/* * Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #define TCG_CT_CONST_S16 0x100 #define TCG_CT_CONST_U16 0x200 #define TCG_CT_CONST_S32 0x400 #define TCG_CT_CONST_U32 0x800 #define TCG_CT_CONST_ZERO 0x1000 #define TCG_CT_CONST_MONE 0x2000 static uint8_t *tb_ret_addr; #define FAST_PATH #if TARGET_LONG_BITS == 32 #define LD_ADDR LWZU #define CMP_L 0 #else #define LD_ADDR LDU #define CMP_L (1<<21) #endif #ifndef GUEST_BASE #define GUEST_BASE 0 #endif #ifdef CONFIG_GETAUXVAL #include static bool have_isa_2_06; #define HAVE_ISA_2_06 have_isa_2_06 #define HAVE_ISEL have_isa_2_06 #else #define HAVE_ISA_2_06 0 #define HAVE_ISEL 0 #endif #ifdef CONFIG_USE_GUEST_BASE #define TCG_GUEST_BASE_REG 30 #else #define TCG_GUEST_BASE_REG 0 #endif #ifndef NDEBUG static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" }; #endif static const int tcg_target_reg_alloc_order[] = { TCG_REG_R14, TCG_REG_R15, TCG_REG_R16, TCG_REG_R17, TCG_REG_R18, TCG_REG_R19, TCG_REG_R20, TCG_REG_R21, TCG_REG_R22, TCG_REG_R23, TCG_REG_R28, TCG_REG_R29, TCG_REG_R30, TCG_REG_R31, #ifdef __APPLE__ TCG_REG_R2, #endif TCG_REG_R3, TCG_REG_R4, TCG_REG_R5, TCG_REG_R6, TCG_REG_R7, TCG_REG_R8, TCG_REG_R9, TCG_REG_R10, #ifndef __APPLE__ TCG_REG_R11, #endif TCG_REG_R12, TCG_REG_R24, TCG_REG_R25, TCG_REG_R26, TCG_REG_R27 }; static const int tcg_target_call_iarg_regs[] = { TCG_REG_R3, TCG_REG_R4, TCG_REG_R5, TCG_REG_R6, TCG_REG_R7, TCG_REG_R8, TCG_REG_R9, TCG_REG_R10 }; static const int tcg_target_call_oarg_regs[] = { TCG_REG_R3 }; static const int tcg_target_callee_save_regs[] = { #ifdef __APPLE__ TCG_REG_R11, #endif TCG_REG_R14, TCG_REG_R15, TCG_REG_R16, TCG_REG_R17, TCG_REG_R18, TCG_REG_R19, TCG_REG_R20, TCG_REG_R21, TCG_REG_R22, TCG_REG_R23, TCG_REG_R24, TCG_REG_R25, TCG_REG_R26, TCG_REG_R27, /* currently used for the global env */ TCG_REG_R28, TCG_REG_R29, TCG_REG_R30, TCG_REG_R31 }; static inline bool in_range_b(tcg_target_long target) { return target == sextract64(target, 0, 26); } static uint32_t reloc_pc24_val(void *pc, tcg_target_long target) { tcg_target_long disp; disp = target - (tcg_target_long)pc; assert(in_range_b(disp)); return disp & 0x3fffffc; } static void reloc_pc24(void *pc, tcg_target_long target) { *(uint32_t *)pc = (*(uint32_t *)pc & ~0x3fffffc) | reloc_pc24_val(pc, target); } static uint16_t reloc_pc14_val(void *pc, tcg_target_long target) { tcg_target_long disp; disp = target - (tcg_target_long)pc; if (disp != (int16_t) disp) { tcg_abort(); } return disp & 0xfffc; } static void reloc_pc14(void *pc, tcg_target_long target) { *(uint32_t *)pc = (*(uint32_t *)pc & ~0xfffc) | reloc_pc14_val(pc, target); } static void patch_reloc(uint8_t *code_ptr, int type, intptr_t value, intptr_t addend) { value += addend; switch (type) { case R_PPC_REL14: reloc_pc14(code_ptr, value); break; case R_PPC_REL24: reloc_pc24(code_ptr, value); break; default: tcg_abort(); } } /* parse target specific constraints */ static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str) { const char *ct_str; ct_str = *pct_str; switch (ct_str[0]) { case 'A': case 'B': case 'C': case 'D': ct->ct |= TCG_CT_REG; tcg_regset_set_reg(ct->u.regs, 3 + ct_str[0] - 'A'); break; case 'r': ct->ct |= TCG_CT_REG; tcg_regset_set32(ct->u.regs, 0, 0xffffffff); break; case 'L': /* qemu_ld constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set32(ct->u.regs, 0, 0xffffffff); tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3); #ifdef CONFIG_SOFTMMU tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4); tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5); #endif break; case 'S': /* qemu_st constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set32(ct->u.regs, 0, 0xffffffff); tcg_regset_reset_reg(ct->u.regs, TCG_REG_R3); #ifdef CONFIG_SOFTMMU tcg_regset_reset_reg(ct->u.regs, TCG_REG_R4); tcg_regset_reset_reg(ct->u.regs, TCG_REG_R5); tcg_regset_reset_reg(ct->u.regs, TCG_REG_R6); #endif break; case 'I': ct->ct |= TCG_CT_CONST_S16; break; case 'J': ct->ct |= TCG_CT_CONST_U16; break; case 'M': ct->ct |= TCG_CT_CONST_MONE; break; case 'T': ct->ct |= TCG_CT_CONST_S32; break; case 'U': ct->ct |= TCG_CT_CONST_U32; break; case 'Z': ct->ct |= TCG_CT_CONST_ZERO; break; default: return -1; } ct_str++; *pct_str = ct_str; return 0; } /* test if a constant matches the constraint */ static int tcg_target_const_match(tcg_target_long val, const TCGArgConstraint *arg_ct) { int ct = arg_ct->ct; if (ct & TCG_CT_CONST) { return 1; } else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) { return 1; } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) { return 1; } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { return 1; } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { return 1; } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) { return 1; } else if ((ct & TCG_CT_CONST_MONE) && val == -1) { return 1; } return 0; } #define OPCD(opc) ((opc)<<26) #define XO19(opc) (OPCD(19)|((opc)<<1)) #define MD30(opc) (OPCD(30)|((opc)<<2)) #define MDS30(opc) (OPCD(30)|((opc)<<1)) #define XO31(opc) (OPCD(31)|((opc)<<1)) #define XO58(opc) (OPCD(58)|(opc)) #define XO62(opc) (OPCD(62)|(opc)) #define B OPCD( 18) #define BC OPCD( 16) #define LBZ OPCD( 34) #define LHZ OPCD( 40) #define LHA OPCD( 42) #define LWZ OPCD( 32) #define STB OPCD( 38) #define STH OPCD( 44) #define STW OPCD( 36) #define STD XO62( 0) #define STDU XO62( 1) #define STDX XO31(149) #define LD XO58( 0) #define LDX XO31( 21) #define LDU XO58( 1) #define LWA XO58( 2) #define LWAX XO31(341) #define ADDIC OPCD( 12) #define ADDI OPCD( 14) #define ADDIS OPCD( 15) #define ORI OPCD( 24) #define ORIS OPCD( 25) #define XORI OPCD( 26) #define XORIS OPCD( 27) #define ANDI OPCD( 28) #define ANDIS OPCD( 29) #define MULLI OPCD( 7) #define CMPLI OPCD( 10) #define CMPI OPCD( 11) #define SUBFIC OPCD( 8) #define LWZU OPCD( 33) #define STWU OPCD( 37) #define RLWIMI OPCD( 20) #define RLWINM OPCD( 21) #define RLWNM OPCD( 23) #define RLDICL MD30( 0) #define RLDICR MD30( 1) #define RLDIMI MD30( 3) #define RLDCL MDS30( 8) #define BCLR XO19( 16) #define BCCTR XO19(528) #define CRAND XO19(257) #define CRANDC XO19(129) #define CRNAND XO19(225) #define CROR XO19(449) #define CRNOR XO19( 33) #define EXTSB XO31(954) #define EXTSH XO31(922) #define EXTSW XO31(986) #define ADD XO31(266) #define ADDE XO31(138) #define ADDME XO31(234) #define ADDZE XO31(202) #define ADDC XO31( 10) #define AND XO31( 28) #define SUBF XO31( 40) #define SUBFC XO31( 8) #define SUBFE XO31(136) #define SUBFME XO31(232) #define SUBFZE XO31(200) #define OR XO31(444) #define XOR XO31(316) #define MULLW XO31(235) #define MULHWU XO31( 11) #define DIVW XO31(491) #define DIVWU XO31(459) #define CMP XO31( 0) #define CMPL XO31( 32) #define LHBRX XO31(790) #define LWBRX XO31(534) #define LDBRX XO31(532) #define STHBRX XO31(918) #define STWBRX XO31(662) #define STDBRX XO31(660) #define MFSPR XO31(339) #define MTSPR XO31(467) #define SRAWI XO31(824) #define NEG XO31(104) #define MFCR XO31( 19) #define MFOCRF (MFCR | (1u << 20)) #define NOR XO31(124) #define CNTLZW XO31( 26) #define CNTLZD XO31( 58) #define ANDC XO31( 60) #define ORC XO31(412) #define EQV XO31(284) #define NAND XO31(476) #define ISEL XO31( 15) #define MULLD XO31(233) #define MULHD XO31( 73) #define MULHDU XO31( 9) #define DIVD XO31(489) #define DIVDU XO31(457) #define LBZX XO31( 87) #define LHZX XO31(279) #define LHAX XO31(343) #define LWZX XO31( 23) #define STBX XO31(215) #define STHX XO31(407) #define STWX XO31(151) #define SPR(a, b) ((((a)<<5)|(b))<<11) #define LR SPR(8, 0) #define CTR SPR(9, 0) #define SLW XO31( 24) #define SRW XO31(536) #define SRAW XO31(792) #define SLD XO31( 27) #define SRD XO31(539) #define SRAD XO31(794) #define SRADI XO31(413<<1) #define TW XO31( 4) #define TRAP (TW | TO(31)) #define RT(r) ((r)<<21) #define RS(r) ((r)<<21) #define RA(r) ((r)<<16) #define RB(r) ((r)<<11) #define TO(t) ((t)<<21) #define SH(s) ((s)<<11) #define MB(b) ((b)<<6) #define ME(e) ((e)<<1) #define BO(o) ((o)<<21) #define MB64(b) ((b)<<5) #define FXM(b) (1 << (19 - (b))) #define LK 1 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b)) #define SAB(s, a, b) (RS(s) | RA(a) | RB(b)) #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff)) #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff)) #define BF(n) ((n)<<23) #define BI(n, c) (((c)+((n)*4))<<16) #define BT(n, c) (((c)+((n)*4))<<21) #define BA(n, c) (((c)+((n)*4))<<16) #define BB(n, c) (((c)+((n)*4))<<11) #define BC_(n, c) (((c)+((n)*4))<<6) #define BO_COND_TRUE BO(12) #define BO_COND_FALSE BO( 4) #define BO_ALWAYS BO(20) enum { CR_LT, CR_GT, CR_EQ, CR_SO }; static const uint32_t tcg_to_bc[] = { [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE, [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE, [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE, [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE, [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE, [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE, [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE, [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE, [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE, [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE, }; /* The low bit here is set if the RA and RB fields must be inverted. */ static const uint32_t tcg_to_isel[] = { [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ), [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1, [TCG_COND_LT] = ISEL | BC_(7, CR_LT), [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1, [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1, [TCG_COND_GT] = ISEL | BC_(7, CR_GT), [TCG_COND_LTU] = ISEL | BC_(7, CR_LT), [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1, [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1, [TCG_COND_GTU] = ISEL | BC_(7, CR_GT), }; static inline void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) { if (ret != arg) { tcg_out32(s, OR | SAB(arg, ret, arg)); } } static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs, int sh, int mb) { sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1); mb = MB64((mb >> 5) | ((mb << 1) & 0x3f)); tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb); } static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs, int sh, int mb, int me) { tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me)); } static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src) { tcg_out_rld(s, RLDICL, dst, src, 0, 32); } static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rld(s, RLDICR, dst, src, c, 63 - c); } static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c) { tcg_out_rld(s, RLDICL, dst, src, 64 - c, c); } static void tcg_out_movi32(TCGContext *s, TCGReg ret, int32_t arg) { if (arg == (int16_t) arg) { tcg_out32(s, ADDI | TAI(ret, 0, arg)); } else { tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16)); if (arg & 0xffff) { tcg_out32(s, ORI | SAI(ret, ret, arg)); } } } static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret, tcg_target_long arg) { if (type == TCG_TYPE_I32 || arg == (int32_t)arg) { tcg_out_movi32(s, ret, arg); } else if (arg == (uint32_t)arg && !(arg & 0x8000)) { tcg_out32(s, ADDI | TAI(ret, 0, arg)); tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); } else { int32_t high = arg >> 32; tcg_out_movi32(s, ret, high); if (high) { tcg_out_shli64(s, ret, ret, 32); } if (arg & 0xffff0000) { tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); } if (arg & 0xffff) { tcg_out32(s, ORI | SAI(ret, ret, arg)); } } } static bool mask_operand(uint32_t c, int *mb, int *me) { uint32_t lsb, test; /* Accept a bit pattern like: 0....01....1 1....10....0 0..01..10..0 Keep track of the transitions. */ if (c == 0 || c == -1) { return false; } test = c; lsb = test & -test; test += lsb; if (test & (test - 1)) { return false; } *me = clz32(lsb); *mb = test ? clz32(test & -test) + 1 : 0; return true; } static bool mask64_operand(uint64_t c, int *mb, int *me) { uint64_t lsb; if (c == 0) { return false; } lsb = c & -c; /* Accept 1..10..0. */ if (c == -lsb) { *mb = 0; *me = clz64(lsb); return true; } /* Accept 0..01..1. */ if (lsb == 1 && (c & (c + 1)) == 0) { *mb = clz64(c + 1) + 1; *me = 63; return true; } return false; } static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { int mb, me; if ((c & 0xffff) == c) { tcg_out32(s, ANDI | SAI(src, dst, c)); return; } else if ((c & 0xffff0000) == c) { tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); return; } else if (mask_operand(c, &mb, &me)) { tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me); } else { tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c); tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); } } static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c) { int mb, me; if ((c & 0xffff) == c) { tcg_out32(s, ANDI | SAI(src, dst, c)); return; } else if ((c & 0xffff0000) == c) { tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); return; } else if (mask64_operand(c, &mb, &me)) { if (mb == 0) { tcg_out_rld(s, RLDICR, dst, src, 0, me); } else { tcg_out_rld(s, RLDICL, dst, src, 0, mb); } } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c); tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); } } static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c, int op_lo, int op_hi) { if (c >> 16) { tcg_out32(s, op_hi | SAI(src, dst, c >> 16)); src = dst; } if (c & 0xffff) { tcg_out32(s, op_lo | SAI(src, dst, c)); src = dst; } } static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { tcg_out_zori32(s, dst, src, c, ORI, ORIS); } static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) { tcg_out_zori32(s, dst, src, c, XORI, XORIS); } static void tcg_out_b(TCGContext *s, int mask, tcg_target_long target) { tcg_target_long disp; disp = target - (tcg_target_long)s->code_ptr; if (in_range_b(disp)) { tcg_out32(s, B | (disp & 0x3fffffc) | mask); } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, (tcg_target_long)target); tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS | mask); } } static void tcg_out_call(TCGContext *s, tcg_target_long arg, int const_arg) { #ifdef __APPLE__ if (const_arg) { tcg_out_b(s, LK, arg); } else { tcg_out32(s, MTSPR | RS(arg) | LR); tcg_out32(s, BCLR | BO_ALWAYS | LK); } #else TCGReg reg = arg; int ofs = 0; if (const_arg) { /* Look through the descriptor. If the branch is in range, and we don't have to spend too much effort on building the toc. */ intptr_t tgt = ((intptr_t *)arg)[0]; intptr_t toc = ((intptr_t *)arg)[1]; intptr_t diff = tgt - (intptr_t)s->code_ptr; if (in_range_b(diff) && toc == (uint32_t)toc) { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R2, toc); tcg_out_b(s, LK, tgt); return; } /* Fold the low bits of the constant into the addresses below. */ ofs = (int16_t)arg; if (ofs + 8 < 0x8000) { arg -= ofs; } else { ofs = 0; } reg = TCG_REG_R2; tcg_out_movi(s, TCG_TYPE_I64, reg, arg); } tcg_out32(s, LD | TAI(TCG_REG_R0, reg, ofs)); tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR); tcg_out32(s, LD | TAI(TCG_REG_R2, reg, ofs + 8)); tcg_out32(s, BCCTR | BO_ALWAYS | LK); #endif } static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr, int offset, int op1, int op2) { if (offset == (int16_t) offset) { tcg_out32(s, op1 | TAI(ret, addr, offset)); } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, offset); tcg_out32(s, op2 | TAB(ret, addr, TCG_REG_R0)); } } static void tcg_out_ldsta(TCGContext *s, TCGReg ret, TCGReg addr, int offset, int op1, int op2) { if (offset == (int16_t)(offset & ~3)) { tcg_out32(s, op1 | TAI(ret, addr, offset)); } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, offset); tcg_out32(s, op2 | TAB(ret, addr, TCG_REG_R0)); } } #if defined(CONFIG_SOFTMMU) /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr, int mmu_idx) */ static const void * const qemu_ld_helpers[4] = { helper_ldb_mmu, helper_ldw_mmu, helper_ldl_mmu, helper_ldq_mmu, }; /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr, uintxx_t val, int mmu_idx) */ static const void * const qemu_st_helpers[4] = { helper_stb_mmu, helper_stw_mmu, helper_stl_mmu, helper_stq_mmu, }; static void tcg_out_tlb_read(TCGContext *s, TCGReg r0, TCGReg r1, TCGReg r2, TCGReg addr_reg, int s_bits, int offset) { #if TARGET_LONG_BITS == 32 tcg_out_ext32u(s, addr_reg, addr_reg); tcg_out_rlw(s, RLWINM, r0, addr_reg, 32 - (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS), 32 - (CPU_TLB_BITS + CPU_TLB_ENTRY_BITS), 31 - CPU_TLB_ENTRY_BITS); tcg_out32(s, ADD | TAB(r0, r0, TCG_AREG0)); tcg_out32(s, LWZU | TAI(r1, r0, offset)); tcg_out_rlw(s, RLWINM, r2, addr_reg, 0, (32 - s_bits) & 31, 31 - TARGET_PAGE_BITS); #else tcg_out_rld(s, RLDICL, r0, addr_reg, 64 - TARGET_PAGE_BITS, 64 - CPU_TLB_BITS); tcg_out_shli64(s, r0, r0, CPU_TLB_ENTRY_BITS); tcg_out32(s, ADD | TAB(r0, r0, TCG_AREG0)); tcg_out32(s, LD_ADDR | TAI(r1, r0, offset)); if (!s_bits) { tcg_out_rld(s, RLDICR, r2, addr_reg, 0, 63 - TARGET_PAGE_BITS); } else { tcg_out_rld(s, RLDICL, r2, addr_reg, 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - s_bits); tcg_out_rld(s, RLDICL, r2, r2, TARGET_PAGE_BITS, 0); } #endif } #endif static const uint32_t qemu_ldx_opc[8] = { #ifdef TARGET_WORDS_BIGENDIAN LBZX, LHZX, LWZX, LDX, 0, LHAX, LWAX, LDX #else LBZX, LHBRX, LWBRX, LDBRX, 0, 0, 0, LDBRX, #endif }; static const uint32_t qemu_stx_opc[4] = { #ifdef TARGET_WORDS_BIGENDIAN STBX, STHX, STWX, STDX #else STBX, STHBRX, STWBRX, STDBRX, #endif }; static const uint32_t qemu_exts_opc[4] = { EXTSB, EXTSH, EXTSW, 0 }; static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, int opc) { TCGReg addr_reg, data_reg, r0, r1, rbase; uint32_t insn, s_bits; #ifdef CONFIG_SOFTMMU TCGReg r2, ir; int mem_index; void *label1_ptr, *label2_ptr; #endif data_reg = *args++; addr_reg = *args++; s_bits = opc & 3; #ifdef CONFIG_SOFTMMU mem_index = *args; r0 = TCG_REG_R3; r1 = TCG_REG_R4; r2 = TCG_REG_R0; rbase = 0; tcg_out_tlb_read(s, r0, r1, r2, addr_reg, s_bits, offsetof(CPUArchState, tlb_table[mem_index][0].addr_read)); tcg_out32(s, CMP | BF(7) | RA(r2) | RB(r1) | CMP_L); label1_ptr = s->code_ptr; #ifdef FAST_PATH tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_TRUE); #endif /* slow path */ ir = TCG_REG_R3; tcg_out_mov(s, TCG_TYPE_I64, ir++, TCG_AREG0); tcg_out_mov(s, TCG_TYPE_I64, ir++, addr_reg); tcg_out_movi(s, TCG_TYPE_I64, ir++, mem_index); tcg_out_call(s, (tcg_target_long) qemu_ld_helpers[s_bits], 1); if (opc & 4) { insn = qemu_exts_opc[s_bits]; tcg_out32(s, insn | RA(data_reg) | RS(TCG_REG_R3)); } else if (data_reg != TCG_REG_R3) { tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_R3); } label2_ptr = s->code_ptr; tcg_out32(s, B); /* label1: fast path */ #ifdef FAST_PATH reloc_pc14(label1_ptr, (tcg_target_long)s->code_ptr); #endif /* r0 now contains &env->tlb_table[mem_index][index].addr_read */ tcg_out32(s, LD | TAI(r0, r0, offsetof(CPUTLBEntry, addend) - offsetof(CPUTLBEntry, addr_read))); /* r0 = env->tlb_table[mem_index][index].addend */ tcg_out32(s, ADD | TAB(r0, r0, addr_reg)); /* r0 = env->tlb_table[mem_index][index].addend + addr */ #else /* !CONFIG_SOFTMMU */ #if TARGET_LONG_BITS == 32 tcg_out_ext32u(s, addr_reg, addr_reg); #endif r0 = addr_reg; r1 = TCG_REG_R3; rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0; #endif insn = qemu_ldx_opc[opc]; if (!HAVE_ISA_2_06 && insn == LDBRX) { tcg_out32(s, ADDI | TAI(r1, r0, 4)); tcg_out32(s, LWBRX | TAB(data_reg, rbase, r0)); tcg_out32(s, LWBRX | TAB( r1, rbase, r1)); tcg_out_rld(s, RLDIMI, data_reg, r1, 32, 0); } else if (insn) { tcg_out32(s, insn | TAB(data_reg, rbase, r0)); } else { insn = qemu_ldx_opc[s_bits]; tcg_out32(s, insn | TAB(data_reg, rbase, r0)); insn = qemu_exts_opc[s_bits]; tcg_out32(s, insn | RA(data_reg) | RS(data_reg)); } #ifdef CONFIG_SOFTMMU reloc_pc24(label2_ptr, (tcg_target_long)s->code_ptr); #endif } static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, int opc) { TCGReg addr_reg, r0, r1, rbase, data_reg; uint32_t insn; #ifdef CONFIG_SOFTMMU TCGReg r2, ir; int mem_index; void *label1_ptr, *label2_ptr; #endif data_reg = *args++; addr_reg = *args++; #ifdef CONFIG_SOFTMMU mem_index = *args; r0 = TCG_REG_R3; r1 = TCG_REG_R4; r2 = TCG_REG_R0; rbase = 0; tcg_out_tlb_read(s, r0, r1, r2, addr_reg, opc, offsetof(CPUArchState, tlb_table[mem_index][0].addr_write)); tcg_out32(s, CMP | BF(7) | RA(r2) | RB(r1) | CMP_L); label1_ptr = s->code_ptr; #ifdef FAST_PATH tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_TRUE); #endif /* slow path */ ir = TCG_REG_R3; tcg_out_mov(s, TCG_TYPE_I64, ir++, TCG_AREG0); tcg_out_mov(s, TCG_TYPE_I64, ir++, addr_reg); tcg_out_rld(s, RLDICL, ir++, data_reg, 0, 64 - (1 << (3 + opc))); tcg_out_movi(s, TCG_TYPE_I64, ir++, mem_index); tcg_out_call(s, (tcg_target_long)qemu_st_helpers[opc], 1); label2_ptr = s->code_ptr; tcg_out32(s, B); /* label1: fast path */ #ifdef FAST_PATH reloc_pc14(label1_ptr, (tcg_target_long)s->code_ptr); #endif tcg_out32(s, LD | TAI(r0, r0, offsetof(CPUTLBEntry, addend) - offsetof(CPUTLBEntry, addr_write))); /* r0 = env->tlb_table[mem_index][index].addend */ tcg_out32(s, ADD | TAB(r0, r0, addr_reg)); /* r0 = env->tlb_table[mem_index][index].addend + addr */ #else /* !CONFIG_SOFTMMU */ #if TARGET_LONG_BITS == 32 tcg_out_ext32u(s, addr_reg, addr_reg); #endif r1 = TCG_REG_R3; r0 = addr_reg; rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0; #endif insn = qemu_stx_opc[opc]; if (!HAVE_ISA_2_06 && insn == STDBRX) { tcg_out32(s, STWBRX | SAB(data_reg, rbase, r0)); tcg_out32(s, ADDI | TAI(r1, r0, 4)); tcg_out_shri64(s, TCG_REG_R0, data_reg, 32); tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, r1)); } else { tcg_out32(s, insn | SAB(data_reg, rbase, r0)); } #ifdef CONFIG_SOFTMMU reloc_pc24(label2_ptr, (tcg_target_long)s->code_ptr); #endif } static void tcg_target_qemu_prologue(TCGContext *s) { int i, frame_size; frame_size = 0 + 8 /* back chain */ + 8 /* CR */ + 8 /* LR */ + 8 /* compiler doubleword */ + 8 /* link editor doubleword */ + 8 /* TOC save area */ + TCG_STATIC_CALL_ARGS_SIZE + ARRAY_SIZE(tcg_target_callee_save_regs) * 8 + CPU_TEMP_BUF_NLONGS * sizeof(long) ; frame_size = (frame_size + 15) & ~15; tcg_set_frame(s, TCG_REG_CALL_STACK, frame_size - CPU_TEMP_BUF_NLONGS * sizeof(long), CPU_TEMP_BUF_NLONGS * sizeof(long)); #ifndef __APPLE__ /* First emit adhoc function descriptor */ tcg_out64(s, (uint64_t)s->code_ptr + 24); /* entry point */ s->code_ptr += 16; /* skip TOC and environment pointer */ #endif /* Prologue */ tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR); tcg_out32(s, STDU | SAI(TCG_REG_R1, TCG_REG_R1, -frame_size)); for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { tcg_out32(s, STD | SAI(tcg_target_callee_save_regs[i], 1, i * 8 + 48 + TCG_STATIC_CALL_ARGS_SIZE)); } tcg_out32(s, STD | SAI(TCG_REG_R0, TCG_REG_R1, frame_size + 16)); #ifdef CONFIG_USE_GUEST_BASE if (GUEST_BASE) { tcg_out_movi(s, TCG_TYPE_I64, TCG_GUEST_BASE_REG, GUEST_BASE); tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); } #endif tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR); tcg_out32(s, BCCTR | BO_ALWAYS); /* Epilogue */ tb_ret_addr = s->code_ptr; for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { tcg_out32(s, LD | TAI(tcg_target_callee_save_regs[i], TCG_REG_R1, i * 8 + 48 + TCG_STATIC_CALL_ARGS_SIZE)); } tcg_out32(s, LD | TAI(TCG_REG_R0, TCG_REG_R1, frame_size + 16)); tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR); tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, frame_size)); tcg_out32(s, BCLR | BO_ALWAYS); } static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, intptr_t arg2) { if (type == TCG_TYPE_I32) { tcg_out_ldst(s, ret, arg1, arg2, LWZ, LWZX); } else { tcg_out_ldsta(s, ret, arg1, arg2, LD, LDX); } } static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, intptr_t arg2) { if (type == TCG_TYPE_I32) { tcg_out_ldst(s, arg, arg1, arg2, STW, STWX); } else { tcg_out_ldsta(s, arg, arg1, arg2, STD, STDX); } } static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2, int const_arg2, int cr, TCGType type) { int imm; uint32_t op; /* Simplify the comparisons below wrt CMPI. */ if (type == TCG_TYPE_I32) { arg2 = (int32_t)arg2; } switch (cond) { case TCG_COND_EQ: case TCG_COND_NE: if (const_arg2) { if ((int16_t) arg2 == arg2) { op = CMPI; imm = 1; break; } else if ((uint16_t) arg2 == arg2) { op = CMPLI; imm = 1; break; } } op = CMPL; imm = 0; break; case TCG_COND_LT: case TCG_COND_GE: case TCG_COND_LE: case TCG_COND_GT: if (const_arg2) { if ((int16_t) arg2 == arg2) { op = CMPI; imm = 1; break; } } op = CMP; imm = 0; break; case TCG_COND_LTU: case TCG_COND_GEU: case TCG_COND_LEU: case TCG_COND_GTU: if (const_arg2) { if ((uint16_t) arg2 == arg2) { op = CMPLI; imm = 1; break; } } op = CMPL; imm = 0; break; default: tcg_abort(); } op |= BF(cr) | ((type == TCG_TYPE_I64) << 21); if (imm) { tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff)); } else { if (const_arg2) { tcg_out_movi(s, type, TCG_REG_R0, arg2); arg2 = TCG_REG_R0; } tcg_out32(s, op | RA(arg1) | RB(arg2)); } } static void tcg_out_setcond_eq0(TCGContext *s, TCGType type, TCGReg dst, TCGReg src) { tcg_out32(s, (type == TCG_TYPE_I64 ? CNTLZD : CNTLZW) | RS(src) | RA(dst)); tcg_out_shri64(s, dst, dst, type == TCG_TYPE_I64 ? 6 : 5); } static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src) { /* X != 0 implies X + -1 generates a carry. Extra addition trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */ if (dst != src) { tcg_out32(s, ADDIC | TAI(dst, src, -1)); tcg_out32(s, SUBFE | TAB(dst, dst, src)); } else { tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1)); tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src)); } } static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2, bool const_arg2) { if (const_arg2) { if ((uint32_t)arg2 == arg2) { tcg_out_xori32(s, TCG_REG_R0, arg1, arg2); } else { tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2); tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0)); } } else { tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2)); } return TCG_REG_R0; } static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond, TCGArg arg0, TCGArg arg1, TCGArg arg2, int const_arg2) { int crop, sh; /* Ignore high bits of a potential constant arg2. */ if (type == TCG_TYPE_I32) { arg2 = (uint32_t)arg2; } /* Handle common and trivial cases before handling anything else. */ if (arg2 == 0) { switch (cond) { case TCG_COND_EQ: tcg_out_setcond_eq0(s, type, arg0, arg1); return; case TCG_COND_NE: if (type == TCG_TYPE_I32) { tcg_out_ext32u(s, TCG_REG_R0, arg1); arg1 = TCG_REG_R0; } tcg_out_setcond_ne0(s, arg0, arg1); return; case TCG_COND_GE: tcg_out32(s, NOR | SAB(arg1, arg0, arg1)); arg1 = arg0; /* FALLTHRU */ case TCG_COND_LT: /* Extract the sign bit. */ tcg_out_rld(s, RLDICL, arg0, arg1, type == TCG_TYPE_I64 ? 1 : 33, 63); return; default: break; } } /* If we have ISEL, we can implement everything with 3 or 4 insns. All other cases below are also at least 3 insns, so speed up the code generator by not considering them and always using ISEL. */ if (HAVE_ISEL) { int isel, tab; tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); isel = tcg_to_isel[cond]; tcg_out_movi(s, type, arg0, 1); if (isel & 1) { /* arg0 = (bc ? 0 : 1) */ tab = TAB(arg0, 0, arg0); isel &= ~1; } else { /* arg0 = (bc ? 1 : 0) */ tcg_out_movi(s, type, TCG_REG_R0, 0); tab = TAB(arg0, arg0, TCG_REG_R0); } tcg_out32(s, isel | tab); return; } switch (cond) { case TCG_COND_EQ: arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); tcg_out_setcond_eq0(s, type, arg0, arg1); return; case TCG_COND_NE: arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); /* Discard the high bits only once, rather than both inputs. */ if (type == TCG_TYPE_I32) { tcg_out_ext32u(s, TCG_REG_R0, arg1); arg1 = TCG_REG_R0; } tcg_out_setcond_ne0(s, arg0, arg1); return; case TCG_COND_GT: case TCG_COND_GTU: sh = 30; crop = 0; goto crtest; case TCG_COND_LT: case TCG_COND_LTU: sh = 29; crop = 0; goto crtest; case TCG_COND_GE: case TCG_COND_GEU: sh = 31; crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT); goto crtest; case TCG_COND_LE: case TCG_COND_LEU: sh = 31; crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT); crtest: tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); if (crop) { tcg_out32(s, crop); } tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7)); tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31); break; default: tcg_abort(); } } static void tcg_out_bc(TCGContext *s, int bc, int label_index) { TCGLabel *l = &s->labels[label_index]; if (l->has_value) { tcg_out32(s, bc | reloc_pc14_val(s->code_ptr, l->u.value)); } else { uint16_t val = *(uint16_t *) &s->code_ptr[2]; /* Thanks to Andrzej Zaborowski */ tcg_out32(s, bc | (val & 0xfffc)); tcg_out_reloc(s, s->code_ptr - 4, R_PPC_REL14, label_index, 0); } } static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGArg arg1, TCGArg arg2, int const_arg2, int label_index, TCGType type) { tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); tcg_out_bc(s, tcg_to_bc[cond], label_index); } static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond, TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1, TCGArg v2, bool const_c2) { /* If for some reason both inputs are zero, don't produce bad code. */ if (v1 == 0 && v2 == 0) { tcg_out_movi(s, type, dest, 0); return; } tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type); if (HAVE_ISEL) { int isel = tcg_to_isel[cond]; /* Swap the V operands if the operation indicates inversion. */ if (isel & 1) { int t = v1; v1 = v2; v2 = t; isel &= ~1; } /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */ if (v2 == 0) { tcg_out_movi(s, type, TCG_REG_R0, 0); } tcg_out32(s, isel | TAB(dest, v1, v2)); } else { if (dest == v2) { cond = tcg_invert_cond(cond); v2 = v1; } else if (dest != v1) { if (v1 == 0) { tcg_out_movi(s, type, dest, 0); } else { tcg_out_mov(s, type, dest, v1); } } /* Branch forward over one insn */ tcg_out32(s, tcg_to_bc[cond] | 8); if (v2 == 0) { tcg_out_movi(s, type, dest, 0); } else { tcg_out_mov(s, type, dest, v2); } } } void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr) { TCGContext s; unsigned long patch_size; s.code_ptr = (uint8_t *) jmp_addr; tcg_out_b(&s, 0, addr); patch_size = s.code_ptr - (uint8_t *) jmp_addr; flush_icache_range(jmp_addr, jmp_addr + patch_size); } static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, const int *const_args) { TCGArg a0, a1, a2; int c; switch (opc) { case INDEX_op_exit_tb: tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R3, args[0]); tcg_out_b(s, 0, (tcg_target_long)tb_ret_addr); break; case INDEX_op_goto_tb: if (s->tb_jmp_offset) { /* Direct jump method. */ s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf; s->code_ptr += 28; } else { /* Indirect jump method. */ tcg_abort(); } s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf; break; case INDEX_op_br: { TCGLabel *l = &s->labels[args[0]]; if (l->has_value) { tcg_out_b(s, 0, l->u.value); } else { uint32_t val = *(uint32_t *) s->code_ptr; /* Thanks to Andrzej Zaborowski */ tcg_out32(s, B | (val & 0x3fffffc)); tcg_out_reloc(s, s->code_ptr - 4, R_PPC_REL24, args[0], 0); } } break; case INDEX_op_call: tcg_out_call(s, args[0], const_args[0]); break; case INDEX_op_movi_i32: tcg_out_movi(s, TCG_TYPE_I32, args[0], args[1]); break; case INDEX_op_movi_i64: tcg_out_movi(s, TCG_TYPE_I64, args[0], args[1]); break; case INDEX_op_ld8u_i32: case INDEX_op_ld8u_i64: tcg_out_ldst(s, args[0], args[1], args[2], LBZ, LBZX); break; case INDEX_op_ld8s_i32: case INDEX_op_ld8s_i64: tcg_out_ldst(s, args[0], args[1], args[2], LBZ, LBZX); tcg_out32(s, EXTSB | RS(args[0]) | RA(args[0])); break; case INDEX_op_ld16u_i32: case INDEX_op_ld16u_i64: tcg_out_ldst(s, args[0], args[1], args[2], LHZ, LHZX); break; case INDEX_op_ld16s_i32: case INDEX_op_ld16s_i64: tcg_out_ldst(s, args[0], args[1], args[2], LHA, LHAX); break; case INDEX_op_ld_i32: case INDEX_op_ld32u_i64: tcg_out_ldst(s, args[0], args[1], args[2], LWZ, LWZX); break; case INDEX_op_ld32s_i64: tcg_out_ldsta(s, args[0], args[1], args[2], LWA, LWAX); break; case INDEX_op_ld_i64: tcg_out_ldsta(s, args[0], args[1], args[2], LD, LDX); break; case INDEX_op_st8_i32: case INDEX_op_st8_i64: tcg_out_ldst(s, args[0], args[1], args[2], STB, STBX); break; case INDEX_op_st16_i32: case INDEX_op_st16_i64: tcg_out_ldst(s, args[0], args[1], args[2], STH, STHX); break; case INDEX_op_st_i32: case INDEX_op_st32_i64: tcg_out_ldst(s, args[0], args[1], args[2], STW, STWX); break; case INDEX_op_st_i64: tcg_out_ldsta(s, args[0], args[1], args[2], STD, STDX); break; case INDEX_op_add_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { int32_t l, h; do_addi_32: l = (int16_t)a2; h = a2 - l; if (h) { tcg_out32(s, ADDIS | TAI(a0, a1, h >> 16)); a1 = a0; } if (l || a0 != a1) { tcg_out32(s, ADDI | TAI(a0, a1, l)); } } else { tcg_out32(s, ADD | TAB(a0, a1, a2)); } break; case INDEX_op_sub_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[1]) { if (const_args[2]) { tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2); } else { tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); } } else if (const_args[2]) { a2 = -a2; goto do_addi_32; } else { tcg_out32(s, SUBF | TAB(a0, a2, a1)); } break; case INDEX_op_and_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi32(s, a0, a1, a2); } else { tcg_out32(s, AND | SAB(a1, a0, a2)); } break; case INDEX_op_and_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi64(s, a0, a1, a2); } else { tcg_out32(s, AND | SAB(a1, a0, a2)); } break; case INDEX_op_or_i64: case INDEX_op_or_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_ori32(s, a0, a1, a2); } else { tcg_out32(s, OR | SAB(a1, a0, a2)); } break; case INDEX_op_xor_i64: case INDEX_op_xor_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_xori32(s, a0, a1, a2); } else { tcg_out32(s, XOR | SAB(a1, a0, a2)); } break; case INDEX_op_andc_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi32(s, a0, a1, ~a2); } else { tcg_out32(s, ANDC | SAB(a1, a0, a2)); } break; case INDEX_op_andc_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out_andi64(s, a0, a1, ~a2); } else { tcg_out32(s, ANDC | SAB(a1, a0, a2)); } break; case INDEX_op_orc_i32: if (const_args[2]) { tcg_out_ori32(s, args[0], args[1], ~args[2]); break; } /* FALLTHRU */ case INDEX_op_orc_i64: tcg_out32(s, ORC | SAB(args[1], args[0], args[2])); break; case INDEX_op_eqv_i32: if (const_args[2]) { tcg_out_xori32(s, args[0], args[1], ~args[2]); break; } /* FALLTHRU */ case INDEX_op_eqv_i64: tcg_out32(s, EQV | SAB(args[1], args[0], args[2])); break; case INDEX_op_nand_i32: case INDEX_op_nand_i64: tcg_out32(s, NAND | SAB(args[1], args[0], args[2])); break; case INDEX_op_nor_i32: case INDEX_op_nor_i64: tcg_out32(s, NOR | SAB(args[1], args[0], args[2])); break; case INDEX_op_mul_i32: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out32(s, MULLI | TAI(a0, a1, a2)); } else { tcg_out32(s, MULLW | TAB(a0, a1, a2)); } break; case INDEX_op_div_i32: tcg_out32(s, DIVW | TAB(args[0], args[1], args[2])); break; case INDEX_op_divu_i32: tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2])); break; case INDEX_op_shl_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31 - args[2]); } else { tcg_out32(s, SLW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_shr_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], args[2], 31); } else { tcg_out32(s, SRW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_sar_i32: if (const_args[2]) { tcg_out32(s, SRAWI | RS(args[1]) | RA(args[0]) | SH(args[2])); } else { tcg_out32(s, SRAW | SAB(args[1], args[0], args[2])); } break; case INDEX_op_rotl_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31); } else { tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2]) | MB(0) | ME(31)); } break; case INDEX_op_rotr_i32: if (const_args[2]) { tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31); } else { tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32)); tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0) | MB(0) | ME(31)); } break; case INDEX_op_brcond_i32: tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], args[3], TCG_TYPE_I32); break; case INDEX_op_brcond_i64: tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], args[3], TCG_TYPE_I64); break; case INDEX_op_neg_i32: case INDEX_op_neg_i64: tcg_out32(s, NEG | RT(args[0]) | RA(args[1])); break; case INDEX_op_not_i32: case INDEX_op_not_i64: tcg_out32(s, NOR | SAB(args[1], args[0], args[1])); break; case INDEX_op_add_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { int32_t l0, h1, h2; do_addi_64: /* We can always split any 32-bit signed constant into 3 pieces. Note the positive 0x80000000 coming from the sub_i64 path, handled with the same code we need for eg 0x7fff8000. */ assert(a2 == (int32_t)a2 || a2 == 0x80000000); l0 = (int16_t)a2; h1 = a2 - l0; h2 = 0; if (h1 < 0 && (int64_t)a2 > 0) { h2 = 0x40000000; h1 = a2 - h2 - l0; } assert((TCGArg)h2 + h1 + l0 == a2); if (h2) { tcg_out32(s, ADDIS | TAI(a0, a1, h2 >> 16)); a1 = a0; } if (h1) { tcg_out32(s, ADDIS | TAI(a0, a1, h1 >> 16)); a1 = a0; } if (l0 || a0 != a1) { tcg_out32(s, ADDI | TAI(a0, a1, l0)); } } else { tcg_out32(s, ADD | TAB(a0, a1, a2)); } break; case INDEX_op_sub_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[1]) { if (const_args[2]) { tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2); } else { tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); } } else if (const_args[2]) { a2 = -a2; goto do_addi_64; } else { tcg_out32(s, SUBF | TAB(a0, a2, a1)); } break; case INDEX_op_shl_i64: if (const_args[2]) { tcg_out_shli64(s, args[0], args[1], args[2]); } else { tcg_out32(s, SLD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_shr_i64: if (const_args[2]) { tcg_out_shri64(s, args[0], args[1], args[2]); } else { tcg_out32(s, SRD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_sar_i64: if (const_args[2]) { int sh = SH(args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1); tcg_out32(s, SRADI | RA(args[0]) | RS(args[1]) | sh); } else { tcg_out32(s, SRAD | SAB(args[1], args[0], args[2])); } break; case INDEX_op_rotl_i64: if (const_args[2]) { tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0); } else { tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0)); } break; case INDEX_op_rotr_i64: if (const_args[2]) { tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0); } else { tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64)); tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0)); } break; case INDEX_op_mul_i64: a0 = args[0], a1 = args[1], a2 = args[2]; if (const_args[2]) { tcg_out32(s, MULLI | TAI(a0, a1, a2)); } else { tcg_out32(s, MULLD | TAB(a0, a1, a2)); } break; case INDEX_op_div_i64: tcg_out32(s, DIVD | TAB(args[0], args[1], args[2])); break; case INDEX_op_divu_i64: tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2])); break; case INDEX_op_qemu_ld8u: tcg_out_qemu_ld(s, args, 0); break; case INDEX_op_qemu_ld8s: tcg_out_qemu_ld(s, args, 0 | 4); break; case INDEX_op_qemu_ld16u: tcg_out_qemu_ld(s, args, 1); break; case INDEX_op_qemu_ld16s: tcg_out_qemu_ld(s, args, 1 | 4); break; case INDEX_op_qemu_ld32: case INDEX_op_qemu_ld32u: tcg_out_qemu_ld(s, args, 2); break; case INDEX_op_qemu_ld32s: tcg_out_qemu_ld(s, args, 2 | 4); break; case INDEX_op_qemu_ld64: tcg_out_qemu_ld(s, args, 3); break; case INDEX_op_qemu_st8: tcg_out_qemu_st(s, args, 0); break; case INDEX_op_qemu_st16: tcg_out_qemu_st(s, args, 1); break; case INDEX_op_qemu_st32: tcg_out_qemu_st(s, args, 2); break; case INDEX_op_qemu_st64: tcg_out_qemu_st(s, args, 3); break; case INDEX_op_ext8s_i32: case INDEX_op_ext8s_i64: c = EXTSB; goto gen_ext; case INDEX_op_ext16s_i32: case INDEX_op_ext16s_i64: c = EXTSH; goto gen_ext; case INDEX_op_ext32s_i64: c = EXTSW; goto gen_ext; gen_ext: tcg_out32(s, c | RS(args[1]) | RA(args[0])); break; case INDEX_op_setcond_i32: tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2], const_args[2]); break; case INDEX_op_setcond_i64: tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2], const_args[2]); break; case INDEX_op_bswap16_i32: case INDEX_op_bswap16_i64: a0 = args[0], a1 = args[1]; /* a1 = abcd */ if (a0 != a1) { /* a0 = (a1 r<< 24) & 0xff # 000c */ tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31); /* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */ tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23); } else { /* r0 = (a1 r<< 8) & 0xff00 # 00d0 */ tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23); /* a0 = (a1 r<< 24) & 0xff # 000c */ tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31); /* a0 = a0 | r0 # 00dc */ tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0)); } break; case INDEX_op_bswap32_i32: case INDEX_op_bswap32_i64: /* Stolen from gcc's builtin_bswap32 */ a1 = args[1]; a0 = args[0] == a1 ? TCG_REG_R0 : args[0]; /* a1 = args[1] # abcd */ /* a0 = rotate_left (a1, 8) # bcda */ tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31); /* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */ tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7); /* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */ tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23); if (a0 == TCG_REG_R0) { tcg_out_mov(s, TCG_TYPE_I64, args[0], a0); } break; case INDEX_op_bswap64_i64: a0 = args[0], a1 = args[1], a2 = TCG_REG_R0; if (a0 == a1) { a0 = TCG_REG_R0; a2 = a1; } /* a1 = # abcd efgh */ /* a0 = rl32(a1, 8) # 0000 fghe */ tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31); /* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */ tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7); /* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */ tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23); /* a0 = rl64(a0, 32) # hgfe 0000 */ /* a2 = rl64(a1, 32) # efgh abcd */ tcg_out_rld(s, RLDICL, a0, a0, 32, 0); tcg_out_rld(s, RLDICL, a2, a1, 32, 0); /* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */ tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31); /* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */ tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7); /* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */ tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23); if (a0 == 0) { tcg_out_mov(s, TCG_TYPE_I64, args[0], a0); } break; case INDEX_op_deposit_i32: if (const_args[2]) { uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3]; tcg_out_andi32(s, args[0], args[0], ~mask); } else { tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3], 32 - args[3] - args[4], 31 - args[3]); } break; case INDEX_op_deposit_i64: if (const_args[2]) { uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3]; tcg_out_andi64(s, args[0], args[0], ~mask); } else { tcg_out_rld(s, RLDIMI, args[0], args[2], args[3], 64 - args[3] - args[4]); } break; case INDEX_op_movcond_i32: tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2], args[3], args[4], const_args[2]); break; case INDEX_op_movcond_i64: tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2], args[3], args[4], const_args[2]); break; case INDEX_op_add2_i64: /* Note that the CA bit is defined based on the word size of the environment. So in 64-bit mode it's always carry-out of bit 63. The fallback code using deposit works just as well for 32-bit. */ a0 = args[0], a1 = args[1]; if (a0 == args[3] || (!const_args[5] && a0 == args[5])) { a0 = TCG_REG_R0; } if (const_args[4]) { tcg_out32(s, ADDIC | TAI(a0, args[2], args[4])); } else { tcg_out32(s, ADDC | TAB(a0, args[2], args[4])); } if (const_args[5]) { tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3])); } else { tcg_out32(s, ADDE | TAB(a1, args[3], args[5])); } if (a0 != args[0]) { tcg_out_mov(s, TCG_TYPE_I64, args[0], a0); } break; case INDEX_op_sub2_i64: a0 = args[0], a1 = args[1]; if (a0 == args[5] || (!const_args[4] && a0 == args[4])) { a0 = TCG_REG_R0; } if (const_args[2]) { tcg_out32(s, SUBFIC | TAI(a0, args[3], args[2])); } else { tcg_out32(s, SUBFC | TAB(a0, args[3], args[2])); } if (const_args[4]) { tcg_out32(s, (args[4] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5])); } else { tcg_out32(s, SUBFE | TAB(a1, args[5], args[4])); } if (a0 != args[0]) { tcg_out_mov(s, TCG_TYPE_I64, args[0], a0); } break; case INDEX_op_muluh_i64: tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2])); break; case INDEX_op_mulsh_i64: tcg_out32(s, MULHD | TAB(args[0], args[1], args[2])); break; default: tcg_dump_ops(s); tcg_abort(); } } static const TCGTargetOpDef ppc_op_defs[] = { { INDEX_op_exit_tb, { } }, { INDEX_op_goto_tb, { } }, { INDEX_op_call, { "ri" } }, { INDEX_op_br, { } }, { INDEX_op_mov_i32, { "r", "r" } }, { INDEX_op_mov_i64, { "r", "r" } }, { INDEX_op_movi_i32, { "r" } }, { INDEX_op_movi_i64, { "r" } }, { INDEX_op_ld8u_i32, { "r", "r" } }, { INDEX_op_ld8s_i32, { "r", "r" } }, { INDEX_op_ld16u_i32, { "r", "r" } }, { INDEX_op_ld16s_i32, { "r", "r" } }, { INDEX_op_ld_i32, { "r", "r" } }, { INDEX_op_ld_i64, { "r", "r" } }, { INDEX_op_st8_i32, { "r", "r" } }, { INDEX_op_st8_i64, { "r", "r" } }, { INDEX_op_st16_i32, { "r", "r" } }, { INDEX_op_st16_i64, { "r", "r" } }, { INDEX_op_st_i32, { "r", "r" } }, { INDEX_op_st_i64, { "r", "r" } }, { INDEX_op_st32_i64, { "r", "r" } }, { INDEX_op_ld8u_i64, { "r", "r" } }, { INDEX_op_ld8s_i64, { "r", "r" } }, { INDEX_op_ld16u_i64, { "r", "r" } }, { INDEX_op_ld16s_i64, { "r", "r" } }, { INDEX_op_ld32u_i64, { "r", "r" } }, { INDEX_op_ld32s_i64, { "r", "r" } }, { INDEX_op_add_i32, { "r", "r", "ri" } }, { INDEX_op_mul_i32, { "r", "r", "rI" } }, { INDEX_op_div_i32, { "r", "r", "r" } }, { INDEX_op_divu_i32, { "r", "r", "r" } }, { INDEX_op_sub_i32, { "r", "rI", "ri" } }, { INDEX_op_and_i32, { "r", "r", "ri" } }, { INDEX_op_or_i32, { "r", "r", "ri" } }, { INDEX_op_xor_i32, { "r", "r", "ri" } }, { INDEX_op_andc_i32, { "r", "r", "ri" } }, { INDEX_op_orc_i32, { "r", "r", "ri" } }, { INDEX_op_eqv_i32, { "r", "r", "ri" } }, { INDEX_op_nand_i32, { "r", "r", "r" } }, { INDEX_op_nor_i32, { "r", "r", "r" } }, { INDEX_op_shl_i32, { "r", "r", "ri" } }, { INDEX_op_shr_i32, { "r", "r", "ri" } }, { INDEX_op_sar_i32, { "r", "r", "ri" } }, { INDEX_op_rotl_i32, { "r", "r", "ri" } }, { INDEX_op_rotr_i32, { "r", "r", "ri" } }, { INDEX_op_brcond_i32, { "r", "ri" } }, { INDEX_op_brcond_i64, { "r", "ri" } }, { INDEX_op_neg_i32, { "r", "r" } }, { INDEX_op_not_i32, { "r", "r" } }, { INDEX_op_add_i64, { "r", "r", "rT" } }, { INDEX_op_sub_i64, { "r", "rI", "rT" } }, { INDEX_op_and_i64, { "r", "r", "ri" } }, { INDEX_op_or_i64, { "r", "r", "rU" } }, { INDEX_op_xor_i64, { "r", "r", "rU" } }, { INDEX_op_andc_i64, { "r", "r", "ri" } }, { INDEX_op_orc_i64, { "r", "r", "r" } }, { INDEX_op_eqv_i64, { "r", "r", "r" } }, { INDEX_op_nand_i64, { "r", "r", "r" } }, { INDEX_op_nor_i64, { "r", "r", "r" } }, { INDEX_op_shl_i64, { "r", "r", "ri" } }, { INDEX_op_shr_i64, { "r", "r", "ri" } }, { INDEX_op_sar_i64, { "r", "r", "ri" } }, { INDEX_op_rotl_i64, { "r", "r", "ri" } }, { INDEX_op_rotr_i64, { "r", "r", "ri" } }, { INDEX_op_mul_i64, { "r", "r", "rI" } }, { INDEX_op_div_i64, { "r", "r", "r" } }, { INDEX_op_divu_i64, { "r", "r", "r" } }, { INDEX_op_neg_i64, { "r", "r" } }, { INDEX_op_not_i64, { "r", "r" } }, { INDEX_op_qemu_ld8u, { "r", "L" } }, { INDEX_op_qemu_ld8s, { "r", "L" } }, { INDEX_op_qemu_ld16u, { "r", "L" } }, { INDEX_op_qemu_ld16s, { "r", "L" } }, { INDEX_op_qemu_ld32, { "r", "L" } }, { INDEX_op_qemu_ld32u, { "r", "L" } }, { INDEX_op_qemu_ld32s, { "r", "L" } }, { INDEX_op_qemu_ld64, { "r", "L" } }, { INDEX_op_qemu_st8, { "S", "S" } }, { INDEX_op_qemu_st16, { "S", "S" } }, { INDEX_op_qemu_st32, { "S", "S" } }, { INDEX_op_qemu_st64, { "S", "S" } }, { INDEX_op_ext8s_i32, { "r", "r" } }, { INDEX_op_ext16s_i32, { "r", "r" } }, { INDEX_op_ext8s_i64, { "r", "r" } }, { INDEX_op_ext16s_i64, { "r", "r" } }, { INDEX_op_ext32s_i64, { "r", "r" } }, { INDEX_op_setcond_i32, { "r", "r", "ri" } }, { INDEX_op_setcond_i64, { "r", "r", "ri" } }, { INDEX_op_movcond_i32, { "r", "r", "ri", "rZ", "rZ" } }, { INDEX_op_movcond_i64, { "r", "r", "ri", "rZ", "rZ" } }, { INDEX_op_bswap16_i32, { "r", "r" } }, { INDEX_op_bswap16_i64, { "r", "r" } }, { INDEX_op_bswap32_i32, { "r", "r" } }, { INDEX_op_bswap32_i64, { "r", "r" } }, { INDEX_op_bswap64_i64, { "r", "r" } }, { INDEX_op_deposit_i32, { "r", "0", "rZ" } }, { INDEX_op_deposit_i64, { "r", "0", "rZ" } }, { INDEX_op_add2_i64, { "r", "r", "r", "r", "rI", "rZM" } }, { INDEX_op_sub2_i64, { "r", "r", "rI", "r", "rZM", "r" } }, { INDEX_op_mulsh_i64, { "r", "r", "r" } }, { INDEX_op_muluh_i64, { "r", "r", "r" } }, { -1 }, }; static void tcg_target_init(TCGContext *s) { #ifdef CONFIG_GETAUXVAL unsigned long hwcap = getauxval(AT_HWCAP); if (hwcap & PPC_FEATURE_ARCH_2_06) { have_isa_2_06 = true; } #endif tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffffffff); tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffffffff); tcg_regset_set32(tcg_target_call_clobber_regs, 0, (1 << TCG_REG_R0) | #ifdef __APPLE__ (1 << TCG_REG_R2) | #endif (1 << TCG_REG_R3) | (1 << TCG_REG_R4) | (1 << TCG_REG_R5) | (1 << TCG_REG_R6) | (1 << TCG_REG_R7) | (1 << TCG_REG_R8) | (1 << TCG_REG_R9) | (1 << TCG_REG_R10) | (1 << TCG_REG_R11) | (1 << TCG_REG_R12) ); tcg_regset_clear(s->reserved_regs); tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); #ifndef __APPLE__ tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); #endif tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); tcg_add_target_add_op_defs(ppc_op_defs); }