (ds->bus == bus && ds->devfn == devfn) { break; } } return ds; } static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn) { PnvPHB4 *phb = opaque; PnvPhb4DMASpace *ds; char name[32]; ds = pnv_phb4_dma_find(phb, bus, devfn); if (ds == NULL) { ds = g_new0(PnvPhb4DMASpace, 1); ds->bus = bus; ds->devfn = devfn; ds->pe_num = PHB_INVALID_PE; ds->phb = phb; snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id, phb->phb_id); memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, OBJECT(phb), name, UINT64_MAX); address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), name); memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops, ds, "msi32", 0x10000); memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops, ds, "msi64", 0x100000); pnv_phb4_update_msi_regions(ds); QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); } return &ds->dma_as; } static void pnv_phb4_xscom_realize(PnvPHB4 *phb) { PnvPhb4PecState *pec = phb->pec; PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); int stack_no = pnv_phb4_get_phb_stack_no(phb); uint32_t pec_nest_base; uint32_t pec_pci_base; char name[64]; assert(pec); /* Initialize the XSCOM regions for the stack registers */ snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d", pec->chip_id, pec->index, stack_no); pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb), &pnv_pec_stk_nest_xscom_ops, phb, name, PHB4_PEC_NEST_STK_REGS_COUNT); snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", pec->chip_id, pec->index, stack_no); pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb), &pnv_pec_stk_pci_xscom_ops, phb, name, PHB4_PEC_PCI_STK_REGS_COUNT); /* PHB pass-through */ snprintf(name, sizeof(name), "xscom-pec-%d.%d-phb-%d", pec->chip_id, pec->index, stack_no); pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb), &pnv_phb4_xscom_ops, phb, name, 0x40); pec_nest_base = pecc->xscom_nest_base(pec); pec_pci_base = pecc->xscom_pci_base(pec); /* Populate the XSCOM address space. */ pnv_xscom_add_subregion(pec->chip, pec_nest_base + 0x40 * (stack_no + 1), &phb->nest_regs_mr); pnv_xscom_add_subregion(pec->chip, pec_pci_base + 0x40 * (stack_no + 1), &phb->pci_regs_mr); pnv_xscom_add_subregion(pec->chip, pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + 0x40 * stack_no, &phb->phb_regs_mr); } static PCIIOMMUOps pnv_phb4_iommu_ops = { .get_address_space = pnv_phb4_dma_iommu, }; static void pnv_phb4_instance_init(Object *obj) { PnvPHB4 *phb = PNV_PHB4(obj); QLIST_INIT(&phb->dma_spaces); /* XIVE interrupt source object */ object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE); } void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb) { PCIHostState *pci = PCI_HOST_BRIDGE(dev); char name[32]; /* * PHB4 doesn't support IO space. However, qemu gets very upset if * we don't have an IO region to anchor IO BARs onto so we just * initialize one which we never hook up to anything */ snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id, phb->phb_id); memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000); snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id, phb->phb_id); memory_region_init(&phb->pci_mmio, OBJECT(phb), name, PCI_MMIO_TOTAL_SIZE); pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL, pnv_phb4_set_irq, pnv_phb4_map_irq, phb, &phb->pci_mmio, &phb->pci_io, 0, 4, TYPE_PNV_PHB4_ROOT_BUS); object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id, &error_abort); object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id, &error_abort); pci_setup_iommu(pci->bus, &pnv_phb4_iommu_ops, phb); pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; } static void pnv_phb4_realize(DeviceState *dev, Error **errp) { PnvPHB4 *phb = PNV_PHB4(dev); XiveSource *xsrc = &phb->xsrc; int nr_irqs; char name[32]; /* Set the "big_phb" flag */ phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3; /* Controller Registers */ snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id, phb->phb_id); memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb, name, 0x2000); /* Setup XIVE Source */ if (phb->big_phb) { nr_irqs = PNV_PHB4_MAX_INTs; } else { nr_irqs = PNV_PHB4_MAX_INTs >> 1; } object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal); object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal); if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { return; } pnv_phb4_update_xsrc(phb); phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); pnv_phb4_xscom_realize(phb); } /* * Address base trigger mode (POWER10) * * Trigger directly the IC ESB page */ static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno, bool pq_checked) { uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; uint64_t data = 0; /* trigger data : don't care */ hwaddr addr; MemTxResult result; int esb_shift; if (notif_port & PHB_INT_NOTIFY_ADDR_64K) { esb_shift = 16; } else { esb_shift = 12; } /* Compute the address of the IC ESB management page */ addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K); addr |= (1ull << (esb_shift + 1)) * srcno; addr |= (1ull << esb_shift); /* * When the PQ state bits are checked on the PHB, the associated * PQ state bits on the IC should be ignored. Use the unconditional * trigger offset to inject a trigger on the IC. This is always * the case for LSIs */ if (pq_checked) { addr |= XIVE_ESB_INJECT; } trace_pnv_phb4_xive_notify_ic(addr, data); address_space_stq_be(&address_space_memory, addr, data, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr); return; } } static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno, bool pq_checked) { uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; uint64_t data = offset | srcno; MemTxResult result; if (pq_checked) { data |= XIVE_TRIGGER_PQ; } trace_pnv_phb4_xive_notify_ic(notif_port, data); address_space_stq_be(&address_space_memory, notif_port, data, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port); return; } } static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno, bool pq_checked) { PnvPHB4 *phb = PNV_PHB4(xf); if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) { pnv_phb4_xive_notify_abt(phb, srcno, pq_checked); } else { pnv_phb4_xive_notify_ic(phb, srcno, pq_checked); } } static Property pnv_phb4_properties[] = { DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0), DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0), DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC, PnvPhb4PecState *), DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *), DEFINE_PROP_END_OF_LIST(), }; static void pnv_phb4_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); dc->realize = pnv_phb4_realize; device_class_set_props(dc, pnv_phb4_properties); dc->user_creatable = false; xfc->notify = pnv_phb4_xive_notify; } static const TypeInfo pnv_phb4_type_info = { .name = TYPE_PNV_PHB4, .parent = TYPE_DEVICE, .instance_init = pnv_phb4_instance_init, .instance_size = sizeof(PnvPHB4), .class_init = pnv_phb4_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XIVE_NOTIFIER }, { }, } }; static const TypeInfo pnv_phb5_type_info = { .name = TYPE_PNV_PHB5, .parent = TYPE_PNV_PHB4, .instance_size = sizeof(PnvPHB4), }; static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); uint64_t value = 0; if (strcmp(name, "phb-id") == 0) { value = bus->phb_id; } else { value = bus->chip_id; } visit_type_size(v, name, &value, errp); } static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); uint64_t value; if (!visit_type_size(v, name, &value, errp)) { return; } if (strcmp(name, "phb-id") == 0) { bus->phb_id = value; } else { bus->chip_id = value; } } static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data) { BusClass *k = BUS_CLASS(klass); object_class_property_add(klass, "phb-id", "int", pnv_phb4_root_bus_get_prop, pnv_phb4_root_bus_set_prop, NULL, NULL); object_class_property_add(klass, "chip-id", "int", pnv_phb4_root_bus_get_prop, pnv_phb4_root_bus_set_prop, NULL, NULL); /* * PHB4 has only a single root complex. Enforce the limit on the * parent bus */ k->max_dev = 1; } static const TypeInfo pnv_phb4_root_bus_info = { .name = TYPE_PNV_PHB4_ROOT_BUS, .parent = TYPE_PCIE_BUS, .instance_size = sizeof(PnvPHB4RootBus), .class_init = pnv_phb4_root_bus_class_init, }; static void pnv_phb4_register_types(void) { type_register_static(&pnv_phb4_root_bus_info); type_register_static(&pnv_phb4_type_info); type_register_static(&pnv_phb5_type_info); type_register_static(&pnv_phb4_iommu_memory_region_info); } type_init(pnv_phb4_register_types); void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon) { uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K; uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE); g_autoptr(GString) buf = g_string_new(""); g_autoptr(HumanReadableText) info = NULL; g_string_append_printf(buf, "PHB4[%x:%x] Source %08x .. %08x " "%s @%"HWADDR_PRIx"\n", phb->chip_id, phb->phb_id, offset, offset + phb->xsrc.nr_irqs - 1, abt ? "ABT" : "", notif_port); xive_source_pic_print_info(&phb->xsrc, 0, buf); info = human_readable_text_from_str(buf); monitor_puts(mon, info->human_readable_text); }