#include #include #include #include "cpu.h" #include "exec-all.h" #include "gdbstub.h" #include "helpers.h" static uint32_t cortexa8_cp15_c0_c1[8] = { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 }; static uint32_t cortexa8_cp15_c0_c2[8] = { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 }; static uint32_t mpcore_cp15_c0_c1[8] = { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 }; static uint32_t mpcore_cp15_c0_c2[8] = { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 }; static uint32_t arm1136_cp15_c0_c1[8] = { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 }; static uint32_t arm1136_cp15_c0_c2[8] = { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 }; static uint32_t cpu_arm_find_by_name(const char *name); static inline void set_feature(CPUARMState *env, int feature) { env->features |= 1u << feature; } static void cpu_reset_model_id(CPUARMState *env, uint32_t id) { env->cp15.c0_cpuid = id; switch (id) { case ARM_CPUID_ARM926: set_feature(env, ARM_FEATURE_VFP); env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090; env->cp15.c0_cachetype = 0x1dd20d2; env->cp15.c1_sys = 0x00090078; break; case ARM_CPUID_ARM946: set_feature(env, ARM_FEATURE_MPU); env->cp15.c0_cachetype = 0x0f004006; env->cp15.c1_sys = 0x00000078; break; case ARM_CPUID_ARM1026: set_feature(env, ARM_FEATURE_VFP); set_feature(env, ARM_FEATURE_AUXCR); env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0; env->cp15.c0_cachetype = 0x1dd20d2; env->cp15.c1_sys = 0x00090078; break; case ARM_CPUID_ARM1136: set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_VFP); set_feature(env, ARM_FEATURE_AUXCR); env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t)); memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t)); env->cp15.c0_cachetype = 0x1dd20d2; break; case ARM_CPUID_ARM11MPCORE: set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_V6K); set_feature(env, ARM_FEATURE_VFP); set_feature(env, ARM_FEATURE_AUXCR); env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t)); memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t)); env->cp15.c0_cachetype = 0x1dd20d2; break; case ARM_CPUID_CORTEXA8: set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_V6K); set_feature(env, ARM_FEATURE_V7); set_feature(env, ARM_FEATURE_AUXCR); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_VFP); set_feature(env, ARM_FEATURE_VFP3); set_feature(env, ARM_FEATURE_NEON); env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0; env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100; memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t)); memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t)); env->cp15.c0_cachetype = 0x1dd20d2; break; case ARM_CPUID_CORTEXM3: set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_V7); set_feature(env, ARM_FEATURE_M); set_feature(env, ARM_FEATURE_DIV); break; case ARM_CPUID_ANY: /* For userspace emulation. */ set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_V6K); set_feature(env, ARM_FEATURE_V7); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_VFP); set_feature(env, ARM_FEATURE_VFP3); set_feature(env, ARM_FEATURE_NEON); set_feature(env, ARM_FEATURE_DIV); break; case ARM_CPUID_TI915T: case ARM_CPUID_TI925T: set_feature(env, ARM_FEATURE_OMAPCP); env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */ env->cp15.c0_cachetype = 0x5109149; env->cp15.c1_sys = 0x00000070; env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; break; case ARM_CPUID_PXA250: case ARM_CPUID_PXA255: case ARM_CPUID_PXA260: case ARM_CPUID_PXA261: case ARM_CPUID_PXA262: set_feature(env, ARM_FEATURE_XSCALE); /* JTAG_ID is ((id << 28) | 0x09265013) */ env->cp15.c0_cachetype = 0xd172172; env->cp15.c1_sys = 0x00000078; break; case ARM_CPUID_PXA270_A0: case ARM_CPUID_PXA270_A1: case ARM_CPUID_PXA270_B0: case ARM_CPUID_PXA270_B1: case ARM_CPUID_PXA270_C0: case ARM_CPUID_PXA270_C5: set_feature(env, ARM_FEATURE_XSCALE); /* JTAG_ID is ((id << 28) | 0x09265013) */ set_feature(env, ARM_FEATURE_IWMMXT); env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; env->cp15.c0_cachetype = 0xd172172; env->cp15.c1_sys = 0x00000078; break; default: cpu_abort(env, "Bad CPU ID: %x\n", id); break; } } void cpu_reset(CPUARMState *env) { uint32_t id; id = env->cp15.c0_cpuid; memset(env, 0, offsetof(CPUARMState, breakpoints)); if (id) cpu_reset_model_id(env, id); #if defined (CONFIG_USER_ONLY) env->uncached_cpsr = ARM_CPU_MODE_USR; env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; #else /* SVC mode with interrupts disabled. */ env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is clear at reset. */ if (IS_M(env)) env->uncached_cpsr &= ~CPSR_I; env->vfp.xregs[ARM_VFP_FPEXC] = 0; #endif env->regs[15] = 0; tlb_flush(env, 1); } CPUARMState *cpu_arm_init(const char *cpu_model) { CPUARMState *env; uint32_t id; static int inited = 0; id = cpu_arm_find_by_name(cpu_model); if (id == 0) return NULL; env = qemu_mallocz(sizeof(CPUARMState)); if (!env) return NULL; cpu_exec_init(env); if (!inited) { inited = 1; arm_translate_init(); } env->cpu_model_str = cpu_model; env->cp15.c0_cpuid = id; cpu_reset(env); return env; } struct arm_cpu_t { uint32_t id; const char *name; }; static const struct arm_cpu_t arm_cpu_names[] = { { ARM_CPUID_ARM926, "arm926"}, { ARM_CPUID_ARM946, "arm946"}, { ARM_CPUID_ARM1026, "arm1026"}, { ARM_CPUID_ARM1136, "arm1136"}, { ARM_CPUID_ARM11MPCORE, "arm11mpcore"}, { ARM_CPUID_CORTEXM3, "cortex-m3"}, { ARM_CPUID_CORTEXA8, "cortex-a8"}, { ARM_CPUID_TI925T, "ti925t" }, { ARM_CPUID_PXA250, "pxa250" }, { ARM_CPUID_PXA255, "pxa255" }, { ARM_CPUID_PXA260, "pxa260" }, { ARM_CPUID_PXA261, "pxa261" }, { ARM_CPUID_PXA262, "pxa262" }, { ARM_CPUID_PXA270, "pxa270" }, { ARM_CPUID_PXA270_A0, "pxa270-a0" }, { ARM_CPUID_PXA270_A1, "pxa270-a1" }, { ARM_CPUID_PXA270_B0, "pxa270-b0" }, { ARM_CPUID_PXA270_B1, "pxa270-b1" }, { ARM_CPUID_PXA270_C0, "pxa270-c0" }, { ARM_CPUID_PXA270_C5, "pxa270-c5" }, { ARM_CPUID_ANY, "any"}, { 0, NULL} }; void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) { int i; (*cpu_fprintf)(f, "Available CPUs:\n"); for (i = 0; arm_cpu_names[i].name; i++) { (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name); } } /* return 0 if not found */ static uint32_t cpu_arm_find_by_name(const char *name) { int i; uint32_t id; id = 0; for (i = 0; arm_cpu_names[i].name; i++) { if (strcmp(name, arm_cpu_names[i].name) == 0) { id = arm_cpu_names[i].id; break; } } return id; } void cpu_arm_close(CPUARMState *env) { free(env); } /* Polynomial multiplication is like integer multiplcation except the partial products are XORed, not added. */ uint32_t helper_neon_mul_p8(uint32_t op1, uint32_t op2) { uint32_t mask; uint32_t result; result = 0; while (op1) { mask = 0; if (op1 & 1) mask |= 0xff; if (op1 & (1 << 8)) mask |= (0xff << 8); if (op1 & (1 << 16)) mask |= (0xff << 16); if (op1 & (1 << 24)) mask |= (0xff << 24); result ^= op2 & mask; op1 = (op1 >> 1) & 0x7f7f7f7f; op2 = (op2 << 1) & 0xfefefefe; } return result; } uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->NZF == 0); return env->uncached_cpsr | (env->NZF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16); } void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { /* NOTE: N = 1 and Z = 1 cannot be stored currently */ if (mask & CPSR_NZCV) { env->NZF = (val & 0xc0000000) ^ 0x40000000; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if (mask & CPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & CPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & CPSR_GE) { env->GE = (val >> 16) & 0xf; } if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { switch_mode(env, val & CPSR_M); } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } #define HELPER(x) helper_##x /* Sign/zero extend */ uint32_t HELPER(sxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(int8_t)x; res |= (uint32_t)(int8_t)(x >> 16) << 16; return res; } uint32_t HELPER(uxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(uint8_t)x; res |= (uint32_t)(uint8_t)(x >> 16) << 16; return res; } #if defined(CONFIG_USER_ONLY) void do_interrupt (CPUState *env) { env->exception_index = -1; } /* Structure used to record exclusive memory locations. */ typedef struct mmon_state { struct mmon_state *next; CPUARMState *cpu_env; uint32_t addr; } mmon_state; /* Chain of current locks. */ static mmon_state* mmon_head = NULL; int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx, int is_softmmu) { if (rw == 2) { env->exception_index = EXCP_PREFETCH_ABORT; env->cp15.c6_insn = address; } else { env->exception_index = EXCP_DATA_ABORT; env->cp15.c6_data = address; } return 1; } static void allocate_mmon_state(CPUState *env) { env->mmon_entry = malloc(sizeof (mmon_state)); if (!env->mmon_entry) abort(); memset (env->mmon_entry, 0, sizeof (mmon_state)); env->mmon_entry->cpu_env = env; mmon_head = env->mmon_entry; } /* Flush any monitor locks for the specified address. */ static void flush_mmon(uint32_t addr) { mmon_state *mon; for (mon = mmon_head; mon; mon = mon->next) { if (mon->addr != addr) continue; mon->addr = 0; break; } } /* Mark an address for exclusive access. */ void helper_mark_exclusive(CPUState *env, uint32_t addr) { if (!env->mmon_entry) allocate_mmon_state(env); /* Clear any previous locks. */ flush_mmon(addr); env->mmon_entry->addr = addr; } /* Test if an exclusive address is still exclusive. Returns zero if the address is still exclusive. */ int helper_test_exclusive(CPUState *env, uint32_t addr) { int res; if (!env->mmon_entry) return 1; if (env->mmon_entry->addr == addr) res = 0; else res = 1; flush_mmon(addr); return res; } void helper_clrex(CPUState *env) { if (!(env->mmon_entry && env->mmon_entry->addr)) return; flush_mmon(env->mmon_entry->addr); } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { return addr; } /* These should probably raise undefined insn exceptions. */ void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val) { int op1 = (insn >> 8) & 0xf; cpu_abort(env, "cp%i insn %08x\n", op1, insn); return; } uint32_t helper_get_cp(CPUState *env, uint32_t insn) { int op1 = (insn >> 8) & 0xf; cpu_abort(env, "cp%i insn %08x\n", op1, insn); return 0; } void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val) { cpu_abort(env, "cp15 insn %08x\n", insn); } uint32_t helper_get_cp15(CPUState *env, uint32_t insn) { cpu_abort(env, "cp15 insn %08x\n", insn); return 0; } /* These should probably raise undefined insn exceptions. */ void helper_v7m_msr(CPUState *env, int reg, uint32_t val) { cpu_abort(env, "v7m_mrs %d\n", reg); } uint32_t helper_v7m_mrs(CPUState *env, int reg) { cpu_abort(env, "v7m_mrs %d\n", reg); return 0; } void switch_mode(CPUState *env, int mode) { if (mode != ARM_CPU_MODE_USR) cpu_abort(env, "Tried to switch out of user mode\n"); } void helper_set_r13_banked(CPUState *env, int mode, uint32_t val) { cpu_abort(env, "banked r13 write\n"); } uint32_t helper_get_r13_banked(CPUState *env, int mode) { cpu_abort(env, "banked r13 read\n"); return 0; } #else extern int semihosting_enabled; /* Map CPU modes onto saved register banks. */ static inline int bank_number (int mode) { switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return 0; case ARM_CPU_MODE_SVC: return 1; case ARM_CPU_MODE_ABT: return 2; case ARM_CPU_MODE_UND: return 3; case ARM_CPU_MODE_IRQ: return 4; case ARM_CPU_MODE_FIQ: return 5; } cpu_abort(cpu_single_env, "Bad mode %x\n", mode); return -1; } void switch_mode(CPUState *env, int mode) { int old_mode; int i; old_mode = env->uncached_cpsr & CPSR_M; if (mode == old_mode) return; if (old_mode == ARM_CPU_MODE_FIQ) { memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } else if (mode == ARM_CPU_MODE_FIQ) { memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } i = bank_number(old_mode); env->banked_r13[i] = env->regs[13]; env->banked_r14[i] = env->regs[14]; env->banked_spsr[i] = env->spsr; i = bank_number(mode); env->regs[13] = env->banked_r13[i]; env->regs[14] = env->banked_r14[i]; env->spsr = env->banked_spsr[i]; } static void v7m_push(CPUARMState *env, uint32_t val) { env->regs[13] -= 4; stl_phys(env->regs[13], val); } static uint32_t v7m_pop(CPUARMState *env) { uint32_t val; val = ldl_phys(env->regs[13]); env->regs[13] += 4; return val; } /* Switch to V7M main or process stack pointer. */ static void switch_v7m_sp(CPUARMState *env, int process) { uint32_t tmp; if (env->v7m.current_sp != process) { tmp = env->v7m.other_sp; env->v7m.other_sp = env->regs[13]; env->regs[13] = tmp; env->v7m.current_sp = process; } } static void do_v7m_exception_exit(CPUARMState *env) { uint32_t type; uint32_t xpsr; type = env->regs[15]; if (env->v7m.exception != 0) armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception); /* Switch to the target stack. */ switch_v7m_sp(env, (type & 4) != 0); /* Pop registers. */ env->regs[0] = v7m_pop(env); env->regs[1] = v7m_pop(env); env->regs[2] = v7m_pop(env); env->regs[3] = v7m_pop(env); env->regs[12] = v7m_pop(env); env->regs[14] = v7m_pop(env); env->regs[15] = v7m_pop(env); xpsr = v7m_pop(env); xpsr_write(env, xpsr, 0xfffffdff); /* Undo stack alignment. */ if (xpsr & 0x200) env->regs[13] |= 4; /* ??? The exception return type specifies Thread/Handler mode. However this is also implied by the xPSR value. Not sure what to do if there is a mismatch. */ /* ??? Likewise for mismatches between the CONTROL register and the stack pointer. */ } void do_interrupt_v7m(CPUARMState *env) { uint32_t xpsr = xpsr_read(env); uint32_t lr; uint32_t addr; lr = 0xfffffff1; if (env->v7m.current_sp) lr |= 4; if (env->v7m.exception == 0) lr |= 8; /* For exceptions we just mark as pending on the NVIC, and let that handle it. */ /* TODO: Need to escalate if the current priority is higher than the one we're raising. */ switch (env->exception_index) { case EXCP_UDEF: armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE); return; case EXCP_SWI: env->regs[15] += 2; armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC); return; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM); return; case EXCP_BKPT: if (semihosting_enabled) { int nr; nr = lduw_code(env->regs[15]) & 0xff; if (nr == 0xab) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); return; } } armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG); return; case EXCP_IRQ: env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic); break; case EXCP_EXCEPTION_EXIT: do_v7m_exception_exit(env); return; default: cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); return; /* Never happens. Keep compiler happy. */ } /* Align stack pointer. */ /* ??? Should only do this if Configuration Control Register STACKALIGN bit is set. */ if (env->regs[13] & 4) { env->regs[13] += 4; xpsr |= 0x200; } /* Switch to the hander mode. */ v7m_push(env, xpsr); v7m_push(env, env->regs[15]); v7m_push(env, env->regs[14]); v7m_push(env, env->regs[12]); v7m_push(env, env->regs[3]); v7m_push(env, env->regs[2]); v7m_push(env, env->regs[1]); v7m_push(env, env->regs[0]); switch_v7m_sp(env, 0); env->uncached_cpsr &= ~CPSR_IT; env->regs[14] = lr; addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); env->regs[15] = addr & 0xfffffffe; env->thumb = addr & 1; } /* Handle a CPU exception. */ void do_interrupt(CPUARMState *env) { uint32_t addr; uint32_t mask; int new_mode; uint32_t offset; if (IS_M(env)) { do_interrupt_v7m(env); return; } /* TODO: Vectored interrupt controller. */ switch (env->exception_index) { case EXCP_UDEF: new_mode = ARM_CPU_MODE_UND; addr = 0x04; mask = CPSR_I; if (env->thumb) offset = 2; else offset = 4; break; case EXCP_SWI: if (semihosting_enabled) { /* Check for semihosting interrupt. */ if (env->thumb) { mask = lduw_code(env->regs[15] - 2) & 0xff; } else { mask = ldl_code(env->regs[15] - 4) & 0xffffff; } /* Only intercept calls from privileged modes, to provide some semblance of security. */ if (((mask == 0x123456 && !env->thumb) || (mask == 0xab && env->thumb)) && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[0] = do_arm_semihosting(env); return; } } new_mode = ARM_CPU_MODE_SVC; addr = 0x08; mask = CPSR_I; /* The PC already points to the next instructon. */ offset = 0; break; case EXCP_BKPT: /* See if this is a semihosting syscall. */ if (env->thumb && semihosting_enabled) { mask = lduw_code(env->regs[15]) & 0xff; if (mask == 0xab && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); return; } } /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: new_mode = ARM_CPU_MODE_ABT; addr = 0x10; mask = CPSR_A | CPSR_I; offset = 8; break; case EXCP_IRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; offset = 4; break; default: cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); return; /* Never happens. Keep compiler happy. */ } /* High vectors. */ if (env->cp15.c1_sys & (1 << 13)) { addr += 0xffff0000; } switch_mode (env, new_mode); env->spsr = cpsr_read(env); /* Clear IT bits. */ env->condexec_bits = 0; /* Switch to the new mode, and switch to Arm mode. */ /* ??? Thumb interrupt handlers not implemented. */ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; env->uncached_cpsr |= mask; env->thumb = 0; env->regs[14] = env->regs[15] + offset; env->regs[15] = addr; env->interrupt_request |= CPU_INTERRUPT_EXITTB; } /* Check section/page access permissions. Returns the page protection flags, or zero if the access is not permitted. */ static inline int check_ap(CPUState *env, int ap, int domain, int access_type, int is_user) { int prot_ro; if (domain == 3) return PAGE_READ | PAGE_WRITE; if (access_type == 1) prot_ro = 0; else prot_ro = PAGE_READ; switch (ap) { case 0: if (access_type == 1) return 0; switch ((env->cp15.c1_sys >> 8) & 3) { case 1: return is_user ? 0 : PAGE_READ; case 2: return PAGE_READ; default: return 0; } case 1: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 2: if (is_user) return prot_ro; else return PAGE_READ | PAGE_WRITE; case 3: return PAGE_READ | PAGE_WRITE; case 4: case 7: /* Reserved. */ return 0; case 5: return is_user ? 0 : prot_ro; case 6: return prot_ro; default: abort(); } } static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, int *prot) { int code; uint32_t table; uint32_t desc; int type; int ap; int domain; uint32_t phys_addr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (address & env->cp15.c2_mask) table = env->cp15.c2_base1; else table = env->cp15.c2_base0; table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc); desc = ldl_phys(table); type = (desc & 3); domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3; if (type == 0) { /* Secton translation fault. */ code = 5; goto do_fault; } if (domain == 0 || domain == 2) { if (type == 2) code = 9; /* Section domain fault. */ else code = 11; /* Page domain fault. */ goto do_fault; } if (type == 2) { /* 1Mb section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); ap = (desc >> 10) & 3; code = 13; } else { /* Lookup l2 entry. */ if (type == 1) { /* Coarse pagetable. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); } else { /* Fine pagetable. */ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); } desc = ldl_phys(table); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; break; case 2: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; break; case 3: /* 1k page. */ if (type == 1) { if (arm_feature(env, ARM_FEATURE_XSCALE)) { phys_addr = (desc & 0xfffff000) | (address & 0xfff); } else { /* Page translation fault. */ code = 7; goto do_fault; } } else { phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); } ap = (desc >> 4) & 3; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } *prot = check_ap(env, ap, domain, access_type, is_user); if (!*prot) { /* Access permission fault. */ goto do_fault; } *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, int *prot) { int code; uint32_t table; uint32_t desc; uint32_t xn; int type; int ap; int domain; uint32_t phys_addr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (address & env->cp15.c2_mask) table = env->cp15.c2_base1; else table = env->cp15.c2_base0; table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc); desc = ldl_phys(table); type = (desc & 3); if (type == 0) { /* Secton translation fault. */ code = 5; domain = 0; goto do_fault; } else if (type == 2 && (desc & (1 << 18))) { /* Supersection. */ domain = 0; } else { /* Section or page. */ domain = (desc >> 4) & 0x1e; } domain = (env->cp15.c3 >> domain) & 3; if (domain == 0 || domain == 2) { if (type == 2) code = 9; /* Section domain fault. */ else code = 11; /* Page domain fault. */ goto do_fault; } if (type == 2) { if (desc & (1 << 18)) { /* Supersection. */ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); } else { /* Section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); } ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); xn = desc & (1 << 4); code = 13; } else { /* Lookup l2 entry. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); desc = ldl_phys(table); ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); xn = desc & (1 << 15); break; case 2: case 3: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); xn = desc & 1; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } if (xn && access_type == 2) goto do_fault; *prot = check_ap(env, ap, domain, access_type, is_user); if (!*prot) { /* Access permission fault. */ goto do_fault; } *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, int *prot) { int n; uint32_t mask; uint32_t base; *phys_ptr = address; for (n = 7; n >= 0; n--) { base = env->cp15.c6_region[n]; if ((base & 1) == 0) continue; mask = 1 << ((base >> 1) & 0x1f); /* Keep this shift separate from the above to avoid an (undefined) << 32. */ mask = (mask << 1) - 1; if (((base ^ address) & ~mask) == 0) break; } if (n < 0) return 2; if (access_type == 2) { mask = env->cp15.c5_insn; } else { mask = env->cp15.c5_data; } mask = (mask >> (n * 4)) & 0xf; switch (mask) { case 0: return 1; case 1: if (is_user) return 1; *prot = PAGE_READ | PAGE_WRITE; break; case 2: *prot = PAGE_READ; if (!is_user) *prot |= PAGE_WRITE; break; case 3: *prot = PAGE_READ | PAGE_WRITE; break; case 5: if (is_user) return 1; *prot = PAGE_READ; break; case 6: *prot = PAGE_READ; break; default: /* Bad permission. */ return 1; } return 0; } static inline int get_phys_addr(CPUState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, int *prot) { /* Fast Context Switch Extension. */ if (address < 0x02000000) address += env->cp15.c13_fcse; if ((env->cp15.c1_sys & 1) == 0) { /* MMU/MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE; return 0; } else if (arm_feature(env, ARM_FEATURE_MPU)) { return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, prot); } else if (env->cp15.c1_sys & (1 << 23)) { return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, prot); } else { return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, prot); } } int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int access_type, int mmu_idx, int is_softmmu) { uint32_t phys_addr; int prot; int ret, is_user; is_user = mmu_idx == MMU_USER_IDX; ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot); if (ret == 0) { /* Map a single [sub]page. */ phys_addr &= ~(uint32_t)0x3ff; address &= ~(uint32_t)0x3ff; return tlb_set_page (env, address, phys_addr, prot, mmu_idx, is_softmmu); } if (access_type == 2) { env->cp15.c5_insn = ret; env->cp15.c6_insn = address; env->exception_index = EXCP_PREFETCH_ABORT; } else { env->cp15.c5_data = ret; if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) env->cp15.c5_data |= (1 << 11); env->cp15.c6_data = address; env->exception_index = EXCP_DATA_ABORT; } return 1; } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { uint32_t phys_addr; int prot; int ret; ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot); if (ret != 0) return -1; return phys_addr; } /* Not really implemented. Need to figure out a sane way of doing this. Maybe add generic watchpoint support and use that. */ void helper_mark_exclusive(CPUState *env, uint32_t addr) { env->mmon_addr = addr; } int helper_test_exclusive(CPUState *env, uint32_t addr) { return (env->mmon_addr != addr); } void helper_clrex(CPUState *env) { env->mmon_addr = -1; } void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val) { int cp_num = (insn >> 8) & 0xf; int cp_info = (insn >> 5) & 7; int src = (insn >> 16) & 0xf; int operand = insn & 0xf; if (env->cp[cp_num].cp_write) env->cp[cp_num].cp_write(env->cp[cp_num].opaque, cp_info, src, operand, val); } uint32_t helper_get_cp(CPUState *env, uint32_t insn) { int cp_num = (insn >> 8) & 0xf; int cp_info = (insn >> 5) & 7; int dest = (insn >> 16) & 0xf; int operand = insn & 0xf; if (env->cp[cp_num].cp_read) return env->cp[cp_num].cp_read(env->cp[cp_num].opaque, cp_info, dest, operand); return 0; } /* Return basic MPU access permission bits. */ static uint32_t simple_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val >> i) & mask; mask <<= 2; } return ret; } /* Pad basic MPU access permission bits to extended format. */ static uint32_t extended_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val & mask) << i; mask <<= 2; } return ret; } void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val) { int op1; int op2; int crm; op1 = (insn >> 21) & 7; op2 = (insn >> 5) & 7; crm = insn & 0xf; switch ((insn >> 16) & 0xf) { case 0: if (((insn >> 21) & 7) == 2) { /* ??? Select cache level. Ignore. */ return; } /* ID codes. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) break; if (arm_feature(env, ARM_FEATURE_OMAPCP)) break; goto bad_reg; case 1: /* System configuration. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) env->cp15.c1_sys = val; /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(env, 1); break; case 1: /* Auxiliary cotrol register. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { env->cp15.c1_xscaleauxcr = val; break; } /* Not implemented. */ break; case 2: if (arm_feature(env, ARM_FEATURE_XSCALE)) goto bad_reg; env->cp15.c1_coproc = val; /* ??? Is this safe when called from within a TB? */ tb_flush(env); break; default: goto bad_reg; } break; case 2: /* MMU Page table control / MPU cache control. */ if (arm_feature(env, ARM_FEATURE_MPU)) { switch (op2) { case 0: env->cp15.c2_data = val; break; case 1: env->cp15.c2_insn = val; break; default: goto bad_reg; } } else { switch (op2) { case 0: env->cp15.c2_base0 = val; break; case 1: env->cp15.c2_base1 = val; break; case 2: env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val); break; default: goto bad_reg; } } break; case 3: /* MMU Domain access control / MPU write buffer control. */ env->cp15.c3 = val; tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ break; case 4: /* Reserved. */ goto bad_reg; case 5: /* MMU Fault status / MPU access permission. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: if (arm_feature(env, ARM_FEATURE_MPU)) val = extended_mpu_ap_bits(val); env->cp15.c5_data = val; break; case 1: if (arm_feature(env, ARM_FEATURE_MPU)) val = extended_mpu_ap_bits(val); env->cp15.c5_insn = val; break; case 2: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; env->cp15.c5_data = val; break; case 3: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; env->cp15.c5_insn = val; break; default: goto bad_reg; } break; case 6: /* MMU Fault address / MPU base/size. */ if (arm_feature(env, ARM_FEATURE_MPU)) { if (crm >= 8) goto bad_reg; env->cp15.c6_region[crm] = val; } else { if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: env->cp15.c6_data = val; break; case 1: /* ??? This is WFAR on armv6 */ case 2: env->cp15.c6_insn = val; break; default: goto bad_reg; } } break; case 7: /* Cache control. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; /* No cache, so nothing to do. */ /* ??? MPCore has VA to PA translation functions. */ break; case 8: /* MMU TLB control. */ switch (op2) { case 0: /* Invalidate all. */ tlb_flush(env, 0); break; case 1: /* Invalidate single TLB entry. */ #if 0 /* ??? This is wrong for large pages and sections. */ /* As an ugly hack to make linux work we always flush a 4K pages. */ val &= 0xfffff000; tlb_flush_page(env, val); tlb_flush_page(env, val + 0x400); tlb_flush_page(env, val + 0x800); tlb_flush_page(env, val + 0xc00); #else tlb_flush(env, 1); #endif break; case 2: /* Invalidate on ASID. */ tlb_flush(env, val == 0); break; case 3: /* Invalidate single entry on MVA. */ /* ??? This is like case 1, but ignores ASID. */ tlb_flush(env, 1); break; default: goto bad_reg; } break; case 9: if (arm_feature(env, ARM_FEATURE_OMAPCP)) break; switch (crm) { case 0: /* Cache lockdown. */ switch (op1) { case 0: /* L1 cache. */ switch (op2) { case 0: env->cp15.c9_data = val; break; case 1: env->cp15.c9_insn = val; break; default: goto bad_reg; } break; case 1: /* L2 cache. */ /* Ignore writes to L2 lockdown/auxiliary registers. */ break; default: goto bad_reg; } break; case 1: /* TCM memory region registers. */ /* Not implemented. */ goto bad_reg; default: goto bad_reg; } break; case 10: /* MMU TLB lockdown. */ /* ??? TLB lockdown not implemented. */ break; case 12: /* Reserved. */ goto bad_reg; case 13: /* Process ID. */ switch (op2) { case 0: /* Unlike real hardware the qemu TLB uses virtual addresses, not modified virtual addresses, so this causes a TLB flush. */ if (env->cp15.c13_fcse != val) tlb_flush(env, 1); env->cp15.c13_fcse = val; break; case 1: /* This changes the ASID, so do a TLB flush. */ if (env->cp15.c13_context != val && !arm_feature(env, ARM_FEATURE_MPU)) tlb_flush(env, 0); env->cp15.c13_context = val; break; case 2: env->cp15.c13_tls1 = val; break; case 3: env->cp15.c13_tls2 = val; break; case 4: env->cp15.c13_tls3 = val; break; default: goto bad_reg; } break; case 14: /* Reserved. */ goto bad_reg; case 15: /* Implementation specific. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { if (op2 == 0 && crm == 1) { if (env->cp15.c15_cpar != (val & 0x3fff)) { /* Changes cp0 to cp13 behavior, so needs a TB flush. */ tb_flush(env); env->cp15.c15_cpar = val & 0x3fff; } break; } goto bad_reg; } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { switch (crm) { case 0: break; case 1: /* Set TI925T configuration. */ env->cp15.c15_ticonfig = val & 0xe7; env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ ARM_CPUID_TI915T : ARM_CPUID_TI925T; break; case 2: /* Set I_max. */ env->cp15.c15_i_max = val; break; case 3: /* Set I_min. */ env->cp15.c15_i_min = val; break; case 4: /* Set thread-ID. */ env->cp15.c15_threadid = val & 0xffff; break; case 8: /* Wait-for-interrupt (deprecated). */ cpu_interrupt(env, CPU_INTERRUPT_HALT); break; default: goto bad_reg; } } break; } return; bad_reg: /* ??? For debugging only. Should raise illegal instruction exception. */ cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", (insn >> 16) & 0xf, crm, op1, op2); } uint32_t helper_get_cp15(CPUState *env, uint32_t insn) { int op1; int op2; int crm; op1 = (insn >> 21) & 7; op2 = (insn >> 5) & 7; crm = insn & 0xf; switch ((insn >> 16) & 0xf) { case 0: /* ID codes. */ switch (op1) { case 0: switch (crm) { case 0: switch (op2) { case 0: /* Device ID. */ return env->cp15.c0_cpuid; case 1: /* Cache Type. */ return env->cp15.c0_cachetype; case 2: /* TCM status. */ return 0; case 3: /* TLB type register. */ return 0; /* No lockable TLB entries. */ case 5: /* CPU ID */ return env->cpu_index; default: goto bad_reg; } case 1: if (!arm_feature(env, ARM_FEATURE_V6)) goto bad_reg; return env->cp15.c0_c1[op2]; case 2: if (!arm_feature(env, ARM_FEATURE_V6)) goto bad_reg; return env->cp15.c0_c2[op2]; case 3: case 4: case 5: case 6: case 7: return 0; default: goto bad_reg; } case 1: /* These registers aren't documented on arm11 cores. However Linux looks at them anyway. */ if (!arm_feature(env, ARM_FEATURE_V6)) goto bad_reg; if (crm != 0) goto bad_reg; if (arm_feature(env, ARM_FEATURE_XSCALE)) goto bad_reg; return 0; default: goto bad_reg; } case 1: /* System configuration. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: /* Control register. */ return env->cp15.c1_sys; case 1: /* Auxiliary control register. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) return env->cp15.c1_xscaleauxcr; if (!arm_feature(env, ARM_FEATURE_AUXCR)) goto bad_reg; switch (ARM_CPUID(env)) { case ARM_CPUID_ARM1026: return 1; case ARM_CPUID_ARM1136: return 7; case ARM_CPUID_ARM11MPCORE: return 1; case ARM_CPUID_CORTEXA8: return 0; default: goto bad_reg; } case 2: /* Coprocessor access register. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) goto bad_reg; return env->cp15.c1_coproc; default: goto bad_reg; } case 2: /* MMU Page table control / MPU cache control. */ if (arm_feature(env, ARM_FEATURE_MPU)) { switch (op2) { case 0: return env->cp15.c2_data; break; case 1: return env->cp15.c2_insn; break; default: goto bad_reg; } } else { switch (op2) { case 0: return env->cp15.c2_base0; case 1: return env->cp15.c2_base1; case 2: { int n; uint32_t mask; n = 0; mask = env->cp15.c2_mask; while (mask) { n++; mask <<= 1; } return n; } default: goto bad_reg; } } case 3: /* MMU Domain access control / MPU write buffer control. */ return env->cp15.c3; case 4: /* Reserved. */ goto bad_reg; case 5: /* MMU Fault status / MPU access permission. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: if (arm_feature(env, ARM_FEATURE_MPU)) return simple_mpu_ap_bits(env->cp15.c5_data); return env->cp15.c5_data; case 1: if (arm_feature(env, ARM_FEATURE_MPU)) return simple_mpu_ap_bits(env->cp15.c5_data); return env->cp15.c5_insn; case 2: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; return env->cp15.c5_data; case 3: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; return env->cp15.c5_insn; default: goto bad_reg; } case 6: /* MMU Fault address. */ if (arm_feature(env, ARM_FEATURE_MPU)) { if (crm >= 8) goto bad_reg; return env->cp15.c6_region[crm]; } else { if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: return env->cp15.c6_data; case 1: if (arm_feature(env, ARM_FEATURE_V6)) { /* Watchpoint Fault Adrress. */ return 0; /* Not implemented. */ } else { /* Instruction Fault Adrress. */ /* Arm9 doesn't have an IFAR, but implementing it anyway shouldn't do any harm. */ return env->cp15.c6_insn; } case 2: if (arm_feature(env, ARM_FEATURE_V6)) { /* Instruction Fault Adrress. */ return env->cp15.c6_insn; } else { goto bad_reg; } default: goto bad_reg; } } case 7: /* Cache control. */ /* ??? This is for test, clean and invaidate operations that set the Z flag. We can't represent N = Z = 1, so it also clears the N flag. Oh well. */ env->NZF = 0; return 0; case 8: /* MMU TLB control. */ goto bad_reg; case 9: /* Cache lockdown. */ switch (op1) { case 0: /* L1 cache. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) return 0; switch (op2) { case 0: return env->cp15.c9_data; case 1: return env->cp15.c9_insn; default: goto bad_reg; } case 1: /* L2 cache */ if (crm != 0) goto bad_reg; /* L2 Lockdown and Auxiliary control. */ return 0; default: goto bad_reg; } case 10: /* MMU TLB lockdown. */ /* ??? TLB lockdown not implemented. */ return 0; case 11: /* TCM DMA control. */ case 12: /* Reserved. */ goto bad_reg; case 13: /* Process ID. */ switch (op2) { case 0: return env->cp15.c13_fcse; case 1: return env->cp15.c13_context; case 2: return env->cp15.c13_tls1; case 3: return env->cp15.c13_tls2; case 4: return env->cp15.c13_tls3; default: goto bad_reg; } case 14: /* Reserved. */ goto bad_reg; case 15: /* Implementation specific. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { if (op2 == 0 && crm == 1) return env->cp15.c15_cpar; goto bad_reg; } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { switch (crm) { case 0: return 0; case 1: /* Read TI925T configuration. */ return env->cp15.c15_ticonfig; case 2: /* Read I_max. */ return env->cp15.c15_i_max; case 3: /* Read I_min. */ return env->cp15.c15_i_min; case 4: /* Read thread-ID. */ return env->cp15.c15_threadid; case 8: /* TI925T_status */ return 0; } goto bad_reg; } return 0; } bad_reg: /* ??? For debugging only. Should raise illegal instruction exception. */ cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n", (insn >> 16) & 0xf, crm, op1, op2); return 0; } void helper_set_r13_banked(CPUState *env, int mode, uint32_t val) { env->banked_r13[bank_number(mode)] = val; } uint32_t helper_get_r13_banked(CPUState *env, int mode) { return env->banked_r13[bank_number(mode)]; } uint32_t helper_v7m_mrs(CPUState *env, int reg) { switch (reg) { case 0: /* APSR */ return xpsr_read(env) & 0xf8000000; case 1: /* IAPSR */ return xpsr_read(env) & 0xf80001ff; case 2: /* EAPSR */ return xpsr_read(env) & 0xff00fc00; case 3: /* xPSR */ return xpsr_read(env) & 0xff00fdff; case 5: /* IPSR */ return xpsr_read(env) & 0x000001ff; case 6: /* EPSR */ return xpsr_read(env) & 0x0700fc00; case 7: /* IEPSR */ return xpsr_read(env) & 0x0700edff; case 8: /* MSP */ return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; case 9: /* PSP */ return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; case 16: /* PRIMASK */ return (env->uncached_cpsr & CPSR_I) != 0; case 17: /* FAULTMASK */ return (env->uncached_cpsr & CPSR_F) != 0; case 18: /* BASEPRI */ case 19: /* BASEPRI_MAX */ return env->v7m.basepri; case 20: /* CONTROL */ return env->v7m.control; default: /* ??? For debugging only. */ cpu_abort(env, "Unimplemented system register read (%d)\n", reg); return 0; } } void helper_v7m_msr(CPUState *env, int reg, uint32_t val) { switch (reg) { case 0: /* APSR */ xpsr_write(env, val, 0xf8000000); break; case 1: /* IAPSR */ xpsr_write(env, val, 0xf8000000); break; case 2: /* EAPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 3: /* xPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 5: /* IPSR */ /* IPSR bits are readonly. */ break; case 6: /* EPSR */ xpsr_write(env, val, 0x0600fc00); break; case 7: /* IEPSR */ xpsr_write(env, val, 0x0600fc00); break; case 8: /* MSP */ if (env->v7m.current_sp) env->v7m.other_sp = val; else env->regs[13] = val; break; case 9: /* PSP */ if (env->v7m.current_sp) env->regs[13] = val; else env->v7m.other_sp = val; break; case 16: /* PRIMASK */ if (val & 1) env->uncached_cpsr |= CPSR_I; else env->uncached_cpsr &= ~CPSR_I; break; case 17: /* FAULTMASK */ if (val & 1) env->uncached_cpsr |= CPSR_F; else env->uncached_cpsr &= ~CPSR_F; break; case 18: /* BASEPRI */ env->v7m.basepri = val & 0xff; break; case 19: /* BASEPRI_MAX */ val &= 0xff; if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) env->v7m.basepri = val; break; case 20: /* CONTROL */ env->v7m.control = val & 3; switch_v7m_sp(env, (val & 2) != 0); break; default: /* ??? For debugging only. */ cpu_abort(env, "Unimplemented system register write (%d)\n", reg); return; } } void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, void *opaque) { if (cpnum < 0 || cpnum > 14) { cpu_abort(env, "Bad coprocessor number: %i\n", cpnum); return; } env->cp[cpnum].cp_read = cp_read; env->cp[cpnum].cp_write = cp_write; env->cp[cpnum].opaque = opaque; } #endif