/* * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "cpu.h" #include "internal.h" #include "exec/exec-all.h" #include "qapi/error.h" #include "hw/qdev-properties.h" #include "fpu/softfloat-helpers.h" #include "tcg/tcg.h" #include "exec/gdbstub.h" static void hexagon_v67_cpu_init(Object *obj) { } static void hexagon_v68_cpu_init(Object *obj) { } static void hexagon_v69_cpu_init(Object *obj) { } static void hexagon_v71_cpu_init(Object *obj) { } static void hexagon_v73_cpu_init(Object *obj) { } static void hexagon_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; char *name = g_strdup(object_class_get_name(oc)); if (g_str_has_suffix(name, HEXAGON_CPU_TYPE_SUFFIX)) { name[strlen(name) - strlen(HEXAGON_CPU_TYPE_SUFFIX)] = '\0'; } qemu_printf(" %s\n", name); g_free(name); } void hexagon_cpu_list(void) { GSList *list; list = object_class_get_list_sorted(TYPE_HEXAGON_CPU, false); qemu_printf("Available CPUs:\n"); g_slist_foreach(list, hexagon_cpu_list_entry, NULL); g_slist_free(list); } static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; cpuname = g_strsplit(cpu_model, ",", 1); typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) || object_class_is_abstract(oc)) { return NULL; } return oc; } static Property hexagon_lldb_compat_property = DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false); static Property hexagon_lldb_stack_adjust_property = DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust, 0, qdev_prop_uint32, target_ulong); static Property hexagon_short_circuit_property = DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true); const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1", "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15", "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23", "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31", }; /* * One of the main debugging techniques is to use "-d cpu" and compare against * LLDB output when single stepping. However, the target and qemu put the * stacks at different locations. This is used to compensate so the diff is * cleaner. */ static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr) { HexagonCPU *cpu = env_archcpu(env); target_ulong stack_adjust = cpu->lldb_stack_adjust; target_ulong stack_start = env->stack_start; target_ulong stack_size = 0x10000; if (stack_adjust == 0) { return addr; } if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) { return addr - stack_adjust; } return addr; } /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */ static target_ulong read_p3_0(CPUHexagonState *env) { int32_t control_reg = 0; int i; for (i = NUM_PREGS - 1; i >= 0; i--) { control_reg <<= 8; control_reg |= env->pred[i] & 0xff; } return control_reg; } static void print_reg(FILE *f, CPUHexagonState *env, int regnum) { target_ulong value; if (regnum == HEX_REG_P3_0_ALIASED) { value = read_p3_0(env); } else { value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum]) : env->gpr[regnum]; } qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n", hexagon_regnames[regnum], value); } static void print_vreg(FILE *f, CPUHexagonState *env, int regnum, bool skip_if_zero) { if (skip_if_zero) { bool nonzero_found = false; for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) { if (env->VRegs[regnum].ub[i] != 0) { nonzero_found = true; break; } } if (!nonzero_found) { return; } } qemu_fprintf(f, " v%d = ( ", regnum); qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]); for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) { qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]); } qemu_fprintf(f, " )\n"); } void hexagon_debug_vreg(CPUHexagonState *env, int regnum) { print_vreg(stdout, env, regnum, false); } static void print_qreg(FILE *f, CPUHexagonState *env, int regnum, bool skip_if_zero) { if (skip_if_zero) { bool nonzero_found = false; for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) { if (env->QRegs[regnum].ub[i] != 0) { nonzero_found = true; break; } } if (!nonzero_found) { return; } } qemu_fprintf(f, " q%d = ( ", regnum); qemu_fprintf(f, "0x%02x", env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]); for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) { qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]); } qemu_fprintf(f, " )\n"); } void hexagon_debug_qreg(CPUHexagonState *env, int regnum) { print_qreg(stdout, env, regnum, false); } static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags) { HexagonCPU *cpu = env_archcpu(env); if (cpu->lldb_compat) { /* * When comparing with LLDB, it doesn't step through single-cycle * hardware loops the same way. So, we just skip them here */ if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) { return; } env->last_pc_dumped = env->gpr[HEX_REG_PC]; } qemu_fprintf(f, "General Purpose Registers = {\n"); for (int i = 0; i < 32; i++) { print_reg(f, env, i); } print_reg(f, env, HEX_REG_SA0); print_reg(f, env, HEX_REG_LC0); print_reg(f, env, HEX_REG_SA1); print_reg(f, env, HEX_REG_LC1); print_reg(f, env, HEX_REG_M0); print_reg(f, env, HEX_REG_M1); print_reg(f, env, HEX_REG_USR); print_reg(f, env, HEX_REG_P3_0_ALIASED); print_reg(f, env, HEX_REG_GP); print_reg(f, env, HEX_REG_UGP); print_reg(f, env, HEX_REG_PC); #ifdef CONFIG_USER_ONLY /* * Not modelled in user mode, print junk to minimize the diff's * with LLDB output */ qemu_fprintf(f, " cause = 0x000000db\n"); qemu_fprintf(f, " badva = 0x00000000\n"); qemu_fprintf(f, " cs0 = 0x00000000\n"); qemu_fprintf(f, " cs1 = 0x00000000\n"); #else print_reg(f, env, HEX_REG_CAUSE); print_reg(f, env, HEX_REG_BADVA); print_reg(f, env, HEX_REG_CS0); print_reg(f, env, HEX_REG_CS1); #endif qemu_fprintf(f, "}\n"); if (flags & CPU_DUMP_FPU) { qemu_fprintf(f, "Vector Registers = {\n"); for (int i = 0; i < NUM_VREGS; i++) { print_vreg(f, env, i, true); } for (int i = 0; i < NUM_QREGS; i++) { print_qreg(f, env, i, true); } qemu_fprintf(f, "}\n"); } } static void hexagon_dump_state(CPUState *cs, FILE *f, int flags) { HexagonCPU *cpu = HEXAGON_CPU(cs); CPUHexagonState *env = &cpu->env; hexagon_dump(env, f, flags); } void hexagon_debug(CPUHexagonState *env) { hexagon_dump(env, stdout, CPU_DUMP_FPU); } static void hexagon_cpu_set_pc(CPUState *cs, vaddr value) { HexagonCPU *cpu = HEXAGON_CPU(cs); CPUHexagonState *env = &cpu->env; env->gpr[HEX_REG_PC] = value; } static vaddr hexagon_cpu_get_pc(CPUState *cs) { HexagonCPU *cpu = HEXAGON_CPU(cs); CPUHexagonState *env = &cpu->env; return env->gpr[HEX_REG_PC]; } static void hexagon_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { HexagonCPU *cpu = HEXAGON_CPU(cs); CPUHexagonState *env = &cpu->env; tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL)); env->gpr[HEX_REG_PC] = tb->pc; } static bool hexagon_cpu_has_work(CPUState *cs) { return true; } static void hexagon_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { HexagonCPU *cpu = HEXAGON_CPU(cs); CPUHexagonState *env = &cpu->env; env->gpr[HEX_REG_PC] = data[0]; } static void hexagon_cpu_reset_hold(Object *obj) { CPUState *cs = CPU(obj); HexagonCPU *cpu = HEXAGON_CPU(cs); HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu); CPUHexagonState *env = &cpu->env; if (mcc->parent_phases.hold) { mcc->parent_phases.hold(obj); } set_default_nan_mode(1, &env->fp_status); set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status); } static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info) { info->print_insn = print_insn_hexagon; } static void hexagon_cpu_realize(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev); Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } gdb_register_coprocessor(cs, hexagon_hvx_gdb_read_register, hexagon_hvx_gdb_write_register, NUM_VREGS + NUM_QREGS, "hexagon-hvx.xml", 0); qemu_init_vcpu(cs); cpu_reset(cs); mcc->parent_realize(dev, errp); } static void hexagon_cpu_init(Object *obj) { HexagonCPU *cpu = HEXAGON_CPU(obj); cpu_set_cpustate_pointers(cpu); qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property); qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property); qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property); } #include "hw/core/tcg-cpu-ops.h" static const struct TCGCPUOps hexagon_tcg_ops = { .initialize = hexagon_translate_init, .synchronize_from_tb = hexagon_cpu_synchronize_from_tb, .restore_state_to_opc = hexagon_restore_state_to_opc, }; static void hexagon_cpu_class_init(ObjectClass *c, void *data) { HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); ResettableClass *rc = RESETTABLE_CLASS(c); device_class_set_parent_realize(dc, hexagon_cpu_realize, &mcc->parent_realize); resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL, &mcc->parent_phases); cc->class_by_name = hexagon_cpu_class_by_name; cc->has_work = hexagon_cpu_has_work; cc->dump_state = hexagon_dump_state; cc->set_pc = hexagon_cpu_set_pc; cc->get_pc = hexagon_cpu_get_pc; cc->gdb_read_register = hexagon_gdb_read_register; cc->gdb_write_register = hexagon_gdb_write_register; cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS; cc->gdb_stop_before_watchpoint = true; cc->gdb_core_xml_file = "hexagon-core.xml"; cc->disas_set_info = hexagon_cpu_disas_set_info; cc->tcg_ops = &hexagon_tcg_ops; } #define DEFINE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_HEXAGON_CPU, \ .instance_init = initfn \ } static const TypeInfo hexagon_cpu_type_infos[] = { { .name = TYPE_HEXAGON_CPU, .parent = TYPE_CPU, .instance_size = sizeof(HexagonCPU), .instance_align = __alignof(HexagonCPU), .instance_init = hexagon_cpu_init, .abstract = true, .class_size = sizeof(HexagonCPUClass), .class_init = hexagon_cpu_class_init, }, DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init), DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init), DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init), DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init), DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init), }; DEFINE_TYPES(hexagon_cpu_type_infos)