/* * UniCore32 translation * * Copyright (C) 2010-2011 GUAN Xue-tao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation, or (at your option) any * later version. See the COPYING file in the top-level directory. */ #include <stdarg.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <inttypes.h> #include "cpu.h" #include "disas.h" #include "tcg-op.h" #include "qemu-log.h" #include "helper.h" #define GEN_HELPER 1 #include "helper.h" /* internal defines */ typedef struct DisasContext { target_ulong pc; int is_jmp; /* Nonzero if this instruction has been conditionally skipped. */ int condjmp; /* The label that will be jumped to when the instruction is skipped. */ int condlabel; struct TranslationBlock *tb; int singlestep_enabled; } DisasContext; #define IS_USER(s) 1 /* These instructions trap after executing, so defer them until after the conditional executions state has been updated. */ #define DISAS_SYSCALL 5 static TCGv_ptr cpu_env; static TCGv_i32 cpu_R[32]; /* FIXME: These should be removed. */ static TCGv cpu_F0s, cpu_F1s; static TCGv_i64 cpu_F0d, cpu_F1d; #include "gen-icount.h" static const char *regnames[] = { "r00", "r01", "r02", "r03", "r04", "r05", "r06", "r07", "r08", "r09", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "pc" }; /* initialize TCG globals. */ void uc32_translate_init(void) { int i; cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env"); for (i = 0; i < 32; i++) { cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUUniCore32State, regs[i]), regnames[i]); } #define GEN_HELPER 2 #include "helper.h" } static int num_temps; /* Allocate a temporary variable. */ static TCGv_i32 new_tmp(void) { num_temps++; return tcg_temp_new_i32(); } /* Release a temporary variable. */ static void dead_tmp(TCGv tmp) { tcg_temp_free(tmp); num_temps--; } static inline TCGv load_cpu_offset(int offset) { TCGv tmp = new_tmp(); tcg_gen_ld_i32(tmp, cpu_env, offset); return tmp; } #define load_cpu_field(name) load_cpu_offset(offsetof(CPUUniCore32State, name)) static inline void store_cpu_offset(TCGv var, int offset) { tcg_gen_st_i32(var, cpu_env, offset); dead_tmp(var); } #define store_cpu_field(var, name) \ store_cpu_offset(var, offsetof(CPUUniCore32State, name)) /* Set a variable to the value of a CPU register. */ static void load_reg_var(DisasContext *s, TCGv var, int reg) { if (reg == 31) { uint32_t addr; /* normaly, since we updated PC */ addr = (long)s->pc; tcg_gen_movi_i32(var, addr); } else { tcg_gen_mov_i32(var, cpu_R[reg]); } } /* Create a new temporary and set it to the value of a CPU register. */ static inline TCGv load_reg(DisasContext *s, int reg) { TCGv tmp = new_tmp(); load_reg_var(s, tmp, reg); return tmp; } /* Set a CPU register. The source must be a temporary and will be marked as dead. */ static void store_reg(DisasContext *s, int reg, TCGv var) { if (reg == 31) { tcg_gen_andi_i32(var, var, ~3); s->is_jmp = DISAS_JUMP; } tcg_gen_mov_i32(cpu_R[reg], var); dead_tmp(var); } /* Value extensions. */ #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) #define gen_uxth(var) tcg_gen_ext16u_i32(var, var) #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) #define gen_sxth(var) tcg_gen_ext16s_i32(var, var) #define UCOP_REG_M (((insn) >> 0) & 0x1f) #define UCOP_REG_N (((insn) >> 19) & 0x1f) #define UCOP_REG_D (((insn) >> 14) & 0x1f) #define UCOP_REG_S (((insn) >> 9) & 0x1f) #define UCOP_REG_LO (((insn) >> 14) & 0x1f) #define UCOP_REG_HI (((insn) >> 9) & 0x1f) #define UCOP_SH_OP (((insn) >> 6) & 0x03) #define UCOP_SH_IM (((insn) >> 9) & 0x1f) #define UCOP_OPCODES (((insn) >> 25) & 0x0f) #define UCOP_IMM_9 (((insn) >> 0) & 0x1ff) #define UCOP_IMM10 (((insn) >> 0) & 0x3ff) #define UCOP_IMM14 (((insn) >> 0) & 0x3fff) #define UCOP_COND (((insn) >> 25) & 0x0f) #define UCOP_CMOV_COND (((insn) >> 19) & 0x0f) #define UCOP_CPNUM (((insn) >> 10) & 0x0f) #define UCOP_UCF64_FMT (((insn) >> 24) & 0x03) #define UCOP_UCF64_FUNC (((insn) >> 6) & 0x0f) #define UCOP_UCF64_COND (((insn) >> 6) & 0x0f) #define UCOP_SET(i) ((insn) & (1 << (i))) #define UCOP_SET_P UCOP_SET(28) #define UCOP_SET_U UCOP_SET(27) #define UCOP_SET_B UCOP_SET(26) #define UCOP_SET_W UCOP_SET(25) #define UCOP_SET_L UCOP_SET(24) #define UCOP_SET_S UCOP_SET(24) #define ILLEGAL cpu_abort(env, \ "Illegal UniCore32 instruction %x at line %d!", \ insn, __LINE__) static inline void gen_set_asr(TCGv var, uint32_t mask) { TCGv tmp_mask = tcg_const_i32(mask); gen_helper_asr_write(var, tmp_mask); tcg_temp_free_i32(tmp_mask); } /* Set NZCV flags from the high 4 bits of var. */ #define gen_set_nzcv(var) gen_set_asr(var, ASR_NZCV) static void gen_exception(int excp) { TCGv tmp = new_tmp(); tcg_gen_movi_i32(tmp, excp); gen_helper_exception(tmp); dead_tmp(tmp); } /* FIXME: Most targets have native widening multiplication. It would be good to use that instead of a full wide multiply. */ /* 32x32->64 multiply. Marks inputs as dead. */ static TCGv_i64 gen_mulu_i64_i32(TCGv a, TCGv b) { TCGv_i64 tmp1 = tcg_temp_new_i64(); TCGv_i64 tmp2 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(tmp1, a); dead_tmp(a); tcg_gen_extu_i32_i64(tmp2, b); dead_tmp(b); tcg_gen_mul_i64(tmp1, tmp1, tmp2); tcg_temp_free_i64(tmp2); return tmp1; } static TCGv_i64 gen_muls_i64_i32(TCGv a, TCGv b) { TCGv_i64 tmp1 = tcg_temp_new_i64(); TCGv_i64 tmp2 = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(tmp1, a); dead_tmp(a); tcg_gen_ext_i32_i64(tmp2, b); dead_tmp(b); tcg_gen_mul_i64(tmp1, tmp1, tmp2); tcg_temp_free_i64(tmp2); return tmp1; } #define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, CF)) /* Set CF to the top bit of var. */ static void gen_set_CF_bit31(TCGv var) { TCGv tmp = new_tmp(); tcg_gen_shri_i32(tmp, var, 31); gen_set_CF(tmp); dead_tmp(tmp); } /* Set N and Z flags from var. */ static inline void gen_logic_CC(TCGv var) { tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, NF)); tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, ZF)); } /* dest = T0 + T1 + CF. */ static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1) { TCGv tmp; tcg_gen_add_i32(dest, t0, t1); tmp = load_cpu_field(CF); tcg_gen_add_i32(dest, dest, tmp); dead_tmp(tmp); } /* dest = T0 - T1 + CF - 1. */ static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1) { TCGv tmp; tcg_gen_sub_i32(dest, t0, t1); tmp = load_cpu_field(CF); tcg_gen_add_i32(dest, dest, tmp); tcg_gen_subi_i32(dest, dest, 1); dead_tmp(tmp); } static void shifter_out_im(TCGv var, int shift) { TCGv tmp = new_tmp(); if (shift == 0) { tcg_gen_andi_i32(tmp, var, 1); } else { tcg_gen_shri_i32(tmp, var, shift); if (shift != 31) { tcg_gen_andi_i32(tmp, tmp, 1); } } gen_set_CF(tmp); dead_tmp(tmp); } /* Shift by immediate. Includes special handling for shift == 0. */ static inline void gen_uc32_shift_im(TCGv var, int shiftop, int shift, int flags) { switch (shiftop) { case 0: /* LSL */ if (shift != 0) { if (flags) { shifter_out_im(var, 32 - shift); } tcg_gen_shli_i32(var, var, shift); } break; case 1: /* LSR */ if (shift == 0) { if (flags) { tcg_gen_shri_i32(var, var, 31); gen_set_CF(var); } tcg_gen_movi_i32(var, 0); } else { if (flags) { shifter_out_im(var, shift - 1); } tcg_gen_shri_i32(var, var, shift); } break; case 2: /* ASR */ if (shift == 0) { shift = 32; } if (flags) { shifter_out_im(var, shift - 1); } if (shift == 32) { shift = 31; } tcg_gen_sari_i32(var, var, shift); break; case 3: /* ROR/RRX */ if (shift != 0) { if (flags) { shifter_out_im(var, shift - 1); } tcg_gen_rotri_i32(var, var, shift); break; } else { TCGv tmp = load_cpu_field(CF); if (flags) { shifter_out_im(var, 0); } tcg_gen_shri_i32(var, var, 1); tcg_gen_shli_i32(tmp, tmp, 31); tcg_gen_or_i32(var, var, tmp); dead_tmp(tmp); } } }; static inline void gen_uc32_shift_reg(TCGv var, int shiftop, TCGv shift, int flags) { if (flags) { switch (shiftop) { case 0: gen_helper_shl_cc(var, var, shift); break; case 1: gen_helper_shr_cc(var, var, shift); break; case 2: gen_helper_sar_cc(var, var, shift); break; case 3: gen_helper_ror_cc(var, var, shift); break; } } else { switch (shiftop) { case 0: gen_helper_shl(var, var, shift); break; case 1: gen_helper_shr(var, var, shift); break; case 2: gen_helper_sar(var, var, shift); break; case 3: tcg_gen_andi_i32(shift, shift, 0x1f); tcg_gen_rotr_i32(var, var, shift); break; } } dead_tmp(shift); } static void gen_test_cc(int cc, int label) { TCGv tmp; TCGv tmp2; int inv; switch (cc) { case 0: /* eq: Z */ tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label); break; case 1: /* ne: !Z */ tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label); break; case 2: /* cs: C */ tmp = load_cpu_field(CF); tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label); break; case 3: /* cc: !C */ tmp = load_cpu_field(CF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label); break; case 4: /* mi: N */ tmp = load_cpu_field(NF); tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label); break; case 5: /* pl: !N */ tmp = load_cpu_field(NF); tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label); break; case 6: /* vs: V */ tmp = load_cpu_field(VF); tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label); break; case 7: /* vc: !V */ tmp = load_cpu_field(VF); tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label); break; case 8: /* hi: C && !Z */ inv = gen_new_label(); tmp = load_cpu_field(CF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv); dead_tmp(tmp); tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label); gen_set_label(inv); break; case 9: /* ls: !C || Z */ tmp = load_cpu_field(CF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label); dead_tmp(tmp); tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label); break; case 10: /* ge: N == V -> N ^ V == 0 */ tmp = load_cpu_field(VF); tmp2 = load_cpu_field(NF); tcg_gen_xor_i32(tmp, tmp, tmp2); dead_tmp(tmp2); tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label); break; case 11: /* lt: N != V -> N ^ V != 0 */ tmp = load_cpu_field(VF); tmp2 = load_cpu_field(NF); tcg_gen_xor_i32(tmp, tmp, tmp2); dead_tmp(tmp2); tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label); break; case 12: /* gt: !Z && N == V */ inv = gen_new_label(); tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv); dead_tmp(tmp); tmp = load_cpu_field(VF); tmp2 = load_cpu_field(NF); tcg_gen_xor_i32(tmp, tmp, tmp2); dead_tmp(tmp2); tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label); gen_set_label(inv); break; case 13: /* le: Z || N != V */ tmp = load_cpu_field(ZF); tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label); dead_tmp(tmp); tmp = load_cpu_field(VF); tmp2 = load_cpu_field(NF); tcg_gen_xor_i32(tmp, tmp, tmp2); dead_tmp(tmp2); tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label); break; default: fprintf(stderr, "Bad condition code 0x%x\n", cc); abort(); } dead_tmp(tmp); } static const uint8_t table_logic_cc[16] = { 1, /* and */ 1, /* xor */ 0, /* sub */ 0, /* rsb */ 0, /* add */ 0, /* adc */ 0, /* sbc */ 0, /* rsc */ 1, /* andl */ 1, /* xorl */ 0, /* cmp */ 0, /* cmn */ 1, /* orr */ 1, /* mov */ 1, /* bic */ 1, /* mvn */ }; /* Set PC state from an immediate address. */ static inline void gen_bx_im(DisasContext *s, uint32_t addr) { s->is_jmp = DISAS_UPDATE; tcg_gen_movi_i32(cpu_R[31], addr & ~3); } /* Set PC state from var. var is marked as dead. */ static inline void gen_bx(DisasContext *s, TCGv var) { s->is_jmp = DISAS_UPDATE; tcg_gen_andi_i32(cpu_R[31], var, ~3); dead_tmp(var); } static inline void store_reg_bx(DisasContext *s, int reg, TCGv var) { store_reg(s, reg, var); } static inline TCGv gen_ld8s(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld8s(tmp, addr, index); return tmp; } static inline TCGv gen_ld8u(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld8u(tmp, addr, index); return tmp; } static inline TCGv gen_ld16s(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld16s(tmp, addr, index); return tmp; } static inline TCGv gen_ld16u(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld16u(tmp, addr, index); return tmp; } static inline TCGv gen_ld32(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld32u(tmp, addr, index); return tmp; } static inline TCGv_i64 gen_ld64(TCGv addr, int index) { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_qemu_ld64(tmp, addr, index); return tmp; } static inline void gen_st8(TCGv val, TCGv addr, int index) { tcg_gen_qemu_st8(val, addr, index); dead_tmp(val); } static inline void gen_st16(TCGv val, TCGv addr, int index) { tcg_gen_qemu_st16(val, addr, index); dead_tmp(val); } static inline void gen_st32(TCGv val, TCGv addr, int index) { tcg_gen_qemu_st32(val, addr, index); dead_tmp(val); } static inline void gen_st64(TCGv_i64 val, TCGv addr, int index) { tcg_gen_qemu_st64(val, addr, index); tcg_temp_free_i64(val); } static inline void gen_set_pc_im(uint32_t val) { tcg_gen_movi_i32(cpu_R[31], val); } /* Force a TB lookup after an instruction that changes the CPU state. */ static inline void gen_lookup_tb(DisasContext *s) { tcg_gen_movi_i32(cpu_R[31], s->pc & ~1); s->is_jmp = DISAS_UPDATE; } static inline void gen_add_data_offset(DisasContext *s, unsigned int insn, TCGv var) { int val; TCGv offset; if (UCOP_SET(29)) { /* immediate */ val = UCOP_IMM14; if (!UCOP_SET_U) { val = -val; } if (val != 0) { tcg_gen_addi_i32(var, var, val); } } else { /* shift/register */ offset = load_reg(s, UCOP_REG_M); gen_uc32_shift_im(offset, UCOP_SH_OP, UCOP_SH_IM, 0); if (!UCOP_SET_U) { tcg_gen_sub_i32(var, var, offset); } else { tcg_gen_add_i32(var, var, offset); } dead_tmp(offset); } } static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn, TCGv var) { int val; TCGv offset; if (UCOP_SET(26)) { /* immediate */ val = (insn & 0x1f) | ((insn >> 4) & 0x3e0); if (!UCOP_SET_U) { val = -val; } if (val != 0) { tcg_gen_addi_i32(var, var, val); } } else { /* register */ offset = load_reg(s, UCOP_REG_M); if (!UCOP_SET_U) { tcg_gen_sub_i32(var, var, offset); } else { tcg_gen_add_i32(var, var, offset); } dead_tmp(offset); } } static inline long ucf64_reg_offset(int reg) { if (reg & 1) { return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1]) + offsetof(CPU_DoubleU, l.upper); } else { return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1]) + offsetof(CPU_DoubleU, l.lower); } } #define ucf64_gen_ld32(reg) load_cpu_offset(ucf64_reg_offset(reg)) #define ucf64_gen_st32(var, reg) store_cpu_offset(var, ucf64_reg_offset(reg)) /* UniCore-F64 single load/store I_offset */ static void do_ucf64_ldst_i(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { int offset; TCGv tmp; TCGv addr; addr = load_reg(s, UCOP_REG_N); if (!UCOP_SET_P && !UCOP_SET_W) { ILLEGAL; } if (UCOP_SET_P) { offset = UCOP_IMM10 << 2; if (!UCOP_SET_U) { offset = -offset; } if (offset != 0) { tcg_gen_addi_i32(addr, addr, offset); } } if (UCOP_SET_L) { /* load */ tmp = gen_ld32(addr, IS_USER(s)); ucf64_gen_st32(tmp, UCOP_REG_D); } else { /* store */ tmp = ucf64_gen_ld32(UCOP_REG_D); gen_st32(tmp, addr, IS_USER(s)); } if (!UCOP_SET_P) { offset = UCOP_IMM10 << 2; if (!UCOP_SET_U) { offset = -offset; } if (offset != 0) { tcg_gen_addi_i32(addr, addr, offset); } } if (UCOP_SET_W) { store_reg(s, UCOP_REG_N, addr); } else { dead_tmp(addr); } } /* UniCore-F64 load/store multiple words */ static void do_ucf64_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { unsigned int i; int j, n, freg; TCGv tmp; TCGv addr; if (UCOP_REG_D != 0) { ILLEGAL; } if (UCOP_REG_N == 31) { ILLEGAL; } if ((insn << 24) == 0) { ILLEGAL; } addr = load_reg(s, UCOP_REG_N); n = 0; for (i = 0; i < 8; i++) { if (UCOP_SET(i)) { n++; } } if (UCOP_SET_U) { if (UCOP_SET_P) { /* pre increment */ tcg_gen_addi_i32(addr, addr, 4); } /* unnecessary to do anything when post increment */ } else { if (UCOP_SET_P) { /* pre decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } else { /* post decrement */ if (n != 1) { tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } } } freg = ((insn >> 8) & 3) << 3; /* freg should be 0, 8, 16, 24 */ for (i = 0, j = 0; i < 8; i++, freg++) { if (!UCOP_SET(i)) { continue; } if (UCOP_SET_L) { /* load */ tmp = gen_ld32(addr, IS_USER(s)); ucf64_gen_st32(tmp, freg); } else { /* store */ tmp = ucf64_gen_ld32(freg); gen_st32(tmp, addr, IS_USER(s)); } j++; /* unnecessary to add after the last transfer */ if (j != n) { tcg_gen_addi_i32(addr, addr, 4); } } if (UCOP_SET_W) { /* write back */ if (UCOP_SET_U) { if (!UCOP_SET_P) { /* post increment */ tcg_gen_addi_i32(addr, addr, 4); } /* unnecessary to do anything when pre increment */ } else { if (UCOP_SET_P) { /* pre decrement */ if (n != 1) { tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } } else { /* post decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } } store_reg(s, UCOP_REG_N, addr); } else { dead_tmp(addr); } } /* UniCore-F64 mrc/mcr */ static void do_ucf64_trans(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { TCGv tmp; if ((insn & 0xfe0003ff) == 0xe2000000) { /* control register */ if ((UCOP_REG_N != UC32_UCF64_FPSCR) || (UCOP_REG_D == 31)) { ILLEGAL; } if (UCOP_SET(24)) { /* CFF */ tmp = new_tmp(); gen_helper_ucf64_get_fpscr(tmp, cpu_env); store_reg(s, UCOP_REG_D, tmp); } else { /* CTF */ tmp = load_reg(s, UCOP_REG_D); gen_helper_ucf64_set_fpscr(cpu_env, tmp); dead_tmp(tmp); gen_lookup_tb(s); } return; } if ((insn & 0xfe0003ff) == 0xe0000000) { /* general register */ if (UCOP_REG_D == 31) { ILLEGAL; } if (UCOP_SET(24)) { /* MFF */ tmp = ucf64_gen_ld32(UCOP_REG_N); store_reg(s, UCOP_REG_D, tmp); } else { /* MTF */ tmp = load_reg(s, UCOP_REG_D); ucf64_gen_st32(tmp, UCOP_REG_N); } return; } if ((insn & 0xfb000000) == 0xe9000000) { /* MFFC */ if (UCOP_REG_D != 31) { ILLEGAL; } if (UCOP_UCF64_COND & 0x8) { ILLEGAL; } tmp = new_tmp(); tcg_gen_movi_i32(tmp, UCOP_UCF64_COND); if (UCOP_SET(26)) { tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N)); tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, tmp, cpu_env); } else { tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N)); tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, tmp, cpu_env); } dead_tmp(tmp); return; } ILLEGAL; } /* UniCore-F64 convert instructions */ static void do_ucf64_fcvt(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { if (UCOP_UCF64_FMT == 3) { ILLEGAL; } if (UCOP_REG_N != 0) { ILLEGAL; } switch (UCOP_UCF64_FUNC) { case 0: /* cvt.s */ switch (UCOP_UCF64_FMT) { case 1 /* d */: tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_df2sf(cpu_F0s, cpu_F0d, cpu_env); tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; case 2 /* w */: tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_si2sf(cpu_F0s, cpu_F0s, cpu_env); tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; default /* s */: ILLEGAL; break; } break; case 1: /* cvt.d */ switch (UCOP_UCF64_FMT) { case 0 /* s */: tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_sf2df(cpu_F0d, cpu_F0s, cpu_env); tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; case 2 /* w */: tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_si2df(cpu_F0d, cpu_F0s, cpu_env); tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; default /* d */: ILLEGAL; break; } break; case 4: /* cvt.w */ switch (UCOP_UCF64_FMT) { case 0 /* s */: tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_sf2si(cpu_F0s, cpu_F0s, cpu_env); tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; case 1 /* d */: tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M)); gen_helper_ucf64_df2si(cpu_F0s, cpu_F0d, cpu_env); tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D)); break; default /* w */: ILLEGAL; break; } break; default: ILLEGAL; } } /* UniCore-F64 compare instructions */ static void do_ucf64_fcmp(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { if (UCOP_SET(25)) { ILLEGAL; } if (UCOP_REG_D != 0) { ILLEGAL; } ILLEGAL; /* TODO */ if (UCOP_SET(24)) { tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N)); tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M)); /* gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, cpu_env); */ } else { tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N)); tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M)); /* gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, cpu_env); */ } } #define gen_helper_ucf64_movs(x, y) do { } while (0) #define gen_helper_ucf64_movd(x, y) do { } while (0) #define UCF64_OP1(name) do { \ if (UCOP_REG_N != 0) { \ ILLEGAL; \ } \ switch (UCOP_UCF64_FMT) { \ case 0 /* s */: \ tcg_gen_ld_i32(cpu_F0s, cpu_env, \ ucf64_reg_offset(UCOP_REG_M)); \ gen_helper_ucf64_##name##s(cpu_F0s, cpu_F0s); \ tcg_gen_st_i32(cpu_F0s, cpu_env, \ ucf64_reg_offset(UCOP_REG_D)); \ break; \ case 1 /* d */: \ tcg_gen_ld_i64(cpu_F0d, cpu_env, \ ucf64_reg_offset(UCOP_REG_M)); \ gen_helper_ucf64_##name##d(cpu_F0d, cpu_F0d); \ tcg_gen_st_i64(cpu_F0d, cpu_env, \ ucf64_reg_offset(UCOP_REG_D)); \ break; \ case 2 /* w */: \ ILLEGAL; \ break; \ } \ } while (0) #define UCF64_OP2(name) do { \ switch (UCOP_UCF64_FMT) { \ case 0 /* s */: \ tcg_gen_ld_i32(cpu_F0s, cpu_env, \ ucf64_reg_offset(UCOP_REG_N)); \ tcg_gen_ld_i32(cpu_F1s, cpu_env, \ ucf64_reg_offset(UCOP_REG_M)); \ gen_helper_ucf64_##name##s(cpu_F0s, \ cpu_F0s, cpu_F1s, cpu_env); \ tcg_gen_st_i32(cpu_F0s, cpu_env, \ ucf64_reg_offset(UCOP_REG_D)); \ break; \ case 1 /* d */: \ tcg_gen_ld_i64(cpu_F0d, cpu_env, \ ucf64_reg_offset(UCOP_REG_N)); \ tcg_gen_ld_i64(cpu_F1d, cpu_env, \ ucf64_reg_offset(UCOP_REG_M)); \ gen_helper_ucf64_##name##d(cpu_F0d, \ cpu_F0d, cpu_F1d, cpu_env); \ tcg_gen_st_i64(cpu_F0d, cpu_env, \ ucf64_reg_offset(UCOP_REG_D)); \ break; \ case 2 /* w */: \ ILLEGAL; \ break; \ } \ } while (0) /* UniCore-F64 data processing */ static void do_ucf64_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { if (UCOP_UCF64_FMT == 3) { ILLEGAL; } switch (UCOP_UCF64_FUNC) { case 0: /* add */ UCF64_OP2(add); break; case 1: /* sub */ UCF64_OP2(sub); break; case 2: /* mul */ UCF64_OP2(mul); break; case 4: /* div */ UCF64_OP2(div); break; case 5: /* abs */ UCF64_OP1(abs); break; case 6: /* mov */ UCF64_OP1(mov); break; case 7: /* neg */ UCF64_OP1(neg); break; default: ILLEGAL; } } /* Disassemble an F64 instruction */ static void disas_ucf64_insn(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { if (!UCOP_SET(29)) { if (UCOP_SET(26)) { do_ucf64_ldst_m(env, s, insn); } else { do_ucf64_ldst_i(env, s, insn); } } else { if (UCOP_SET(5)) { switch ((insn >> 26) & 0x3) { case 0: do_ucf64_datap(env, s, insn); break; case 1: ILLEGAL; break; case 2: do_ucf64_fcvt(env, s, insn); break; case 3: do_ucf64_fcmp(env, s, insn); break; } } else { do_ucf64_trans(env, s, insn); } } } static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest) { TranslationBlock *tb; tb = s->tb; if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) { tcg_gen_goto_tb(n); gen_set_pc_im(dest); tcg_gen_exit_tb((tcg_target_long)tb + n); } else { gen_set_pc_im(dest); tcg_gen_exit_tb(0); } } static inline void gen_jmp(DisasContext *s, uint32_t dest) { if (unlikely(s->singlestep_enabled)) { /* An indirect jump so that we still trigger the debug exception. */ gen_bx_im(s, dest); } else { gen_goto_tb(s, 0, dest); s->is_jmp = DISAS_TB_JUMP; } } static inline void gen_mulxy(TCGv t0, TCGv t1, int x, int y) { if (x) { tcg_gen_sari_i32(t0, t0, 16); } else { gen_sxth(t0); } if (y) { tcg_gen_sari_i32(t1, t1, 16); } else { gen_sxth(t1); } tcg_gen_mul_i32(t0, t0, t1); } /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ static int gen_set_psr(DisasContext *s, uint32_t mask, int bsr, TCGv t0) { TCGv tmp; if (bsr) { /* ??? This is also undefined in system mode. */ if (IS_USER(s)) { return 1; } tmp = load_cpu_field(bsr); tcg_gen_andi_i32(tmp, tmp, ~mask); tcg_gen_andi_i32(t0, t0, mask); tcg_gen_or_i32(tmp, tmp, t0); store_cpu_field(tmp, bsr); } else { gen_set_asr(t0, mask); } dead_tmp(t0); gen_lookup_tb(s); return 0; } /* Generate an old-style exception return. Marks pc as dead. */ static void gen_exception_return(DisasContext *s, TCGv pc) { TCGv tmp; store_reg(s, 31, pc); tmp = load_cpu_field(bsr); gen_set_asr(tmp, 0xffffffff); dead_tmp(tmp); s->is_jmp = DISAS_UPDATE; } static void disas_coproc_insn(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { switch (UCOP_CPNUM) { case 2: disas_ucf64_insn(env, s, insn); break; default: /* Unknown coprocessor. */ cpu_abort(env, "Unknown coprocessor!"); } } /* Store a 64-bit value to a register pair. Clobbers val. */ static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) { TCGv tmp; tmp = new_tmp(); tcg_gen_trunc_i64_i32(tmp, val); store_reg(s, rlow, tmp); tmp = new_tmp(); tcg_gen_shri_i64(val, val, 32); tcg_gen_trunc_i64_i32(tmp, val); store_reg(s, rhigh, tmp); } /* load and add a 64-bit value from a register pair. */ static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) { TCGv_i64 tmp; TCGv tmpl; TCGv tmph; /* Load 64-bit value rd:rn. */ tmpl = load_reg(s, rlow); tmph = load_reg(s, rhigh); tmp = tcg_temp_new_i64(); tcg_gen_concat_i32_i64(tmp, tmpl, tmph); dead_tmp(tmpl); dead_tmp(tmph); tcg_gen_add_i64(val, val, tmp); tcg_temp_free_i64(tmp); } /* data processing instructions */ static void do_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { TCGv tmp; TCGv tmp2; int logic_cc; if (UCOP_OPCODES == 0x0f || UCOP_OPCODES == 0x0d) { if (UCOP_SET(23)) { /* CMOV instructions */ if ((UCOP_CMOV_COND == 0xe) || (UCOP_CMOV_COND == 0xf)) { ILLEGAL; } /* if not always execute, we generate a conditional jump to next instruction */ s->condlabel = gen_new_label(); gen_test_cc(UCOP_CMOV_COND ^ 1, s->condlabel); s->condjmp = 1; } } logic_cc = table_logic_cc[UCOP_OPCODES] & (UCOP_SET_S >> 24); if (UCOP_SET(29)) { unsigned int val; /* immediate operand */ val = UCOP_IMM_9; if (UCOP_SH_IM) { val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM)); } tmp2 = new_tmp(); tcg_gen_movi_i32(tmp2, val); if (logic_cc && UCOP_SH_IM) { gen_set_CF_bit31(tmp2); } } else { /* register */ tmp2 = load_reg(s, UCOP_REG_M); if (UCOP_SET(5)) { tmp = load_reg(s, UCOP_REG_S); gen_uc32_shift_reg(tmp2, UCOP_SH_OP, tmp, logic_cc); } else { gen_uc32_shift_im(tmp2, UCOP_SH_OP, UCOP_SH_IM, logic_cc); } } if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) { tmp = load_reg(s, UCOP_REG_N); } else { TCGV_UNUSED(tmp); } switch (UCOP_OPCODES) { case 0x00: tcg_gen_and_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x01: tcg_gen_xor_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x02: if (UCOP_SET_S && UCOP_REG_D == 31) { /* SUBS r31, ... is used for exception return. */ if (IS_USER(s)) { ILLEGAL; } gen_helper_sub_cc(tmp, tmp, tmp2); gen_exception_return(s, tmp); } else { if (UCOP_SET_S) { gen_helper_sub_cc(tmp, tmp, tmp2); } else { tcg_gen_sub_i32(tmp, tmp, tmp2); } store_reg_bx(s, UCOP_REG_D, tmp); } break; case 0x03: if (UCOP_SET_S) { gen_helper_sub_cc(tmp, tmp2, tmp); } else { tcg_gen_sub_i32(tmp, tmp2, tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x04: if (UCOP_SET_S) { gen_helper_add_cc(tmp, tmp, tmp2); } else { tcg_gen_add_i32(tmp, tmp, tmp2); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x05: if (UCOP_SET_S) { gen_helper_adc_cc(tmp, tmp, tmp2); } else { gen_add_carry(tmp, tmp, tmp2); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x06: if (UCOP_SET_S) { gen_helper_sbc_cc(tmp, tmp, tmp2); } else { gen_sub_carry(tmp, tmp, tmp2); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x07: if (UCOP_SET_S) { gen_helper_sbc_cc(tmp, tmp2, tmp); } else { gen_sub_carry(tmp, tmp2, tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x08: if (UCOP_SET_S) { tcg_gen_and_i32(tmp, tmp, tmp2); gen_logic_CC(tmp); } dead_tmp(tmp); break; case 0x09: if (UCOP_SET_S) { tcg_gen_xor_i32(tmp, tmp, tmp2); gen_logic_CC(tmp); } dead_tmp(tmp); break; case 0x0a: if (UCOP_SET_S) { gen_helper_sub_cc(tmp, tmp, tmp2); } dead_tmp(tmp); break; case 0x0b: if (UCOP_SET_S) { gen_helper_add_cc(tmp, tmp, tmp2); } dead_tmp(tmp); break; case 0x0c: tcg_gen_or_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; case 0x0d: if (logic_cc && UCOP_REG_D == 31) { /* MOVS r31, ... is used for exception return. */ if (IS_USER(s)) { ILLEGAL; } gen_exception_return(s, tmp2); } else { if (logic_cc) { gen_logic_CC(tmp2); } store_reg_bx(s, UCOP_REG_D, tmp2); } break; case 0x0e: tcg_gen_andc_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(s, UCOP_REG_D, tmp); break; default: case 0x0f: tcg_gen_not_i32(tmp2, tmp2); if (logic_cc) { gen_logic_CC(tmp2); } store_reg_bx(s, UCOP_REG_D, tmp2); break; } if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) { dead_tmp(tmp2); } } /* multiply */ static void do_mult(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { TCGv tmp; TCGv tmp2; TCGv_i64 tmp64; if (UCOP_SET(27)) { /* 64 bit mul */ tmp = load_reg(s, UCOP_REG_M); tmp2 = load_reg(s, UCOP_REG_N); if (UCOP_SET(26)) { tmp64 = gen_muls_i64_i32(tmp, tmp2); } else { tmp64 = gen_mulu_i64_i32(tmp, tmp2); } if (UCOP_SET(25)) { /* mult accumulate */ gen_addq(s, tmp64, UCOP_REG_LO, UCOP_REG_HI); } gen_storeq_reg(s, UCOP_REG_LO, UCOP_REG_HI, tmp64); tcg_temp_free_i64(tmp64); } else { /* 32 bit mul */ tmp = load_reg(s, UCOP_REG_M); tmp2 = load_reg(s, UCOP_REG_N); tcg_gen_mul_i32(tmp, tmp, tmp2); dead_tmp(tmp2); if (UCOP_SET(25)) { /* Add */ tmp2 = load_reg(s, UCOP_REG_S); tcg_gen_add_i32(tmp, tmp, tmp2); dead_tmp(tmp2); } if (UCOP_SET_S) { gen_logic_CC(tmp); } store_reg(s, UCOP_REG_D, tmp); } } /* miscellaneous instructions */ static void do_misc(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { unsigned int val; TCGv tmp; if ((insn & 0xffffffe0) == 0x10ffc120) { /* Trivial implementation equivalent to bx. */ tmp = load_reg(s, UCOP_REG_M); gen_bx(s, tmp); return; } if ((insn & 0xfbffc000) == 0x30ffc000) { /* PSR = immediate */ val = UCOP_IMM_9; if (UCOP_SH_IM) { val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM)); } tmp = new_tmp(); tcg_gen_movi_i32(tmp, val); if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) { ILLEGAL; } return; } if ((insn & 0xfbffffe0) == 0x12ffc020) { /* PSR.flag = reg */ tmp = load_reg(s, UCOP_REG_M); if (gen_set_psr(s, ASR_NZCV, UCOP_SET_B, tmp)) { ILLEGAL; } return; } if ((insn & 0xfbffffe0) == 0x10ffc020) { /* PSR = reg */ tmp = load_reg(s, UCOP_REG_M); if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) { ILLEGAL; } return; } if ((insn & 0xfbf83fff) == 0x10f80000) { /* reg = PSR */ if (UCOP_SET_B) { if (IS_USER(s)) { ILLEGAL; } tmp = load_cpu_field(bsr); } else { tmp = new_tmp(); gen_helper_asr_read(tmp); } store_reg(s, UCOP_REG_D, tmp); return; } if ((insn & 0xfbf83fe0) == 0x12f80120) { /* clz */ tmp = load_reg(s, UCOP_REG_M); if (UCOP_SET(26)) { gen_helper_clo(tmp, tmp); } else { gen_helper_clz(tmp, tmp); } store_reg(s, UCOP_REG_D, tmp); return; } /* otherwise */ ILLEGAL; } /* load/store I_offset and R_offset */ static void do_ldst_ir(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { unsigned int i; TCGv tmp; TCGv tmp2; tmp2 = load_reg(s, UCOP_REG_N); i = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W)); /* immediate */ if (UCOP_SET_P) { gen_add_data_offset(s, insn, tmp2); } if (UCOP_SET_L) { /* load */ if (UCOP_SET_B) { tmp = gen_ld8u(tmp2, i); } else { tmp = gen_ld32(tmp2, i); } } else { /* store */ tmp = load_reg(s, UCOP_REG_D); if (UCOP_SET_B) { gen_st8(tmp, tmp2, i); } else { gen_st32(tmp, tmp2, i); } } if (!UCOP_SET_P) { gen_add_data_offset(s, insn, tmp2); store_reg(s, UCOP_REG_N, tmp2); } else if (UCOP_SET_W) { store_reg(s, UCOP_REG_N, tmp2); } else { dead_tmp(tmp2); } if (UCOP_SET_L) { /* Complete the load. */ if (UCOP_REG_D == 31) { gen_bx(s, tmp); } else { store_reg(s, UCOP_REG_D, tmp); } } } /* SWP instruction */ static void do_swap(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { TCGv addr; TCGv tmp; TCGv tmp2; if ((insn & 0xff003fe0) != 0x40000120) { ILLEGAL; } /* ??? This is not really atomic. However we know we never have multiple CPUs running in parallel, so it is good enough. */ addr = load_reg(s, UCOP_REG_N); tmp = load_reg(s, UCOP_REG_M); if (UCOP_SET_B) { tmp2 = gen_ld8u(addr, IS_USER(s)); gen_st8(tmp, addr, IS_USER(s)); } else { tmp2 = gen_ld32(addr, IS_USER(s)); gen_st32(tmp, addr, IS_USER(s)); } dead_tmp(addr); store_reg(s, UCOP_REG_D, tmp2); } /* load/store hw/sb */ static void do_ldst_hwsb(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { TCGv addr; TCGv tmp; if (UCOP_SH_OP == 0) { do_swap(env, s, insn); return; } addr = load_reg(s, UCOP_REG_N); if (UCOP_SET_P) { gen_add_datah_offset(s, insn, addr); } if (UCOP_SET_L) { /* load */ switch (UCOP_SH_OP) { case 1: tmp = gen_ld16u(addr, IS_USER(s)); break; case 2: tmp = gen_ld8s(addr, IS_USER(s)); break; default: /* see do_swap */ case 3: tmp = gen_ld16s(addr, IS_USER(s)); break; } } else { /* store */ if (UCOP_SH_OP != 1) { ILLEGAL; } tmp = load_reg(s, UCOP_REG_D); gen_st16(tmp, addr, IS_USER(s)); } /* Perform base writeback before the loaded value to ensure correct behavior with overlapping index registers. */ if (!UCOP_SET_P) { gen_add_datah_offset(s, insn, addr); store_reg(s, UCOP_REG_N, addr); } else if (UCOP_SET_W) { store_reg(s, UCOP_REG_N, addr); } else { dead_tmp(addr); } if (UCOP_SET_L) { /* Complete the load. */ store_reg(s, UCOP_REG_D, tmp); } } /* load/store multiple words */ static void do_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { unsigned int val, i; int j, n, reg, user, loaded_base; TCGv tmp; TCGv tmp2; TCGv addr; TCGv loaded_var; if (UCOP_SET(7)) { ILLEGAL; } /* XXX: store correct base if write back */ user = 0; if (UCOP_SET_B) { /* S bit in instruction table */ if (IS_USER(s)) { ILLEGAL; /* only usable in supervisor mode */ } if (UCOP_SET(18) == 0) { /* pc reg */ user = 1; } } addr = load_reg(s, UCOP_REG_N); /* compute total size */ loaded_base = 0; TCGV_UNUSED(loaded_var); n = 0; for (i = 0; i < 6; i++) { if (UCOP_SET(i)) { n++; } } for (i = 9; i < 19; i++) { if (UCOP_SET(i)) { n++; } } /* XXX: test invalid n == 0 case ? */ if (UCOP_SET_U) { if (UCOP_SET_P) { /* pre increment */ tcg_gen_addi_i32(addr, addr, 4); } else { /* post increment */ } } else { if (UCOP_SET_P) { /* pre decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } else { /* post decrement */ if (n != 1) { tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } } } j = 0; reg = UCOP_SET(6) ? 16 : 0; for (i = 0; i < 19; i++, reg++) { if (i == 6) { i = i + 3; } if (UCOP_SET(i)) { if (UCOP_SET_L) { /* load */ tmp = gen_ld32(addr, IS_USER(s)); if (reg == 31) { gen_bx(s, tmp); } else if (user) { tmp2 = tcg_const_i32(reg); gen_helper_set_user_reg(tmp2, tmp); tcg_temp_free_i32(tmp2); dead_tmp(tmp); } else if (reg == UCOP_REG_N) { loaded_var = tmp; loaded_base = 1; } else { store_reg(s, reg, tmp); } } else { /* store */ if (reg == 31) { /* special case: r31 = PC + 4 */ val = (long)s->pc; tmp = new_tmp(); tcg_gen_movi_i32(tmp, val); } else if (user) { tmp = new_tmp(); tmp2 = tcg_const_i32(reg); gen_helper_get_user_reg(tmp, tmp2); tcg_temp_free_i32(tmp2); } else { tmp = load_reg(s, reg); } gen_st32(tmp, addr, IS_USER(s)); } j++; /* no need to add after the last transfer */ if (j != n) { tcg_gen_addi_i32(addr, addr, 4); } } } if (UCOP_SET_W) { /* write back */ if (UCOP_SET_U) { if (UCOP_SET_P) { /* pre increment */ } else { /* post increment */ tcg_gen_addi_i32(addr, addr, 4); } } else { if (UCOP_SET_P) { /* pre decrement */ if (n != 1) { tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } } else { /* post decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } } store_reg(s, UCOP_REG_N, addr); } else { dead_tmp(addr); } if (loaded_base) { store_reg(s, UCOP_REG_N, loaded_var); } if (UCOP_SET_B && !user) { /* Restore ASR from BSR. */ tmp = load_cpu_field(bsr); gen_set_asr(tmp, 0xffffffff); dead_tmp(tmp); s->is_jmp = DISAS_UPDATE; } } /* branch (and link) */ static void do_branch(CPUUniCore32State *env, DisasContext *s, uint32_t insn) { unsigned int val; int32_t offset; TCGv tmp; if (UCOP_COND == 0xf) { ILLEGAL; } if (UCOP_COND != 0xe) { /* if not always execute, we generate a conditional jump to next instruction */ s->condlabel = gen_new_label(); gen_test_cc(UCOP_COND ^ 1, s->condlabel); s->condjmp = 1; } val = (int32_t)s->pc; if (UCOP_SET_L) { tmp = new_tmp(); tcg_gen_movi_i32(tmp, val); store_reg(s, 30, tmp); } offset = (((int32_t)insn << 8) >> 8); val += (offset << 2); /* unicore is pc+4 */ gen_jmp(s, val); } static void disas_uc32_insn(CPUUniCore32State *env, DisasContext *s) { unsigned int insn; insn = ldl_code(s->pc); s->pc += 4; /* UniCore instructions class: * AAAB BBBC xxxx xxxx xxxx xxxD xxEx xxxx * AAA : see switch case * BBBB : opcodes or cond or PUBW * C : S OR L * D : 8 * E : 5 */ switch (insn >> 29) { case 0x0: if (UCOP_SET(5) && UCOP_SET(8) && !UCOP_SET(28)) { do_mult(env, s, insn); break; } if (UCOP_SET(8)) { do_misc(env, s, insn); break; } case 0x1: if (((UCOP_OPCODES >> 2) == 2) && !UCOP_SET_S) { do_misc(env, s, insn); break; } do_datap(env, s, insn); break; case 0x2: if (UCOP_SET(8) && UCOP_SET(5)) { do_ldst_hwsb(env, s, insn); break; } if (UCOP_SET(8) || UCOP_SET(5)) { ILLEGAL; } case 0x3: do_ldst_ir(env, s, insn); break; case 0x4: if (UCOP_SET(8)) { ILLEGAL; /* extended instructions */ } do_ldst_m(env, s, insn); break; case 0x5: do_branch(env, s, insn); break; case 0x6: /* Coprocessor. */ disas_coproc_insn(env, s, insn); break; case 0x7: if (!UCOP_SET(28)) { disas_coproc_insn(env, s, insn); break; } if ((insn & 0xff000000) == 0xff000000) { /* syscall */ gen_set_pc_im(s->pc); s->is_jmp = DISAS_SYSCALL; break; } ILLEGAL; } return; } /* generate intermediate code in gen_opc_buf and gen_opparam_buf for basic block 'tb'. If search_pc is TRUE, also generate PC information for each intermediate instruction. */ static inline void gen_intermediate_code_internal(CPUUniCore32State *env, TranslationBlock *tb, int search_pc) { DisasContext dc1, *dc = &dc1; CPUBreakpoint *bp; uint16_t *gen_opc_end; int j, lj; target_ulong pc_start; uint32_t next_page_start; int num_insns; int max_insns; /* generate intermediate code */ num_temps = 0; pc_start = tb->pc; dc->tb = tb; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; dc->is_jmp = DISAS_NEXT; dc->pc = pc_start; dc->singlestep_enabled = env->singlestep_enabled; dc->condjmp = 0; cpu_F0s = tcg_temp_new_i32(); cpu_F1s = tcg_temp_new_i32(); cpu_F0d = tcg_temp_new_i64(); cpu_F1d = tcg_temp_new_i64(); next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; lj = -1; num_insns = 0; max_insns = tb->cflags & CF_COUNT_MASK; if (max_insns == 0) { max_insns = CF_COUNT_MASK; } gen_icount_start(); do { if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) { QTAILQ_FOREACH(bp, &env->breakpoints, entry) { if (bp->pc == dc->pc) { gen_set_pc_im(dc->pc); gen_exception(EXCP_DEBUG); dc->is_jmp = DISAS_JUMP; /* Advance PC so that clearing the breakpoint will invalidate this TB. */ dc->pc += 2; /* FIXME */ goto done_generating; break; } } } if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) { gen_opc_instr_start[lj++] = 0; } } gen_opc_pc[lj] = dc->pc; gen_opc_instr_start[lj] = 1; gen_opc_icount[lj] = num_insns; } if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) { gen_io_start(); } disas_uc32_insn(env, dc); if (num_temps) { fprintf(stderr, "Internal resource leak before %08x\n", dc->pc); num_temps = 0; } if (dc->condjmp && !dc->is_jmp) { gen_set_label(dc->condlabel); dc->condjmp = 0; } /* Translation stops when a conditional branch is encountered. * Otherwise the subsequent code could get translated several times. * Also stop translation when a page boundary is reached. This * ensures prefetch aborts occur at the right place. */ num_insns++; } while (!dc->is_jmp && gen_opc_ptr < gen_opc_end && !env->singlestep_enabled && !singlestep && dc->pc < next_page_start && num_insns < max_insns); if (tb->cflags & CF_LAST_IO) { if (dc->condjmp) { /* FIXME: This can theoretically happen with self-modifying code. */ cpu_abort(env, "IO on conditional branch instruction"); } gen_io_end(); } /* At this stage dc->condjmp will only be set when the skipped instruction was a conditional branch or trap, and the PC has already been written. */ if (unlikely(env->singlestep_enabled)) { /* Make sure the pc is updated, and raise a debug exception. */ if (dc->condjmp) { if (dc->is_jmp == DISAS_SYSCALL) { gen_exception(UC32_EXCP_PRIV); } else { gen_exception(EXCP_DEBUG); } gen_set_label(dc->condlabel); } if (dc->condjmp || !dc->is_jmp) { gen_set_pc_im(dc->pc); dc->condjmp = 0; } if (dc->is_jmp == DISAS_SYSCALL && !dc->condjmp) { gen_exception(UC32_EXCP_PRIV); } else { gen_exception(EXCP_DEBUG); } } else { /* While branches must always occur at the end of an IT block, there are a few other things that can cause us to terminate the TB in the middel of an IT block: - Exception generating instructions (bkpt, swi, undefined). - Page boundaries. - Hardware watchpoints. Hardware breakpoints have already been handled and skip this code. */ switch (dc->is_jmp) { case DISAS_NEXT: gen_goto_tb(dc, 1, dc->pc); break; default: case DISAS_JUMP: case DISAS_UPDATE: /* indicate that the hash table must be used to find the next TB */ tcg_gen_exit_tb(0); break; case DISAS_TB_JUMP: /* nothing more to generate */ break; case DISAS_SYSCALL: gen_exception(UC32_EXCP_PRIV); break; } if (dc->condjmp) { gen_set_label(dc->condlabel); gen_goto_tb(dc, 1, dc->pc); dc->condjmp = 0; } } done_generating: gen_icount_end(tb, num_insns); *gen_opc_ptr = INDEX_op_end; #ifdef DEBUG_DISAS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { qemu_log("----------------\n"); qemu_log("IN: %s\n", lookup_symbol(pc_start)); log_target_disas(pc_start, dc->pc - pc_start, 0); qemu_log("\n"); } #endif if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) { gen_opc_instr_start[lj++] = 0; } } else { tb->size = dc->pc - pc_start; tb->icount = num_insns; } } void gen_intermediate_code(CPUUniCore32State *env, TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 0); } void gen_intermediate_code_pc(CPUUniCore32State *env, TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 1); } static const char *cpu_mode_names[16] = { "USER", "REAL", "INTR", "PRIV", "UM14", "UM15", "UM16", "TRAP", "UM18", "UM19", "UM1A", "EXTN", "UM1C", "UM1D", "UM1E", "SUSR" }; #define UCF64_DUMP_STATE void cpu_dump_state(CPUUniCore32State *env, FILE *f, fprintf_function cpu_fprintf, int flags) { int i; #ifdef UCF64_DUMP_STATE union { uint32_t i; float s; } s0, s1; CPU_DoubleU d; /* ??? This assumes float64 and double have the same layout. Oh well, it's only debug dumps. */ union { float64 f64; double d; } d0; #endif uint32_t psr; for (i = 0; i < 32; i++) { cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]); if ((i % 4) == 3) { cpu_fprintf(f, "\n"); } else { cpu_fprintf(f, " "); } } psr = cpu_asr_read(env); cpu_fprintf(f, "PSR=%08x %c%c%c%c %s\n", psr, psr & (1 << 31) ? 'N' : '-', psr & (1 << 30) ? 'Z' : '-', psr & (1 << 29) ? 'C' : '-', psr & (1 << 28) ? 'V' : '-', cpu_mode_names[psr & 0xf]); #ifdef UCF64_DUMP_STATE for (i = 0; i < 16; i++) { d.d = env->ucf64.regs[i]; s0.i = d.l.lower; s1.i = d.l.upper; d0.f64 = d.d; cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g) d%02d=%" PRIx64 "(%8g)\n", i * 2, (int)s0.i, s0.s, i * 2 + 1, (int)s1.i, s1.s, i, (uint64_t)d0.f64, d0.d); } cpu_fprintf(f, "FPSCR: %08x\n", (int)env->ucf64.xregs[UC32_UCF64_FPSCR]); #endif } void restore_state_to_opc(CPUUniCore32State *env, TranslationBlock *tb, int pc_pos) { env->regs[31] = gen_opc_pc[pc_pos]; }