#include "qemu/osdep.h" #include #include "libqtest.h" #include "libqos/libqos.h" #include "libqos/pci.h" #include "qapi/qmp/qdict.h" /*** Test Setup & Teardown ***/ /** * Launch QEMU with the given command line, * and then set up interrupts and our guest malloc interface. * Never returns NULL: * Terminates the application in case an error is encountered. */ QOSState *qtest_vboot(QOSOps *ops, const char *cmdline_fmt, va_list ap) { char *cmdline; QOSState *qs = g_new0(QOSState, 1); cmdline = g_strdup_vprintf(cmdline_fmt, ap); qs->qts = qtest_init(cmdline); qs->ops = ops; if (ops) { ops->alloc_init(&qs->alloc, qs->qts, ALLOC_NO_FLAGS); qs->pcibus = ops->qpci_new(qs->qts, &qs->alloc); } g_free(cmdline); return qs; } /** * Launch QEMU with the given command line, * and then set up interrupts and our guest malloc interface. */ QOSState *qtest_boot(QOSOps *ops, const char *cmdline_fmt, ...) { QOSState *qs; va_list ap; va_start(ap, cmdline_fmt); qs = qtest_vboot(ops, cmdline_fmt, ap); va_end(ap); return qs; } /** * Tear down the QEMU instance. */ void qtest_common_shutdown(QOSState *qs) { if (qs->ops) { if (qs->pcibus && qs->ops->qpci_free) { qs->ops->qpci_free(qs->pcibus); qs->pcibus = NULL; } } alloc_destroy(&qs->alloc); qtest_quit(qs->qts); g_free(qs); } void qtest_shutdown(QOSState *qs) { if (qs->ops && qs->ops->shutdown) { qs->ops->shutdown(qs); } else { qtest_common_shutdown(qs); } } void set_context(QOSState *s) { global_qtest = s->qts; } static QDict *qmp_execute(QTestState *qts, const char *command) { return qtest_qmp(qts, "{ 'execute': %s }", command); } void migrate(QOSState *from, QOSState *to, const char *uri) { const char *st; QDict *rsp, *sub; bool running; set_context(from); /* Is the machine currently running? */ rsp = qmp_execute(from->qts, "query-status"); g_assert(qdict_haskey(rsp, "return")); sub = qdict_get_qdict(rsp, "return"); g_assert(qdict_haskey(sub, "running")); running = qdict_get_bool(sub, "running"); qobject_unref(rsp); /* Issue the migrate command. */ rsp = qtest_qmp(from->qts, "{ 'execute': 'migrate', 'arguments': { 'uri': %s }}", uri); g_assert(qdict_haskey(rsp, "return")); qobject_unref(rsp); /* Wait for STOP event, but only if we were running: */ if (running) { qtest_qmp_eventwait(from->qts, "STOP"); } /* If we were running, we can wait for an event. */ if (running) { migrate_allocator(&from->alloc, &to->alloc); set_context(to); qtest_qmp_eventwait(to->qts, "RESUME"); return; } /* Otherwise, we need to wait: poll until migration is completed. */ while (1) { rsp = qmp_execute(from->qts, "query-migrate"); g_assert(qdict_haskey(rsp, "return")); sub = qdict_get_qdict(rsp, "return"); g_assert(qdict_haskey(sub, "status")); st = qdict_get_str(sub, "status"); /* "setup", "active", "completed", "failed", "cancelled" */ if (strcmp(st, "completed") == 0) { qobject_unref(rsp); break; } if ((strcmp(st, "setup") == 0) || (strcmp(st, "active") == 0)) { qobject_unref(rsp); g_usleep(5000); continue; } fprintf(stderr, "Migration did not complete, status: %s\n", st); g_assert_not_reached(); } migrate_allocator(&from->alloc, &to->alloc); set_context(to); } bool have_qemu_img(void) { char *rpath; const char *path = getenv("QTEST_QEMU_IMG"); if (!path) { return false; } rpath = realpath(path, NULL); if (!rpath) { return false; } else { free(rpath); return true; } } void mkimg(const char *file, const char *fmt, unsigned size_mb) { gchar *cli; bool ret; int rc; GError *err = NULL; char *qemu_img_path; gchar *out, *out2; char *qemu_img_abs_path; qemu_img_path = getenv("QTEST_QEMU_IMG"); g_assert(qemu_img_path); qemu_img_abs_path = realpath(qemu_img_path, NULL); g_assert(qemu_img_abs_path); cli = g_strdup_printf("%s create -f %s %s %uM", qemu_img_abs_path, fmt, file, size_mb); ret = g_spawn_command_line_sync(cli, &out, &out2, &rc, &err); if (err || !g_spawn_check_exit_status(rc, &err)) { fprintf(stderr, "%s\n", err->message); g_error_free(err); } g_assert(ret && !err); g_free(out); g_free(out2); g_free(cli); free(qemu_img_abs_path); } void mkqcow2(const char *file, unsigned size_mb) { return mkimg(file, "qcow2", size_mb); } void prepare_blkdebug_script(const char *debug_fn, const char *event) { FILE *debug_file = fopen(debug_fn, "w"); int ret; fprintf(debug_file, "[inject-error]\n"); fprintf(debug_file, "event = \"%s\"\n", event); fprintf(debug_file, "errno = \"5\"\n"); fprintf(debug_file, "state = \"1\"\n"); fprintf(debug_file, "immediately = \"off\"\n"); fprintf(debug_file, "once = \"on\"\n"); fprintf(debug_file, "[set-state]\n"); fprintf(debug_file, "event = \"%s\"\n", event); fprintf(debug_file, "new_state = \"2\"\n"); fflush(debug_file); g_assert(!ferror(debug_file)); ret = fclose(debug_file); g_assert(ret == 0); } void generate_pattern(void *buffer, size_t len, size_t cycle_len) { int i, j; unsigned char *tx = (unsigned char *)buffer; unsigned char p; size_t *sx; /* Write an indicative pattern that varies and is unique per-cycle */ p = rand() % 256; for (i = 0; i < len; i++) { tx[i] = p++ % 256; if (i % cycle_len == 0) { p = rand() % 256; } } /* force uniqueness by writing an id per-cycle */ for (i = 0; i < len / cycle_len; i++) { j = i * cycle_len; if (j + sizeof(*sx) <= len) { sx = (size_t *)&tx[j]; *sx = i; } } }